COT 6401 The Analysis of Algorithms
 Test (March 11, 2009)
 Due: midnight of March 12, 2009

1. (20%) (Greedy) A telecom company needs to install base stations to cover all houses along a long road. These houses can be sparsely distributed along the road. Suppose the coverage is 5 miles per station. Design an optimal solution that covers all houses using as few base stations as possible. Prove that your algorithm is optimal.
2. (20\%) (Linear programming) Solve the following linear program using SIMPLEX and show all the relevant steps:
```
maximize \(x_{1}+2 x_{2}\)
subject to
\[
\begin{aligned}
& 4 x_{1}-x_{2} \leq 9 \\
& x_{1}+x_{2} \leq 8 \\
& 5 x_{1}-2 x_{2} \geq-3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
\]
```

Provide a geometric explanation of the solution by plotting the corresponding feasible region in a $2-\mathrm{D}$ space.
3. (20\%) (Divide-and-conquer) Suppose the only way to access a database of student GPA is through a simple query k and that the system returns the $k^{t h}$ smallest value that it contains. Design an algorithm that finds the median GPA from two separate databases A (with m values) and B (with n values) using at most $\Theta(\log (m+n))$ queries. Show explicitly how your solution meets the requirement. Note that the median GPA is the $\lceil(m+n) / 2\rceil^{t h}$ smallest value in A and B.
4. 20%) (Brute-force) Let $G=(V, E)$ be a k-nary tree with n nodes. The distance between two nodes in G is the length of the path connecting these two nodes (neighbors have distance $1)$. The diameter of G is the maximal distance over all pairs of nodes. Design a linear-time solution (i.e. $\Theta(n)$) to find the diameter of G.
5. (20\%) (Dynamic programming) Design an optimal solution using dynamic programming for the general coin changing problem. Let a coin of denomination $i, 1 \leq i \leq n$, have value d_{i}. Use the example with three coins with values 1,4 , and 6 units to illustrate the correctness of your solution by showing optimal results for changes from 1 to 10 .
6. (Bonus: 20\%) Quicksort can be modified to find the $k^{\text {th }}$ smallest element from n elements so that in most cases it does much less work than is needed to sort the set completely.
(a) Write a modified quicksort algorithm for this purpose.
(b) Show that when this algorithm is used to find the median, the worst case is $\Theta\left(n^{2}\right)$.
(c) Develop a recurrence equation for the average running time of this algorithm.
(d) Analyze the average running time of the algorithm. What is the asymptotic order?

