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Abstract

A deadlock-free multicast scheme called prefix multicasting in irregular networks is
studied. In prefix routing, a compact routing table is associated with each node (processor).
Basically, each outgoing channel of a node is assigned a special label and an outgoing
channel is selected if its label is a prefix of the label of the destination node. Node and
channel labeling in an irregular network is based on a pre-defined spanning tree which may
or may not be minimum. The routing process follows a two-phase process of going up and
then down along the spanning tree, with a possible cross channel between two branches
of the tree between two phases. It is shown that proposed routing scheme is deadlock-
and livelock-free. The approach is extended to multicasting in which the multicast packet
is first forwarded up the tree to the longest common prefix (LCP) of destinations in the
multicast. The packet is then treated as a multi-head worm that can split at branches of
the spanning tree as the packet is sent down the tree.
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1 Introduction

Switch-based networks are becoming more and more popular to meet the ever increasing de-

mand for high performance. Many switching hubs have been used in switched LANs, such as

Fast Ethernet, FDDI, Myrinet, and ATM. In general, switch-based networks provide virtual

point-to-point communication, and hence, offer better throughput and lower latency for many

applications.

Networks of workstations (NOWs) with underlying switch-based networks have been consid-

ered as a cost-effective alternative to massively parallel computers. Workstations and switches

can be interconnected to form various topologies, mostly irregular ones. Routing is the process

of transmitting data from a source node to one or more destination nodes in a given system.

Multicasting is a routing process involving one source and multiple destinations. Unicasting

is a special case of multicasting with only one destination. Multicast communication is essen-

tial for many useful operations such as barrier synchronization, DSM systems, and collective

communication in MPI and PVM.

Most recent research in the field focused on deadlock-free multicasting with wormhole

switching. In wormhole-routed systems, a packet is divided into a sequence of flits and these flits

are forwarded to destinations in a pipeline fashion controlled by a header flit. The packet as a

whole can be viewed as a multi-head worm that can split into multiple heads. Suppose a packet

to be sent to multiple destinations follows a tree that covers all destinations (the corresponding

approach is called tree-based routing), the multi-head worm can split at each branch of the

tree. A multi-head worm can be implemented either synchronously or asynchronously [10].

In a synchronous multi-head worm, no branch of the multi-head worm can proceed until all

output channels are available. In an asynchronous multi-head worm, each branch can forward

independently without coordinating with branches as shown in Figure 1 (a flit with label 1 is

the header). Each header is pseudo independent. Since each header advances asynchronously,

space may exist between two adjacent flits along a branch. Such space is filled with dummy

flits called bubbles (see Figure 1).

A deadlock occurs when several routing processes are in a circular waiting state and cannot

advance toward their destinations because the channels required by them are not available. A

livelock occurs when a routing process travels around its destination node and never reaches

it. Deadlock- and livelock-free routing in regular topologies such as hypercubes [7] and meshes

[11] has been extensively studied. Unlike regular topologies, irregular topologies pose some

new challenges to design a deadlock- and livelock-free routing process:
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• It is difficult, if not impossible, to derive an efficient routing scheme without using a

complete routing table.

• Irregular routing paths (because of irregular topologies) pose an additional dimension of

difficulty to ensure deadlock- and livelock-freedom.

Multicasting in wormhole-routed networks itself adds more difficulties in preventing dead-

lock which can occur even when the underlying base-line unicasting is deadlock-free. Specifi-

cally, deadlock could happen under either the synchronous or asynchronous model of multiple-

head worms. Figure 2 shows a deadlock situation between two multicasts. Multicast 1 sends a

packet from node a to nodes e and f , while Multicast 2 sends a packet from node d to nodes

e and f . Multicast 1 is waiting for Multicast 2 to release channel (c, f), while Multicast 2 is

waiting for Multicast 1 to release channel (b, e). In this case, these two multicasts wait for each

other to release channels and they are in a deadlock state. Note that in this case the same

routing policy for unicasting is deadlock-free. That is, the unicasting follows up channels of

the spanning tree (tree links are represented as solid lines in Figure 2), one cross channel, and

down channels.

Most deadlock-free routing/multicasting algorithms for irregular networks are based on

either a spanning tree (the corresponding approach is called tree-based) [8, 16] or a Eulerian

path (the corresponding approach is called path-based) [13]. By restricting the routing path

along branches in the spanning tree (with limited and controlled jumps between tree branches),

deadlock-free routing is derived. In a path-based approach, a Eulerian path (a path that visits

each edge once and only once) is first constructed to ensure a feasible path between any two

nodes. Shortcuts are allowed to generate shorter paths. In general, the tree-based approach is

more favorable than the path-based approach in unicasting for generating short routing paths.

However, to ensure deadlock-freedom in multicasting, the tree-based approach is more involved

[8].

In this paper, a deadlock-free multicast scheme called prefix multicasting in irregular net-

works is studied. Prefix routing [19] is a special type of routing with a compact routing table

associated with each node (processor). Basically, each outgoing channel of a node is assigned a

special label and an outgoing channel is selected if its label is a prefix of the label of the desti-

nation node. Node and channel labeling in an irregular network is done based on a pre-defined

spanning tree that may or may not be minimum. The routing process follows a two-phase

process of first going up and then going down the spanning tree, with a possible cross chan-

nel between two branches of the tree between two phases. It is shown that the prefix routing

scheme [19] is deadlock- and livelock-free under either the synchronous or asynchronous model.
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Figure 1: An asynchronous multi-head worm.

In this paper, prefix unicasting is extended to multicasting in which the multicast packet is

first forwarded to the longest common prefix (LCP) of destinations in the multicast. The

packet can then be treated as a multi-head worm that can split at branches of the spanning

tree as the packet is sent down the spanning tree. Comparison between prefix multicasting

and Libeskind-Hadas et al’s approach for multicasting is given. Possible extensions are also

discussed including reliable prefix routing and multicasting.

The paper is organized as follows. Section 2 summarizes related work. Section 3 reviews

the prefix routing algorithm. Several new features are revealed together with a new proof

of the livelock- and deadlock-free property. Discussion is included on how to carry out prefix

routing when the spanning tree is non-minimum. Section 4 proposes the livelock- and deadlock-

free prefix multicasting. Section 5 compares prefix multicasting with Libeskind-Hadas et al’s

approach for multicasting and discusses possible extensions, including reliable prefix routing

and multicasting. An efficient distribution of label table is also discussed. Finally, Section 6

concludes this paper and discusses possible future work.

2 Related work

In tree-based unicasting, a spanning tree is first constructed and the packet is forwarded

to its destination by going up/down the tree. In [15], an up∗/down∗ unicast algorithm is

proposed aiming at better utilization of all the available channels in the network. First, an

arbitrary node is selected as a special node (root node), and then, the network is partitioned
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Figure 2: An example of deadlock involving two multicasts.

into two subnetworks: up subnetwork and down subnetwork. The up subnetwork consists of

unidirectional channels directed towards a special node (root node) while the down network

consists of unidirectional channels directed away from the special node. In case of a tie, a

tie breaker is made by comparing the ids of two end nodes connected by the channel (assume

that node ids are distinct). A routing process always selects a sequence of up channels (if any)

followed by a sequence of down channels (if any). Based on the definition of the up (down)

subnetwork, no cycle exists among up (down) channels. It is impossible to have a cycle that

involves up and down channels, because a transition from a down channel to an up channel is

forbidden.

To determine the status of each channel (up or down), a minimum spanning tree is con-

structed from the special node (root node) that connects each node through a shortest path

in terms of hop count. The status of a channel in the spanning tree can be easily determined.

A channel not in the tree is called a cross channel and its status, up cross or down cross, can

be determined by the levels of the two end nodes (of the channel) in the spanning tree. When

the levels of two end nodes are the same, node ids are used to break a tie.

The routing in Autonet [15] was built based on the up∗/down∗ unicast algorithm. The

packet is first routed in the up subnetwork (consists of up and up cross channels) and is then

routed in the down subnetwork (consists of down and down cross channels). Basically, the

up subnetwork is a directed acyclic graph (DAG) with a unique sink which is the root of the

spanning tree. The down subnetwork is also a DAG; however, in order to direct a packet to
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its destination, a reachability string is attached to each node in the down subnetwork. More

specifically, each header of a packet is associated with a bit-string of length n to represent

distribution of destinations, where n is the number of nodes in the network. Every node in

the down subnetwork has an n-bit reachability string associated with every one of its outgo-

ing channels that lead to channels in the down direction. These reachability strings can be

constructed during the formation of the spanning tree. This approach resembles the tradi-

tional table lookup approach; however, table lookup cancels out some elegant features of the

approach.

Unfortunately, the up∗/down∗ unicasting cannot be directly applied to multicasting because

of excessive freedom in using different types of channels. There are two tree-based multicast

schemes in literature. Deadlock-freedom is ensured by restricting the way a channel is used.

In [6], unicasting is allowed to use cross channels (ones that are not in the spanning tree)

as shortcuts to reach destinations through shorter paths. Multicasting is restricted to tree

channels only. Whenever a multicast packet is blocked by a unicast packet at an intermediate

node, it has to suspend its transmission and yield its path to the unicast packet. Another

option is to exchange the role of multicasting and unicasting when they are competing for

channels. In [8], Libeskind-Hadas et al propose a scheme that distinguishes between down

tree channels and down cross channels. Unlike the up∗/down∗ unicast algorithm, a multicast

packet is routed along zero or more channels in the up subnetwork (consisting of up and up

cross channels), followed by zero or more down cross channels, and finally zero or more down

tree channels. A multicast packet uses this approach to reach the least common ancestor

(LCA) of its destination set. It is restricted to down tree channels after that. Note that in a

unicasting, the destination itself is the least common ancestor.

The proposed prefix multicasting is an elegant approach that works for both unicasting and

multicasting without distinguishing them. This approach is based on the notion of compact

routing that uses a routing table with reduced size [5]. Two commonly used compact routing

schemes are interval routing [1, 4] and prefix routing [2]. Both schemes are based on assigning

special labels to each unidirectional channel. At each routing step, a particular neighbor is

selected as the next forwarding node if the label in the corresponding channel meets a certain

condition. In interval routing, each channel is associated with an interval of integers. A channel

is selected if the destination address (an integer) is within the interval. In prefix routing, each

channel is associated with a label of a string and each node is also labeled with a string. A

channel is selected, and hence, the corresponding neighbor is selected, if the channel label is a

prefix of the label of the destination node.
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3 Prefix Routing

Suppose G = (V, E) is an undirected graph representing an irregular network, where V is

the vertex set and E is the edge set. v ∈ V represents a vertex (also called a node) in the

network and uv represents an edge (also called a link) between nodes u and v. Note that

v can be either a switch or a workstation in NOWs. Two switches or one switch and one

workstation can be connected, but not two workstations. To simplify our discussion, we do

not distinguish a switch from a workstation and will simply call each of them a node. Each

link uv has two unidirectional channels: (u, v) and (v, u). Prefix routing is based on a labeling

scheme that assigns a label to each node and channel. L(v) and L(u, v) are labels for node v

and channel (u, v), respectively. In the following discussion, a “link” and a “channel” represent

an undirected edge and a directed edge, respectively. The unicasting consists of two steps [19]:

Preprocessing: Build a spanning tree and assign labels to nodes and channels.

• Build a spanning tree of a given graph rooted at a selected node (root node).

• Assign labels to nodes and channels of the spanning tree during its formation.

• Complete labels to all the remaining channels in the graph.

Routing: Construct a unicast algorithm.

• Suppose d is the destination and v is the current node, node u is selected as the forwarding

node if L(v, u) is a prefix of L(d).

Building a spanning tree. The spanning tree can be built using one of the traditional

breadth-first search (BFS) methods. Initially, all nodes are unmarked. The process starts

from a selected node, r, called the root. A signal is sent from root r to all its adjacent nodes

adj(r). Once node v receives a signal from node w and node v is unmarked, the parent-child

relation is established between w and v. Node v continues the same process by broadcasting

the signal to its adjacent nodes adj(v). A marked node ignores any signal received. This

process generates a minimum spanning tree if it is implemented by a centralized algorithm

using a priority queue, i.e., each node is reached from the root through a shortest path in

terms of hop count. In a decentralized implementation, a minimum spanning tree can be
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Figure 3: Two cases of shortcuts: (a) down shortcut. (b) up shortcut.

• up channel: a channel in the spanning tree that directs towards the root.

• down channel: a channel in the spanning tree that directs away from the root.

• cross channel: a channel that is not in the spanning tree, but it connects two nodes

at different branches of the tree. (We do not distinguish the up/down status of a cross

channel.)

• shortcut: a channel that is not in the spanning tree, but it connects two nodes in the

same branch of the tree. (Such a channel occurs only in a non-minimum spanning tree.)

– up shortcut: a shortcut that directs towards the root.

– down shortcut: a shortcut that directs away from the root.

constructed if the latency of transmitting a signal between two adjacent nodes is uniform and

the underlying switch has all-port capability; that is, it can simultaneously send and receive

signals along different channels. However, our approach works for any spanning tree; the way a

spanning tree is constructed is no longer an issue. We assume that the process of constructing

a spanning tree starts at one selected node. This approach can be extended to the case where

each node initiates its own process (could be at the same time); however, only one winner

(which becomes the root node) is selected [12]. More general ways of constructing a spanning

tree can be found in [9]. Based on the definition of a spanning tree, we can define four types of

channels: up, down, cross, and shortcut. Shortcut channels are further divided into up shortcut

and down shortcut as shown in Figure 3.

Assignment of labels to nodes and channels. The labeling scheme is extended from

8



Unicast algorithm.

• At an intermediate node v (including source node s), neighbor u is selected as the for-

warding node if L(v, u) is a prefix of L(d), where d is the destination. If there are several

forwarding nodes, the one that has the longest prefix of the destination is selected.

• If such a neighbor does not exist, select a neighbor w such that L(v, w) = e.

the one in [2]. Assignment of labels to nodes and channels of the spanning tree is done as

follows: The label of the root is 1, that is, L(r) = 1. If u is the kth child of v, then assign

L(u) = L(v)‖k, where ‖ represents a concatenation operation. If node v is the parent of

node u, then L(v, u) = L(u) and L(u, v) = e, where e represents an empty string label. In

the distributed formation of the labeling scheme, each node v decides its label and labels for

channels (v, u), where u ∈ adj(v).

The labeling of channels that are outside the spanning tree is based on labels of two end

nodes: If there is no parent-child relation between v and u and uv ∈ E, then L(v, u) = L(u)

and L(u, v) = L(v).

Note that an up channel has e as its label, a down channel carries the label of the corre-

sponding child node, and a cross channel has the label of the corresponding cross neighbor at

a different branch of the spanning tree.

Unicast algorithm. The routing process is decentralized. At an intermediate node (also

called a forwarding node), it decides the next forwarding node by selecting an appropriate

outgoing channel. Basically, the prefix routing is based on the label associated with each

outgoing channel. A channel is selected if the corresponding channel label is a prefix of the

label of the destination. When there are several forwarding nodes (in a non-minimum spanning

tree), the one that has the longest prefix of the destination is selected. If there is no outgoing

channel that has a label matching the label of the destination, an up channel (with label e) is

selected. If the spanning tree is minimum, a routing process proceeds by visiting a sequence

of up channels (if any), followed by at most one cross channel, and ends with a sequence of

down channels (if any).

In Figure 4, an irregular network with six nodes is shown, together with a minimum span-

ning tree with its links represented as solid lines. By applying the proposed prefix rout-

ing algorithm, path 11 → 12 → 121 for (s, d) = (11, 121) and path 112 → 12 → 121

for (s, d) = (112, 121) can be derived. Note that we use s to represent both the source
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Id a b c d e f

Label 1 11 12 111 112 121

Table 1: A label table associated with each node of Figure 3.

node and its label L(s). Figure 5 shows another irregular network with a non-minimum

spanning tree rooted at node a. Actually, this non-minimum spanning tree is a linear line

and the corresponding routing is path-based. Using the prefix routing, we can derive path

1 → 11 → 11111 → 111111 for (s, d) = (1, 111111). At node 11, nodes 111, 1111 and 11111

are eligible forwarding nodes. Node 11111 is selected because it has the longest prefix of the

destination. For (s, d) = (11111, 111), the corresponding path is 11111 → 11 → 111.

It is assumed that each node can relate the label of a destination to its id (node id). Each

node keeps a label table as shown in Table 1 for the irregular network of Figure 4. The table

can be derived during the formation of the spanning tree: Each node forwards its node id and

label pair up along the tree until reaching root node r. Once r receives all pairs of node id

and label, a label table is constructed. Finally, r broadcasts the label table down the spanning

tree.

For a minimum spanning tree, we can easily see that any routing process proceeds by

visiting a sequence of up channels (if any), followed by at most one cross channel, and ends

with a sequence of down channels (if any). Since any sequence of up (down) channels is acyclic,

the routing process is deadlock-free [19]. For a non-minimum spanning tree, the case is more

involved as shown in the following three cases. Note that based on the channel labeling scheme,

a node label L(s) is a prefix of another node label L(d) if and only if node s is an ancestor of

node d in the spanning tree.

(Case 1): Source s is an ancestor of destination d. Based on the channel labeling scheme,

destination d can be reached through a unique sequence of down channels. We now show that

it is the only possible routing path if the spanning tree is minimum. Clearly, no up channel

can be used, since an up channel is used only when the current node label is not a prefix of

the label of the destination node. Also, no cross channel will be used; otherwise, suppose at

an intermediate node w, a cross channel is used to reach node v at a different branch, based

on the property derived from the labeling scheme, both w and v are ancestors of destination d,

which is a contradiction. If the spanning tree is non-minimum, down shortcuts may be used.

A down shortcut (u, v) is used if v has a longer prefix of destination d than the label of u’s

child has in the spanning tree. (Figure 3 (a) shows such a case.) Note that if the spanning tree
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Figure 4: Labels for nodes and channels.

is minimum, i.e., each node is reached from the root (of the spanning tree) through a shortest

path, the above case will never occur, because in this case node d can be reached from the

root through a shorter path (... → v → u... → d) than the current one (... → v... → u... →).

Suppose “+”, “∗”, and “|” represent “one or more”, “zero or more”, and “or”, respectively.

The above cases can be summarized as follows:

1. (minimum spanning tree): down+

2. (non-minimum spanning tree): (down shortcut|down)+

(Case 2): Source s is a descendant of destination d. The label of s is not a prefix of d. The

routing process follows a unique sequence of up channels to reach the destination. However,

if the spanning tree is non-minimum, the following situation can also occur: A sequence of

up channels is used to reach an intermediate node u (including source node s). If there is a

neighbor v (of u) that is an ancestor of d, then the corresponding up shortcut is used to reach

node v. The remaining routing process resembles Case 1 from node v to node d which consists

of a sequence of down or down shortcut channels. Note that if the spanning tree is a minimal

one, that is, each node is reached from the root of the spanning tree through a shortest path,

the above case will never occur, because otherwise node s can be reached from the root through

a shorter path (... → v → u... → s) than the current one (... → v → ... → d → ... → u... → s).

As a summary for the non-minimum spanning tree case, the routing process follows a sequence

of up channels to reach the destination or it follows a sequence of up channels (if any) until

it reachs an intermediate node u that has a neighbor v which is an ancestor of destination d,

and then, Case 1 applies to the remaining routing process to reach d from v. The above cases
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can be summarized as follows:

1. (minimum spanning tree): up+

2. (non-minimum spanning tree): up+ or up∗ → up shortcut → (down shortcut|down)∗

(Case 3): Source s and destination d do not have the ancestor/descendant relation. This

case resembles Case 2, where a sequence of up channels are used, unless there is a cross neighbor

that is an ancestor of the destination. When the spanning tree is minimum, the routing process

follows a sequence of up channels until reaching either the least common ancestor of s and d

or the first intermediate node (including source node s) that has a cross neighbor that is an

ancestor of the destination. In the later case, the corresponding cross channel is used to reach

that neighbor. Finally for both cases, the routing process completes by following a sequence of

down channels to reach the destination. When the spanning tree is non-minimum, the routing

process starts with a sequence of up channels (could be zero), followed by a cross, up, or

up shortcut, and ends with a sequence of down or down shortcut channels. The above cases

can be summarized as follows:

1. (minimum spanning tree): up∗ → cross → down∗ or up+ → down+

2. (non-minimum spanning tree): up∗ → cross → (down shortcut|down)∗, up+ → (

down shortcut |down)+, or up∗ → up shortcut → (down shortcut|down)+.

Theorem 1 The proposed prefix routing is deadlock- and livelock-free.

Proof. Based on the definition of the proposed routing algorithm, the routing process starts

with a sequence of up channels (if any). Therefore, two stages are used: stage 1 uses up channels
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only and stage 2 uses other channels. Stage 1 completes in a finite number of steps, because the

subgraph induced from up-channels is a tree. Stage 2 uses channels in an increasing order in

terms of lengths of channel labels and the message always gets closer to the destination at each

step. Because the up channels at stage 1 belong to the up subnetwork which is a DAG, there

is no cyclic wait among these channels. Stage 2 is also cycle-free as shown earlier. Therefore,

the proposed algorithm is deadlock-free. At stage 1, because the number of up channels are

finite and they belong to a DAG with a unique sink (root node), in the worst case the packet

is sent to the root with its label being a prefix of the label of any destination. Stage 2 uses

prefix matching and it will eventually terminates because the id (string label) of each node is

finite. Therefore, the proposed algorithm is livelock-free.

4 Prefix Multicasting

The prefix routing cannot be directly extended to prefix multicasting. Suppose we use a

simple extension to tree-based multicasting that uses a multi-head worm, the worm splits at a

node whenever destinations in the multicast have to follow different branches, based on prefix

matching of labels defined in prefix routing, through different output channels. That is, if the

label of one of the outgoing channels is a common prefix of a proper subset of destinations,

then this subset is sent along that outgoing channel. In Figure 2, suppose the spanning tree

is shown as solid lines, a multicast from node d to nodes e and f is first sent to node b via

channel (d, b) with an empty string label. Once at node b, the worm splits into two heads, one

towards node c (and then to node f) and the other one towards node e. As shown earlier, this

approach will cause deadlock. A deadlock may occur when there is another multicast from

node a to nodes e and f as shown in Figure 2.

The proposed algorithm, called prefix multicasting, consists of two phases: up phase (with

a single-head worm) and down phase (with a multi-head worm). The algorithm restricts the

location of each split to avoid deadlock. Specifically, no split is allowed until the worm reaches

a node that is the longest common prefix (LCP) of destinations in the multicast. The LCP

of destinations is calculated first at the source node and attached to the packet during the

transmission. Once passing the LCP, the multi-head can split without further restriction. Each

destination is associated with only one head after the split. Also, the address of a destination

is removed from the header once the destination is reached. Note that when the spanning tree

is minimum, each destination has one forwarding node at each step of down phase. However,

when the spanning tree is non-minimum, a destination may have several forwarding nodes. In

this case, the one that has the longest prefix of the destination is selected. It can be easily
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Multicast algorithm.

(Up phase):

• Apply prefix routing and use LCP to direct the single-head worm until reaching a node

with label LCP.

(Down phase):

• The single-head worm splits at LCP to a multi-head worm as needed.

• The head of each multi-head worm may split further at a branch of the spanning tree.

If there are several forwarding nodes (when the spanning tree is non-minimum), the one

that has the longest prefix of the destination is selected.

proved that when the above rule is followed, two heads of the same message will not involve in

a self-lock situation. Two heads of the same message are said to be self-locked if they compete

for channel(s) at a point, the blocking of one head will eventually cause the blocking of the

other.

To ensure freedom from deadlock, a request for a set of output channels at each node is

assumed to be an atomic operation like the one used in [8]. That is, a worm entering a node

waits until all the requests for FIFO output channel request queues have arrived at the heads

of queues and these channels become free.

Theorem 2 The proposed prefix multicasting is deadlock- and livelock-free.

Proof. (Sketch): Consider two multicast messages m1 and m2 with LCP(m1) and LCP(m2)

as their longest common prefixes, respectively. It is clear that deadlock between m1 and m2

will not occur at the up phase since each message is a single-head worm at the upper phase.

Therefore, we only need to focus on the down phase.

The following two cases are considered: (1) LCP(m1) and LCP(m2) do not have the ances-

tor and descendant relation. In this case, m1 and m2 do not compete for any channel during

the down phase, and hence, no deadlock will occur. (2) LCP(m1) and LCP(m2) have the

ancestor and descendant relation. Without loss of generality, we assume that LCP(m1) is the

ancestor of LCP(m2). Note that this case also includes when LCP(m1) and LCP(m2) point to

the same node. This tie situation is broken by the timestamp associated with each message,
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Figure 6: (a) Two multicast trees. (b) A new spanning tree initiated at node b.

where timestamp is the time the message is generated. Clearly, a branch of m1 is competing

with m2 only at node LCP(m2). Since the output channels are assigned as an atomic operation,

either m2 or a branch of m1 gets all the needed channels of LCP(m2) or no channels at all.

If m2 get all channels of LCP(m2), we say m1 waits for m2 at point LCP(m2); otherwise, m2

waits for m1 at point LCP(m2). In either case no deadlock will occur.

Assume there is a deadlock involving k multicast messages, m1, m2, ..., mk. Without loss

of generality, mi waits for mi+1 at point (node) pi for i = 1, 2, ..., k − 1 and mk waits for

m1 at pk. Based on the organization of nodes in a tree structure, pi is higher than pi+1 for

i = 1, 2, ..., k − 1, that is, pi is closer to the root of the tree than pi+1 is. In addition, pk is

higher than p1. This is a contradiction.

In the example of Figure 2, a packet from node d to nodes e and f cannot split before

reaching their LCP(112, 121)=1 which is the label for node a. Once the packet reaches node

a, it splits into two heads, one follows channel (a, b) with label 11 to reach destination e (with

label 112) via node b and another follows channel (a, c) with label 12 to reach destination f

(with label 121) via node c. A packet from node a to nodes e and f can follow the multicast

tree as shown in Figure 2, because node a is the LCP of nodes e and f and no restriction on

splitting is needed. Clearly, no deadlock will occur between these two multicasts.
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5 Comparisons and Extensions

Comparisons. Both prefix multicasting and Libeskind-Hadas et al’s approach for multicasting

use route information represented as a string to direct a packet to destinations and both employ

two phases in the routing process: up phase and down phase. Prefix multicasting uses prefix

string matching (i.e., a label is a prefix of the destination label) and Libeskind-Hadas et al’s

approach uses string containment (i.e., the destination string is contained in a reachability

string).

We compare these two routing algorithms based on the cost of preprocessing and of the

routing process. Preprocessing includes formation of a spanning tree, identification of channel

status (up and down in both routing algorithms and cross and shortcut in prefix multicasting),

calculation of labels in prefix multicasting and reachability strings in Libeskind-Hadas et al’s

approach for multicasting. Prefix multicasting needs only the construction of a spanning tree.

Libeskind-Hadas et al’s approach for multicasting requires the construction of a spanning tree

to determine up/down channels. At the same time, reachability strings need to be constructed.

Specifically, the following procedure is followed to construct reachability strings: (1) Assign

each node in the network a distinct id, ranging from 1 to n, where n is the number of nodes

in the network. (2) The formation of reachability strings starts at a node (or more than one

node) that has no outgoing down channel. The reachability string of the node is derived by

first defining an n-bit string of all 0’s, and then, by setting the bit whose index in the string

matches the node id. This reachability string is sent to all the outgoing up channels of the

node. (3) When a node v receives a new string from an incoming up channel (u, v), it copies the

string to the corresponding outgoing down channel (v, u) as its reachability string. (4) Once a

node receives a string from each of its incoming up channels, these strings are logically ORed

together to form a new string. The reachability string associated with the node is derived

by setting the bit (whose index in the string matchs the node id) in the new string. The

reachability string is then forwarded to all the outgoing up channels of the node.

On the other hand, labeling of nodes and channels in prefix multicasting is determined

locally. This locality offers a convenient way of reconfiguration in a dynamic setting where

links are subject to failure. The extension of prefix routing and multicasting in an unreliable

system will be discussed in the next section. Clearly, prefix multicasting requires a simpler

preprocessing than Libeskind-Hadas et al’s approach for multicasting.

One disadvantage of prefix multicasting is its limited flexibility in the up phase. That is,

fewer channels are utilized in this phase compared with the ones used in the Libeskind-Hadas
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et al’s approach.

Extensions. Two directions of extensions are considered [19]: (1) Improve channel utilization

and (2) reduce the length of a routing path. Four possible extensions are discussed in [19] for

prefix routing:

• routing with multiple cross channels

• multiple spanning trees

• escape channels

• minimum depth spanning trees

All these extensions can be applied to prefix multicasting. Multiple cross channels can be

used in the up phase, like the approach used in [8]. However, more labels will be associated with

channels. Multiple spanning trees can be used to increase channel utilization. The method

proposed by Roskind and Tarjan [14] can be applied to find multiple edge-disjoint spanning

trees for an irregular network. In a twisted version of adaptive routing [3], a hybrid routing

can be introduced using two routing processes: One is fully adaptive that uses virtual channels

labeled as nonwaiting, and the other is restrictive but deadlock-free routing that uses virtual

channels labeled as waiting (also called escape channels). Initially, the fully adaptive routing is

used until it is blocked; then the hybrid routing is switched to the restrictive routing. Clearly,

channels (up, down, cross, shortcut) used in prefix multicasting can be used to form escape

channels. In the proposed routing algorithm, both the length of each label and the routing

path depend on the depth of the minimum spanning tree. We can use one of the existing

algorithms to construct a minimum depth spanning tree. In some cases these extensions can

be considered at the same time. For example, Wang and Blough [17] propose a way to find two

spanning trees in a 2-D torus with small diameters. More recently, Wang, Chen, and Chu [18]

propose to use two virtual channels to support two spanning trees in any irregular networks:

one tree is left-to-right BFS (breadth-first search) tree and the other is right-to-left BFS tree.

We focus here on an extension for reliable prefix routing/multicasting. It is assumed that

only links are subject to failures and a faulty link is detected by one of its end nodes. Also

each node u checks the status of its output channels at a certain time interval. When a faulty

output channel is detected at node u, one of following two actions is carried out.

• If the faulty output channel is not in the spanning tree, the label of this channel is

removed and nothing else needs to be done.
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• If the faulty output channel is in the spanning tree, node u initiates the process of

constructing a new spanning tree. Any uncommitted packets will be discarded and re-

sent later following the new spanning tree.

The locality property of node/channel labeling in prefix routing/multicasting ensures a

simple reconfiguration strategy, especially when faulty links are not in the spanning tree.

When a faulty link is in the spanning tree, an alternative approach is to delay the construction

process for a new spanning tree. The call for a new spanning tree is initiated only when a

packet that needs to use the faulty channel arrives at one of its end nodes.

In the example of Figure 6 (a), if channel (d, e) fails, it is removed and nothing else needs

to be done. However, if channel (b, e) in the spanning tree fails, node b (which detects the

failure) initiates a process to generate a new spanning tree rooted at node b. The resultant

spanning tree together with a new label for each node is shown in Figure 6 (b).

Another possible extension is to consider dynamic reconfiguration where the network re-

configuration is performed without stopping the transmission of user packets. However, the

assurance of the freedom from deadlock and livelock is significantly harder than a system that

uses static reconfiguration.

Distribution of label table. The knowledge of label table at each node is essential to carry

out the prefix routing/multicasting process. This global information limits the applicability

of prefix routing (multicasting), especially in a dynamic network with faulty nodes/links or

even mobile nodes. Fortunately, the inherit hierarchical structure of prefix routing supports a

distributed implementation of label table. Instead of keeping a global label table at each node,

each node v only needs to keep a partial label table that includes only descendant nodes (i.e.,

labels of these nodes contain the label of v as a prefix). For example, node b in Figure 3 keeps

a label table containing ones for nodes b, d, and e. When an intermediate node v receives

a routing packet, it first checks to see if the destination in unicasting (LCP in multicasting)

is in its label table. If the destination is in its local table, the proposed prefix unicasting

(multicasting) is followed; otherwise, the packet is sent to a neighbor w such that L(v, w) = e.

6 Conclusions

In this paper, we have extended a prefix-based routing scheme to prefix multicasting in irregular

networks and shown that it is deadlock- and livelock-free. Unlike traditional path-based and
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tree-based routing, prefix multicasting is based on a simple labeling scheme and labels to nodes

and channels are assigned during the formation of a spanning tree. Both prefix multicasting

and Libeskind-Hadas et al’s approach for multicasting are based on string matching during the

routing process. Prefix routing can be considered as a complement to Libeskind-Hadas et al’s

approach. Our future work will focus on comparing the proposed scheme with existing ones,

such as Libeskind-Hadas et al’s approach, through simulation.
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