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Abstract—Binary matching in bipartite graphs and its exten-
sions have been well studied over the decades. A stable matching
(or marriage) seeks to establish a stable binary pairing of two
genders, where each member in a gender has a preference list for
the other gender. In addition, all members are paired (also called
perfect matching), with one selection made from each gender.
Gale and Shapley showed that a stable marriage exists for any
set of preferences in any complete and balanced bipartite graphs.
However, stable matching may not exist in a non-bipartite graph
represented by a complete graph (i.e. single gender), as shown
in the stable roommates problem. In this paper, we study binary
matching in complete and balanced k-partite graphs with an even
number of members, and show that except when k = 2, prefer-
ence lists always exist under which a stable binary matching does
not exist. We use a solution for the stable roommates problem to
illustrate the matching identification process if one exists. Under
a natural extension of pairwise stability for binary matching to k-
ary matching, we show that stable k-ary matching exists for any
preference lists in any complete and balanced k-partite graphs.
Here, we assume that there is a strict preference order of the
members over all individual members from different genders, as
opposed to preference order over a combination of members from
different genders used in existing multi-dimensional extensions.
An extended Gale-Shapley algorithm is introduced, together
with various implementations, to determine such a stable k-ary
matching. A parallel implementation is also proposed to speed
up the matching process. In the extension, we further propose a
weakened unstable condition for k-ary matching and show the
existence of stable k-ary matching.

Index Terms—Binary matching, bipartite graphs, equivalence rela-
tion, k-ary matching, k-partite graphs, parallel implementation, stable
marriage problem, stable roommates problem.

I. INTRODUCTION

Binary matching is well-studied in graph theory. It involves
pairing two nodes in a given graph, such that each node
appears in one and only one pair. Such pairings are also
called perfect matching. Binary matching usually seeks some
objectives subject to several constraints. For example, in
maximum-weighted bipartite matching [1], the objective is to
maximize the total utility (or happiness) of matching pairs,
represented as the total edge weight of matching pairs.

In this paper, we focus on stable matching based on a
notion of stability, as defined in the stable marriage problem
(SMP) [2]. In the SMP, two genders, men and women, are
represented in a complete and balanced bipartite graph, where
a matching process pairs all members from different genders.
‘Complete’ means that any man can be matched with any
woman1. ‘Balanced’ represents that there are an equal number

1We will drop the word ‘complete’ in the subsequent discussion, assuming
that all graphs, bipartite and later multipartite, are complete.

of men (m) and women (w). The SMP finds a stable matching
between these two sets of members, given a preference list of
the opposite gender for each member. A matching is stable
whenever it is not the case that there exists two pairs where

1) m of the first pair prefers w of the second pair over the
member to which m is already matched, and

2) w also prefers m over the member to which w is already
matched.

That is, in a stable marriage, no man would say to another
woman, “I love you more than my wife, let us run away” and
the woman agrees, i.e., she also likes the man more than her
husband. Gale and Shapley proved that, for any equal number
(n) of men and women with their preferences, it is always
possible to solve the SMP and make all marriages stable. They
also provided a distributed algorithm, where men propose to
women iteratively. It is shown that the SMP is solved in at
most n2 accumulative proposals.

There are many extensions of SMP to cases with multiple
genders. Three-dimensional stable matching was originally
proposed by Knuth [3], where each family consists of three
members, with each member coming from each gender. In
[4], the preference order is defined as one gender against the
combination of all the remaining genders. For example, in
the three-dimensional stable matching problem, there are n
members in each of three genders, each member of a gender
has a preference order for all combination of the other two
genders, which have n2 combinations. In another variation
[4], the preference rating is cyclic among genders. It has been
proved that the existence of stable matching in both models,
including some variations [5], are all NP-complete.

In this paper, we examine the multiple-dimensional stable
matching problem through the use of k-partite graphs. For
example, when k = 3, we have three types of genders in
the SMP: man (m), woman (w), and undecided (u)2. The
preference lists are still binary from each member of one
gender to each of the other k − 1 genders, although separate
orders are maintained for different genders, one for each
gender. The binary matching allows a pair matching from
any two different genders. If each gender has n members
(i.e., balanced), each member of a gender has 2n entries for
two preference orders, one for each of the other two genders
in a three-dimensional matching. We then propose a k-ary

2‘Undecided’ here corresponds to a third gender. Like a man and woman,
any two undecided members cannot be paired. A more general model will be
discussed later, in which two undecided members can be paired as well.
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matching in balanced k-partite graphs. For example, when
k = 3, ternary matching includes three elements, one from
each of the three genders. A k-ary matching is a set of n k-
tuples (or families) such that each tuple has one member from
k genders and each member appears in exactly one tuple.

Given a set of k-tuples (current families), a new k-tuple
(family) is called a blocking family if each member in this
new family strictly prefers each of the members in the new
family to the corresponding one of the current family. A k-ary
matching is unstable if a blocking family exists; otherwise, it
is stable.

In this paper, we first study the traditional stable binary
matching in balanced k-partite graphs and extensions of these
graphs. Then, we focus on the stable k-ary matching in
balanced k-partite graphs. We have the following results:

1) Except for k = 2, there always exist preference lists
under which stable binary matching does not exist
in balanced k-partite graphs with an even number of
elements.

2) Given k different genders in which each gender has the
same number of members, it is possible to derive a stable
k-ary matching in balanced k-partite graphs.

For the first result, we discuss one potential application
of stable family formation in a society with multiple gender
groups. We then use the solution for stable roommates problem
[6] to find a stable binary matching in balanced k-partite
graphs if such a matching exists.

To find a stable k-ary matching based on the second result,
we propose a (k−1)-round binary matching among k genders.
This matching, also called binding process, forms a spanning
tree of k genders. We show that any such spanning tree ensures
a stable k-ary matching. In addition, we demonstrate that any
more than k−1 bindings (that can “strengthen” the family tie)
may not always exist and any less than k − 1 bindings (that
can “losen” the family tie) may cause instability. Therefore,
the number k − 1 is tight.

To enhance the second result, we weaken the unstable
condition. We assume that there is a strict priority order among
k genders. Note that members of a blocking family must
come from k′ (2 ≤ k′ ≤ k) current families in a matching.
Therefore, there are k′ lead members based on the given
gender priority, one from each of these k′ current families. In
the weakened blocking family, the condition “each member”
is replaced by another condition “each lead member of a
current (sub)family in the new family”, which makes k-ary
stable matching harder. We show that stable k-ary matching
still exists through a priority-aware binding process.

The remainder of the paper is organized as follows. Section
2 reviews the Gale-Shapley algorithm, and then, defines k-
partite graphs, k-ary matching, and extended stable matching.
Section 3 shows the non-existence of stable binary matching in
balanced k-partite graphs, except for k = 2. We use a solution
for the stable roommate problem to illustrate the solution
identification process if stable binary matching exists. Section
4 gives the result of stable k-ary matching in balanced k-partite
graphs. An extended Gale-Shapley algorithm based on k − 1

binary binding is given to determine such an extended stable
matching. Section 5 offers the extension of the proposed model
and implementation of the binding process, including a parallel
implementation. Section 6 provides a short overview of related
work, including gender and reproduction in the animal world
that is related to k-ary matching. Section 7 concludes the paper
and discusses directions for future work.

II. k-PARTITE GRAPHS AND EXTENDED MATCHING

In this section, we first give a quick overview of the
Gale-Shapley algorithm, followed by k-partite graphs, k-ary
matching, and extended stable matching.

A. The Gale-Shapley (GS) Algorithm
The Gale-Shapley (GS) algorithm [2] involves a number of

iterations of men proposing to women in a bipartite graph.
In the first round, each unengaged man first proposes to
the woman he prefers most, and then each woman replies
“maybe” to her suitor she most prefers, and additionally
replies “no” to all other suitors. She is then provisionally
“engaged” to the suitor she most prefers so far, and that suitor
is likewise provisionally engaged to her. In each subsequent
iteration, each unengaged man first proposes to the most-
preferred woman to whom he has not yet proposed (regardless
of whether the woman is already engaged), and then each
woman replies “maybe” to her suitor she most prefers, and
rejects the rest. Each engagement becomes final (i.e. marriage)
when there is no more new proposals.

The provisional nature of engagements preserves the right
of an already-engaged woman’s prospects to get better and
better (in terms of her preferences), while a man gets worse
and worse choices. However, overall, the GS algorithm still
favors men over women in terms of preferential happiness [7].
The runtime complexity of this algorithm is O(n2). The GS
algorithm guarantees that everyone gets married (also called
perfect matching)3 and that all marriages are stable. In the
subsequent discussion, we simply use matching to represent
perfect matching, requiring that all men and women are paired.

Example 1: Consider a case of two men and two women
M = {m,m′} and W = {w,w′} with the following prefer-
ences:
m ranks w higher than w′, m′ ranks w higher than w′,
w ranks m′ higher than m, w′ ranks m′ higher than m
When m and m′ both propose to w, m will be rejected as

w favors m′ over m. m will then propose to w′ to form a
stable matching: (m′, w) and (m,w′), although neither m nor
w′ is happy. If we change the preferences to the following:
m ranks w higher than w′, m′ ranks w′ higher than w,
w ranks m′ higher than m, w′ ranks m higher than m′

The GS algorithm will generate one stable matching: (m,w)
and (m′, w′) in favor of men, after m and m′ propose to
w and w′, respectively. The other stable matching, (m,w′)
and (m′, w), in favor of women, is not generated by the GS
algorithm, representing unfairness towards women in this case.

3Perfect matching is so called because everyone is paired with a member
of the opposite gender, although it does not necessarily represent a happy
marriage in terms of preferences.

2



WM

u'u

m'm w'w

U

Fig. 1. An example of a balanced tripartite graph.

B. k-Partite Graphs

A k-partite graph is a graph G whose nodes can be
partitioned into k disjoint sets Gi, i = 1, 2, ..., k, so that no
two vertices (members) within the same set are adjacent. When
k = 2, it is a bipartite graph as in the stable marriage problem,
and when k = 3, it is called a tripartite graph. A k-partite
graph is balanced if each disjoint set (or simply set) has the
same number of elements.

Example 2: Consider a balanced tripartite graph with three
sets: W = {w,w′}, M = {m,m′}, and U = {u, u′}, as
shown in Figure 1. Each node in a set connects to all four
nodes in the other two sets, and provides a ranking of these
four nodes. There exists a total of eight pairing choices:

{(m,w), (m′, u), (w′, u′)} {(m,w), (m′, u′), (w′, u)}
{(m,w′), (m′, u), (w, u′)} {(m,w′), (m′, u′), (w, u)}
{(m,u), (m′, w), (w′, u′)} {(m,u), (m′, w′), (w, u′)}
{(m,u′), (m′, w), (w′, u)} {(m,u′), (m′, u), (u′, w)}
The question is the following: if a (binary) matching exists

in a given k-partite graph with an even number of nodes, is
stable (binary) matching guaranteed? This question will be
answered in Section 3.

C. k-ary Matching and Extended Stable Matching

Now we consider a k-ary matching in a balanced k-partite
graph, i.e., each disjoint set has exactly n nodes. In Example
2, there are four possible 3-ary matchings, as follows:

{(w,m, u), (w′,m′, u′)} {(w,m′, u), (w′,m, u′)}
{(w,m, u′), (w′,m′, u)} {(w,m′, u′), (w′,m, u)}

Again, we ask if a stable (k-ary) matching exists, with each
member in a k-ary matching coming from different sets of
the k-partite graph? This question will be further addressed in
Section 4.

Next we define a notion of extended stable matching in
k-ary matching, given k different disjoint sets in a k-partite
graph. A k-ary matching is not stable if a blocking family
exists. A k-tuple is called a blocking family (to a set of
existing t-tuples, or families) if each member in the family
strictly prefers each member of that family to the each member
of his or her current family. Note that this blocking family
differs from the traditional blocking family in which only

one preference value (such as the summation of priorities)
is defined on the remaining family members of all genders. In
the blocking family of this paper, the preference is defined for
members of each individual gender.

Note that members of a blocking family must come k′

(2 ≤ k′ ≤ k) existing families in a matching. For example,
we assume that the first and second 3-tuple in a matching
are (m,w, u) and (m′, w′, u′), respectively. The following
unstable matching occurs, where m prefers both w′ and u′

to w and u of the current matching, respectively. Also, both
w′ and u′ prefer m to m′ of the current matching. Therefore,
(m,w′, u′) forms a blocking family, coming from two existing
families. With more members in each gender, a blocking
family can come from three existing families, one for each
gender in this example.

III. STABLE BINARY MATCHING IN k-PARTITE GRAPHS

In this section, we first show the existence condition for
a stable binary matching in k-partite graphs, and then use a
solution for stable roommates problem to find a stable and fair
binary matching if such a matching exists.

A. Existence of a Stable Binary Matching in k-Partite Graphs

We consider stable binary matching in a k-partite graph
with an even number of nodes. Let us start with the balanced
tripartite graph example of Figure 1: W = {w,w′}, M =
{m,m′}, and U = {u, u′}. Each node ranks four other nodes
from different sets. Suppose nodes u and u′ are the two lowest
ranked by w, w′, m, and m′. It is clear that two matching
nodes for u and u′ cannot both come from W (and M ), as it
will leave the remaining two nodes unmatched due to being the
same gender. Without loss of generality, we assume that these
two matching nodes are w and m (for u and u′). However,
both w and m rank each other higher than u and u′, which
corresponds to an unstable matching. (m,w) is a blocking
family (pair) for the current matching.

Next we show that for each given balanced k-partite graph,
with k > 2, there exists a set of preference lists under which
there exist no stable binary matching, although there is a
perfect matching.

Theorem 1: For a given balanced k-partite graph with an
even number of nodes and k > 2, there exist preference lists
under which there exist no stable binary matching, although
there is a perfect matching.

Proof: Suppose we define such preference lists that (1) one
node u in a disjointed set Gi is ranked as the lowest by all
the other nodes, and (2) in the other k − 1 disjoint sets, each
node is ranked the top by exactly another node from a different
set among these k−1 sets. Suppose m is a matched node from
Gj with u. Based on the above definition, there exists a node
w from a third disjoint set that ranks m as the highest, and
clearly (m,w) will cause instability, i.e., (m,w) is a blocking
pair for the current matching. Therefore, there is no stable
matching.

Now we show that a perfect matching always exists. Sup-
pose that k is even, and we can easily pairwise two disjoint
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sets to construct a total of (k/2)n pairs. When k odd, as there
is an even total number of nodes, n must be even. We can
equally divide Gi into G′i and G

′′

i . A perfect matching can be
constructed as the following pairings: (G

′

1, G
′′

2 ), (G
′

2, G
′′

3 ), ...
, (G

′

k−1, G
′′

k), (G
′

k, G
′′

1 ), where each pair includes matching
members of two disjoint sets to form n/2 pairs. �

It is well known that when k = 2, stable binary matching
exists for any type of balanced bipartite graphs, as in the stable
marriage problem.

What will happen if we allow certain disjointed sets in a
k-partite graph to perform self-matching? For example, in the
tripartite graph shown in Figure 1, nodes in part U can be
paired with nodes in U itself, as well as with nodes in W
and M . The answer is negative as well, as in the case of
W = {w,w′}, M = {m,m′}, and U = {u, u′}, where w,
w′ m, m′, and u are ranked as the top by m, m′, u, w, and
w′, respectively. u′ being paired with anyone will be unstable;
this is irrelevant to where the matched element comes from,
inside or outside U . However, the stable roommate solution
can still be used to determine a matching if one exists.

One potential application of the above result is in sociol-
ogy. In a traditional society with two-parent families, stable
marriage is ensured in a society two genders in an ideal
environment. In an ideal environment, the population is static
with no new comers. In addition, each person’s preferences
over others remain the same. The result of this subsection
shows that in a society with multiple genders, stable marriage
is not guaranteed. In next section, we will study a special
formation of family with k-parent in a society with k genders.

B. Searching for Stable and Fair Binary Marching in k-Partite
Graphs

Now we use the solution for the stable roommates problem
to detect the existence of stable binary matching in k-partite
graphs, and find one if one exists. This problem can be
considered as a special case of the stable roommates problem
[6] with incomplete preference lists (i.e., a person can exclude
some members) and with some minor twists. The solution
consists of two phases.

In phase one, each participant proposes to all the others
based on the preference list, and rejects a proposal if he
holds a proposal from someone he prefers. The proposal is
unidirectional (i.e., a person can hold a proposal from another
person, yet can make his own proposal to the third person).
Once a proposal is rejected, it is bidirectional for both parties.
That is, if w removes m from her list, it also means m removes
w from his list. A pruning process is applied to remove all
the lowly ranked nodes. For example, if m receives a proposal
from w, he will remove all persons, u, ranked lower than w.
In addition, m will be removed from u’s preference list based
on the bidirectional removal rule. The resulting reduced set
of preference lists is called a reduced list. If a reduced list is
empty, then there is no stable matching; if all reduced lists
have exactly one element, it has a stable matching; otherwise,
go to phase two for loop removal.

m

m'

w

w'

proposes

Fig. 2. A deadlock situation within the circular proposal involving m, w,
m′, and w′.

In phase two, we try to find a loop of alternating first
and second preferences among reduced lists. Each participant
involved in the loop will reject his first preference and goes
with his second preference. The pruning process is applied
again to further reduce the reduced set. The above process is
repeated until no such loop exists. Again, if one reduced list
is empty, there is no stable matching; otherwise, all reduced
lists will have one member left, which corresponds to a stable
matching.

Suppose we have the following two cases, left hand side
and right hand side, of preference lists for Example 2. The
list after “:” corresponds to the preference list for members
before “:”.

m : u′ww′u m : w′u′uw
m′: u′wuw′ m′: w′wuu′

w : mm′u′u w : m′muu′

w′ : m′muu′ w′ : mm′uu′

u : mm′w′w u : mm′ww′

u′ : mww′m′ u′ : mw′wm′

In the left hand side example above, suppose the requests
follow the sequence below:
w → m m holds w removes m : w′u,w′ : m,u : m
m→ u′ u′ holds m removes u′ : ww′m′, w : u′,

w′ : u′, m′ : u′

u′ → m m holds u′ rejects w; removes m : w,w : m
w → m′ m′ holds w removes m′ : uw′, u : m′, w′ : m′

w′ → u u holds w′ removes u : w,w : u
u→ w′ w′ holds u
m′ → w w holds m′

In the above,w → m represents a proposal from w to m.
m : uw′ represents removing u and w′ from m’s list. Note
that once m : u and m : w′ are removed, u : m and w′ : m
are removed as well, based on the bidirectional removal rule.
Eventually, each reduced list includes one element. The final
matching is (m,u′), (m′, w), and (w′, u).

In the right hand side example above, we consider the
following case with a focus on actions related to u. m′ → w′

(removes w′ : u and u : w′), m → w′ (rejects m′), m′ → w
(remove w : u and u : w), w′ → m (removes m : u and
u : m), u → m′ (m′ holds u), and w → m′ (m′ rejects
u, remove m′ : u and u : m′). u’s reduced list is empty.
Therefore, there is no stable matching.

Next, we use the stable roommate solution to solve the
stable marriage problem to address the gender unfairness issue
in the original GS algorithm. The difference is that both men
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and women can propose at the same time. After phase one,
we have the following reduced sets, representing a circular
waiting situation: m→ w, w → m′, m′ → w′, and w′ → m:

m : ww′

m′ : w′w
w : m′m
w′ : mm′

In the above example, each participant goes after his/her first
choice. These four participants become involved in a “dead-
lock” after phase one, as shown in Figure 2. In phase two, one
of the two loops needs to be broken in the preference lists. For
example, m and m′ are involved in a loop with w and w′ as
their alternating first and second choices. Both m and m′ reject
w and w′, and they accept their second choices, respectively, to
form a woman-optimal stable matching: (m,w′) and (m′, w).
If we remove the loop involving w and w′, we have a man-
optimal stable matching, (m,w) and (m′, w′). By alternating
man-oriented and woman-oriented loop breaking in phase two,
we can obtain a procedural fairness among men and women.

IV. STABLE k-ARY MATCHING IN k-PARTITE GRAPHS

In this section, we extend the traditional binary matching
in a bipartite graph to matching in multipartite graphs. We
first show the existence of stable k-ary matching in k-partite
graphs and propose a matching process through iterative
binding, followed by performance analysis and an parallel
implementation. The section ends with an extension that relax
the unstable condition to derive a stronger result.

A. Existence of Stable k-ary Matching in k-Partite Graphs

We first denote a k-ary matching in balanced k-partite
graphs: (u1, u2, ..., uk), where ui ∈ Gi corresponds to a
member in the i-th disjoint set. We assume that |Gi| = n for
all i, as it is balanced. G is the union of Gi, i.e., a set of all
members. In the subsequent discussion, a balanced k-partite
graph is simply called a k-partite graph.

Let I = {1, 2, ..., k} be the gender set for disjoint sets in k-
partite graphs. A blocking family comes from k′ (2 ≤ k′ ≤ k)
existing families in a matching. In a blocking family, members
from the same existing family form a same-family group. It is
required that each member of the same-family group agrees on
the decision, i.e., each prefers new members from other groups
(i.e., from different families) than its existing ones, but there
is no need to compare members from the same-family group.

Our matching solution is based on extending the Gale-
Shapley (GS) algorithm to k-partite graphs through iterative
applications of binary matching to pairwisely “bind” all dis-
joint sets through a spanning tree. Specifically, we denote one
application of the GS algorithm on i and j in I , GS(i, j), for
a binary binding. Relation i− j indicates matching (binding)
of Gi and Gj . This approach is applied k− 1 times on a pair
of genders in I in such a way that a spanning binding tree
T is eventually constructed on I . In Algorithm 1, V (T ) and
E(T ) denote the node set and edge set of T , respectively.

As shown in Algorithm 1, we define an equivalence relation
(−,−) “in the same matching tuple” based on the matching

Algorithm 1 Iterative Binding GS Algorithm
/* I is a gender set with |I| = k */;

1: T (binding tree) and P (matching pairs) are empty;
2: while T is not a spanning tree on I do
3: Find i, j ∈ I: (i, j) does not cause a cycle in T ;
4: V (T ) = V (T ) ∪ {i, j}; E(T ) = E(T ) ∪ {(i, j)};
5: P = P∪GS(i, j);
6: Derive E, equivalence classes from equivalence relation

(−,−) “in the same matching tuple” on P ;
7: return E (matching k-tuples)

u'

u
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m m' w w' u
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Fig. 3. Preference lists of nodes (in the left column) in the balanced tripartite
graph of Figure 1.

pairs P to convert binary binding to k-ary binding (i.e. k-
tuples). Such a relation satisfies (1) reflexivity, (u, u) is clearly
in the same matching tuple; (2) symmetry, if (u, v), then
(v, u); and (3) transitivity, if (u, v) and (v, w), then (u,w).
Finally, equivalence classes are derived, which corresponds to
all matching k-tuples. In each class, it is a set of nodes that are
assigned to the same matching tuple based on the equivalence
relation.

Let us consider the ternary graph example with three disjoint
sets: M = {m,m′}, W = {w,w′}, and U = {u, u′}.
Each node’s preference list is given in Figure 3. Entry “1”
corresponds to a higher rank than entry “2”, since each gender
has two members, only two ranks are used4. For example, both
u and u′ rank m higher than m′, although m ranks u′ higher
and m′ ranks u higher. Assume that the binding process is
M −W and W − U . The former binds m with w (and m′

with w′), and the latter binds w with u (and w′ and u′) to
form ternary matchings (m,w, u) and (m′, w′, u′) based on
the derived equivalence classes.

The following theorem shows that the proposed binding
algorithm constructs a stable k-ary matching.

Theorem 2: The iterative binding GS algorithm constructs
a stable k-ary matching.

Proof. We first prove that Algorithm 1 generates a perfect
matching, i.e., each node appears in a k-tuple once and only
once. This is because an application of the GS algorithm on
genders i and j forms a perfect matching between Gi and
Gj . That is, nodes in i and j are paired, one to each of the

4Note that these total orders form a global partial order which can be
converted into a global total order in various ways
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tuples under the equivalence relation (−,−) “the same k-ary
matching tuple”. Spanning binding tree T is constructed in
such a way that each link corresponds to a binding between
genders i and j. P clearly includes all nodes in G. The
equivalence relation partitions G into n classes, in which
each equivalence class has exactly k elements, one from each
disjoint set Gi.

Next, we prove that the k-ary matching is stable. Suppose
there exists a blocking family, then genders can be partitioned
into several same-family groups based on the current k-ary
matching. As spanning binding tree T connects all genders,
there exists two connected same-family groups, S and S′, and
there are two genders i and j, one each from S and S′, such
that (i, j) is an edge in the spanning binding tree T . Based
on the extended stable condition, all elements in S of one
matching and all elements in S′ agree on a new matching (to
form a blocking family). That is, such an instability would
involve two k-tuple: (...ui...uj ...) and (...u

′

i...u
′

j ...), with the
properties that (1) ui ranks u

′

j higher than uj , and (2) u
′

j ranks
ui higher than u

′

i. These properties imply that ui and u
′

j form
a blocking pair for a matching GS(i, j) between Gi and Gj .
This contradicts the fact that GS algorithm produces a binary
stable matching between Gi and Gj . �

Consider a futuristic family with k-parent, one from each
of the k different genders in a society with k genders. The
above result shows that stable k-ary marriage is guaranteed.

B. Algorithm Analysis

Although the iterative binding GS algorithm will produce
a stable k-ary matching, different bindings may generate
different stable k-ary matchings. For example, bindings M−U
and U −W will generate a stable matching of (m,w′, u′) and
(m′, w, u), while bindings M −U and M −W will generate
a stable matching of (m,w, u′) and (m′, w′, u). Based on
Cayley’s formula [8], there are kk−2 different binding trees
to bind k genders in k-partite graphs.

We have the following results on time complexity for the
iterative binding process. The theorem is obvious from the
k − 1 rounds of applications of the GS algorithm, assuming
each matching process corresponds a “proposer” (a man in the
G-S algorithm) to a “responder” (a woman).

Theorem 3: The iterative binding GS algorithm takes at
most (k − 1)n2 iterations of the matching process.

Next we show that k − 1 rounds of the binding process is
tight. More rounds than k − 1 may not be possible for stable
binary matchings, and fewer rounds than k − 1 will cause
instability. Note that more binary bindings will strengthen the
family tie. However, when there are k or more binary bindings,
there must exist a loop. For example, if a loop occurs in a
ternary matching among genders M , W , and U , suppose we
have the following preference orders: m prefers w overs w

′

(simply denoted as m: w, without causing confusion), m
′

: w,
w: m, w

′
: m

′
, w : u, w

′
: u, u : w, u

′
: w

′
, m : u,

m
′

: u, u : m
′
, u

′
: m

′
, it is impossible to perform three

binary bindings and maintain their stability. This example can
be easily extended to the general k-ary case. On the other hand,

1 2 3 4 5

1 2 3 4 5

Fig. 4. An even-odd matching process.

if k−2 or fewer binary bindings are applied, the gender set is
partitioned into several groups that correspond to components
in a graph. It is easy to show that any matching that involves
components without any binding will cause instability by
assigning appropriate preference orders among members from
different components.

Theorem 4: The k − 1 rounds of the binding process in
Algorithm 1 is tight for k-ary stable matching.

C. Parallel Implementation

In this subsection, we will consider a construction of
binding tree T to speed up the matching process. It is well
known that pairwise matching in the original GS algorithm is
difficult to parallelize. Indeed, no parallel algorithm is known
for the stable marriage problem with better than O(n2) worst-
case complexity [9]. However, parallelization at the binding
tree level is feasible. Assume that ∆ is the maximum node
degree of T in the binding process. We call one round a binary
matching using the GS algorithm. Under the EREW PRAM5

model using k − 1 processors, each gender can be involved
in a binary matching, one at a time. We have the following
result, which states that the bottleneck is the gender with the
maximum node degree in the binding tree T .

Corollary 1: Using the EREW PRAM model for parallel
processing, the iterative binding GS algorithm takes at most
∆n2 iterations of the matching process.

The tree with minimum ∆ is a linear line, with ∆ = 2.
Through parallel even-odd pairings as shown in Figure 4, we
only need to apply the GS algorithm twice to form a stable
k-ary matching. That is, in the first round, all even-labeled
genders: 2i, i = 1, 2, 3, ... are paired with genders: 2i − 1,
i.e., odd-labeled genders to their left. In the second round,
all even-labeled genders are paired with genders: 2i + 1, i.e.,
odd-labeled genders to their right.

Corollary 2: Using a linear line as T , the iterative binding
GS algorithm takes two rounds of the matching process.

Suppose in a round, each node can take the role of “men”
(proposers) once (i.e., pairing with another gender in the role
of men) and the role of “women” (responders) once. After
one round of data duplication, with one copy for proposers
and the other for responders, the iterative binding would take
one round to complete. Under the CREW PRAM6 model, as
each gender can be read in parallel, a node can be bind through
binary binding simultaneously with other genders. With log ∆
rounds of data replication, where ∆ is the maximum node

5EREW stands for exclusive read and exclusive write. PRAM is parallel
random-access machine.

6CREW stands for current read and exclusive write.
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Fig. 5. (a) An unstable binding tree, (b) stable binding tree.

degree of T , EREW PRAM can emulate CREM PRAM as
each of ∆ copies through ∆ rounds of replication can be read
simultaneously.

D. Extension of Unstable Condition

In this subsection, we relax the unstable condition, as it
is right now too strong to break a matching. To enhance our
result, we weaken the unstable condition. We assume that there
is a strict priority order among k genders. Note that members
of a blocking family must come from k′ (2 ≤ k′ ≤ k) existing
families in a matching. Therefore, there are k′ lead members
based on the given gender priority, one from each of these k′

families. In the weakened blocking family, the condition “each
member” is replaced by the condition “lead member of the
corresponding families”, which makes k-ary stable matching
harder.

Without loss of generality, we use a numerical number to
represent both the identify of a member and the priority of
a member’s gender. The higher the number, the higher its
priority. Suppose a blocking family in a 4-ary matching comes
from two families, one family has members from genders
1 and 4 and the other family has members from genders 2
and 3. In the weakened blocking family, we only require that
members from lead genders 3 and 4 prefer other members
over the existing match. However, a binding tree can no
longer guarantee a k-ary stable matching. As shown in the
example of Figure 5 (a), an unstable situation can occur if
a family member in gender 4 likes members of genders 2
and 3 from another family, and a family member in gender 3
likes members of genders 1 and 4 from another family. This
is because the binary binding in the binding tree does not bind
3 and 4 directly to members outside their own families. The
question is how to construct such a binding tree, so that at
least one lead member is bounded to a member outside its
family to ensure stability. Figure 5 (b) shows another binding
for the same example that ensures stability.

We now propose a priority-aware iterative binding GS
algorithm as shown in Algorithm 2, where V (T ) is initialized
to a set with one element imax, the highest priority gender.
A sequence is bitonic if it monotonically increases and then
monotonically decreases. The increase or decrease phase may
or may not exist. For example, the sequences (1, 3, 4, 2), (4, 3,
2, 1), and (1, 2, 3, 4) are bitonic, but (4, 1, 2, 3) is not bitonic.
Given a tree in which each node has a distinct priority ID, it
is called bitonic tree if any two nodes in the tree is connected
through a path that is a bitonic sequence. The bitonic tree can

Algorithm 2 Priority-Based Iterative Binding GS Algorithm
/* I is a gender set with |I| = k and imax is the highest
priority gender */;

1: V (T ) = {imax}, E(T ) = P = {}, and I = I − {imax};
2: while I is not empty do
3: Select an i in V (T ) and j in I with the highest priority;
4: V (T ) = V (T ) ∪ {j}; E(T ) = E(T ) ∪ {(i, j)};
5: I = I − {j};
6: P = P∪GS(i, j);
7: Derive E, equivalence classes from equivalence relation

(−,−) “in the same matching tuple” on P ;
8: return E (matching k-tuples);
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Fig. 6. A construction of growing binding tree in a 4-ary matching.

be generated through growing a tree following a decreasing
priority order, as shown in the priority-aware iterative binding
GS algorithm.

By the way of construction, we can easily show that the
resultant tree is bitonic. The following theorem shows that if
a binding tree is bitonic, it will prevent an instability.

Theorem 5: If a binding tree is bitonic, any weakened
blocking family will be prevented in k-ary matching.
Proof: We prove by contradiction. Suppose a weakened block-
ing family exists; based on definition, this family must come
from at least two existing families. Assume i and j are
two lead genders from two existing families. Based on the
definition of bitonic sequence and bitonic tree, i and j are
connected through a bitonic sequence path in the binding tree.
Either i or j is directly connected to a higher priority node k
(which can be i, j or another node) that does not belong to the
same family. That is, either (i, k) or (j, k) forms a blocking
pair to bring a contradiction similar to the proof of Theorem
2. �

Figure 6 shows a construction of growing a binding tree in a
4-ary matching. Suppose |T (k)| corresponds to the number of
priority-based binding trees in a k-ary matching. We can easily
show that T (k) = (k − 1)T (k − 1), T (2) = T (1) = 1. So
T (k) = (k−1)! When k = 4, there are 3! = 6 distinct priority-
based binding trees. This is because T (k) is constructed by
attaching one new node as a neighbor to each node in T (k−1).
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V. RELATED WORK

We start with an overview of related work of stable marriage
problem (SMP), with a focus on multi-dimensional extensions.
We then discuss matching in the animal world.

A. Related Work of SMP

In three-dimensional or higher dimensional SMP exten-
sions, in addition to combination or cyclic preferences among
genders, Huang [5] considered a preference model in which
each gender is rated individually, while group preference is
determined by the sum of the individual members in the
group. Huang also studied another preference model where
indifference is allowed (i.e., a tie situation is allowed). Four
variations are considered: weak, strong, super, and altra stable
matchings. He showed that all the above cases are NP-
complete. A network application of three-dimensional stable
matching was discussed in [10]. In [11], an extended stable
roommate problem is studied by placing three persons in each
room; however, there is only one gender. The problem is
showed to be NP-complete.

Many other extensions and applications of the SMP exist.
For example, the hospitals/residents problem [12], also known
as the college admission problem, is such an extension and
application where a hospital (college) can take multiple resi-
dents (students), and in this example, a hospital (college) can
accept multiple applicants. This problem has been further ex-
tended by including an additional constraint in which couples
must be assigned together. However, the extended problem of
determining whether there is a stable solution and finding it,
if it exists, has been proven to be NP-complete [13]. Other
extensions of the SMP can be found in [3, 7, 9]. A survey of
recent work can be found in [14, 15].

B. Matching in the Animal World

Many human societies have multiple genders. More re-
cently, UK parliament has approved the creation of babies
with DNA from two women and one man, in an historic
move for “three-person babies” [16]. Gender is a cultural
construction of societal roles. Sex is the biological manifes-
tation of reproduction. Here, we use gender to represent both
gender and sex. Binary matching is very common in the animal
world. Asexual reproduction [17] is a mode of reproduction by
which offspring arises from a single organism, and inherits the
genes of that parent only. However, a complete lack of sexual
reproduction is relatively rare among multicellular organisms,
especially in the animal world.

A majority of animals are sexually dimorphic [18] between
a male and a female (i.e., fits for a binary matching in a
bipartite graph), and not between two hermaphrodites (i.e., fits
for a binary matching in a complete graph). Hermaphrodites
have both reproductive parts. Some lower animals, such as
worms, are hermaphrodites. k-ary matching does occur in the
animal world for reproduction; certain harvester ants have
three genders, or even four. These ants live in colonies, each
of which has a queen. For the ants to be fruitful and multiply,

she needs to mate with two different strains of male for future
queens and future workers.

VI. CONCLUSIONS

In this paper, we extended the classic stable matching
problem in a balanced k-partite graph. We showed that there
always exists a set of preference lists, under which stable
binary matching does not guarantee for any k, except when
k = 2. Under a natural extension of pairwise stability for
binary matching to k-ary matching, we proved that stable k-
ary matching exists for any set of preferences in any balanced
k-partite graphs. An extended Gale-Shapley (GS) algorithm is
introduced to find such a stable k-ary matching.

Our future direction includes examining other possible
weakened blocking families to find stable k-ary matching in
a k-partite graph. One possibility is to explore quorum-based
approaches to relax unstable conditions used in the extended
stable matching. In addition to seeking the possibility of binary
matching in a specific k-partite group, we plan to study a more
general k-ary matching in k′-partite graphs, where k < k′ and
ck = nk′ for some constant c.
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