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ABSTRACT

More and more smartphone applications need microdata,
but publishing a microdata table may leak respondents’ pri-
vacy. Conventional research on Privacy Preserving Data
Publishing (PPDP) focuses on providing an identical pri-
vacy protection. Consider that, instead of being trapped in
a small coterie, information usually propagates from friend
to friend. In this paper, we study the PPDP problem on
a mobile social network: along a table’s propagation path,
how can we create a series of tables with increasing privacy
protection levels? The tradeoff between the created tables’
overall utility and their individual privacy requirements are
not trivial, especially for distributed systems: any inappro-
priate sanitization operation under a lower privacy-level may
cause dramatic utility loss on subsequent tables. In order to
solve the problem, we propose an approximation algorithm
by previewing the future privacy requirements. Simulation
results show that our scheme can successfully increase the
overall utility, and meet the strengthening privacy protec-
tion requirements.
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1. INTRODUCTION
Learning others’ social features can significantly improve

the performance of many mobile social network-related tasks,
such as data routing and location recommendation. In these
tasks, a participant needs access to a large volume of per-
sonal information in order to spot the features. A dataset,
which consists of the information at the level of individual
respondents, is known as a microdata dataset. In order to
protect the privacy of each individual respondent, data hold-
ers must carefully sanitize (also known as anonymize) the
dataset before publishing it. In the past decade, many pri-
vacy standards have been proposed, such as k-anonymity [4],
l-diversity [3], and t-closeness [2].
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Figure 1: An example. The dash lines represent the

enhanced privacy requirements for each table and

the bars stand for the tables’ real privacy values.

Unlike the conventional centralized database system, where
data requesters directly interact with data owners, informa-
tion on a mobile social network is disseminated from user to
user via multi-hop relays. Due to the well-known limitations
of centralized systems, such as system bottlenecks, in this
paper, we study the problem of multi-hop relay-based P-
PDP, where a microdata table is gradually propagated from
its original owner to distant people. However, the recipi-
ents present different trust-levels regarding to the original
data owner. Therefore, after each time of relay, one should
further provide more privacy protections on the data. Con-
sidering the size of transmitted package and limited energy
of mobile phones, we does not allow the source node to cre-
ate all tables for different receivers. For example, in Fig. 1,
along a social contacting path with length 4, each partic-
ipant (black node) will eventually get certain information
about v0’s table. Assuming each participant can create a
data table based on his obtained information, we need v4’s
table to satisfy the highest privacy-level, T3 satisfying the
second highest privacy-level, and so on. This propagation
scheme creates a unique problem: ‘for a group of friends,
how can they create a series of tables with maximal over-
all data utility, and assure that the tables’ levels of privacy
are increasingly protected at the same time?’ To our best
knowledge, this problem has never been proposed or solved.

Take Fig. 2 as an example. Suppose that v0, v1, and
v2 are the participants, l-diversity is the privacy require-
ment, and the total target propagation distance is equal
to 2. After the first hop of propagation, the resulting ta-
ble T1 should satisfy 2-diversity, and after the second hop,
T2 should satisfy 3-diversity. Fig. 2(a) shows the original
dataset on v0. Figs. 2(b) and (c) give the results by directly
using anonymizing operations on Fig. 2(a). We can see that
T1 and T2’s sanitized values are different. However, during
multi-hop relays, a participant can only observe the table
passed from the previous one: if v0 gives T1 to v1, v2 can



Name Age Zipcode Disease Age Zipcode Disease

Ashley 23 19024 Hepatitis 1 23 19024 Hepatitis

Brooke 23 19024 Brochitis 2 23 19024 Brochitis

Charish 28 19024 Flu 3 28 19*** Flu

Dave 28 19122 Cancer 4 28 19*** Cancer

Ellen 29 19122 Hepatitis 5 2* 19122 Hepatitis

Frank 24 19122 Brochitis 6 2* 19122 Brochitis

(a)   T0: Patient Data (original) (b)   T1: 2-diversity table

Age Zipcode Disease Age Zipcode Disease

1 2* 19024 Hepatitis 1 2* 19*** Hepatitis

2 2* 19024 Brochitis 2 2* 19*** Brochitis

3 2* 19024 Flu 3 2* 19*** Flu

4 2* 19122 Cancer 4 2* 19*** Cancer

5 2* 19122 Hepatitis 5 2* 19*** Hepatitis

6 2* 19122 Brochitis 6 2* 19*** Brochitis

(c)   T2: 3-diversity table (d)   T3: 3-diversity table (based on T1)

Figure 2: Generated tables based on requirements with different privacy levels.

only obtain Fig. 2(c), instead of T2. Consider that the tables,
which satisfy (l+1)-diversity, must satisfy l-diversity. v0 can
either send T3 (option I) or T2 (option II) to v1. For option
I, v1 only needs to forward T3 to v2 without any changes,
while for option II, v1 should further sanitize T2 and send
the result T3 to v2. We cannot simply claim which option
preserves more data utility. For instance, if we define that
any suppression operation costs 1 unit of utility, the option
I loses a total of 12 units of utility (as 6 units of utility are
lost for T1), while the option II costs 16 units (as 4 utility
units are lost for T2 and 12 for T3). However, if the age at-
tribute is more important than the zip code, assuming that
the suppression on age costs 2.5 units of utility and suppres-
sion on zip code costs 1, the utility loss of the second option
becomes 28, while that of the first one is 30.

In order to solve the problem, we first propose two greedy
schemes for sanitizing tables with a single privacy-requirement:
a bottom-up algorithm and a top-down algorithm. The
bottom-up algorithm always merges similar tuples into one
equivalent class until all classes meet the corresponding pri-
vacy requirement. The top-down approach considers how to
split a table into the maximum number of sub-tables, such
that each small table has the required privacy protection.
By comparing the results of both algorithms, we propose an
approximation algorithm. Consider that if a table satisfies
a higher privacy requirement, then it also meets the low-
er one. At each participant, the algorithm does not simply
maximize the data utility at its required privacy-level; in-
stead, it takes future, more stringent privacy requirements
into consideration. Simulation results show that more data
utilities are preserved by adopting our scheme.

2. MODEL AND PROBLEM
On a mobile social network, there is a social contacting

chain consisting of l+1 participants (also called nodes), as-
suming v0, v1, . . . , vl. Let T = {t1, t2, . . . , tm} be a microda-
ta table of m tuples and n attributes A = {Ai}. In practice,
a microdata table may contain several sensitive attributes.
Since we can consider the combination of sensitive attributes
to be a data point in a hyper-dimension, we simply assume
that attributes {A1, A2, . . . , An−1} are the quasi-identifiers
(non-sensitive), and An is the sensitive attribute.

In a table T , tuples with the same quasi-identifiers’ values
form an equivalent class 〈t〉. For example, in Fig. 2(b), 〈t3〉
means the equivalent class of the third tuple, and therefore,
〈t3〉=〈t4〉= {(28, 19***, Flu); (28, 19***, Cancer)}. Let σ

be the selection operation from a table, and σi(Tj) stands for
the ith tuple of table Tj . For instance, in Fig. 2(c), σ4(T2)=
{(2*, 19122, Cancer)}. We use π as the projection operation
on a table. πi(T ) gives the ith column of table T . For in-
stance, in Fig. 2(a), π3(T0)={Hepatitis; Brochitis; Flu; Can-
cer; Hepatitis; Brochitis }. Any value in table Tk, attribute
(column) Aj , tuple (row) ti is represented as σi(πj(Tk)). In

Fig. 2(b), σ3(π(T1)) ={Flu}, and σ〈3〉(π(T1)) ={Flu, Can-
cer}. Since we assume that the nth attribute is the sensitive
one, πn(T ) indicates the sensitive values in T . For the ease of
description, let π(T ) be short for πn(T ). So, π(T0) = πn(T0).

Along the social chain, v0 is the original data owner,
and based on trust relations, user vi (i ∈ [1, l]) receives
an anonymized table Ti from his previous user, creates a
modified version Ti+1, and sends it to the next user. Since
trust fades along a propagation path, instead of having l ta-
bles with the same privacy-preserving strength, our system
builds a series of tables with increasing privacy protections.
Therefore, Ti+1 is the sanitization result of Ti. For bene-
fiting the whole society on a social chain, the data owner
wants to provide the maximal overall utility of these tables.

In practice, different attributes may have different lev-
els of importance; there is a set of utility weights W =
{w1, w2, . . . , wn−1} associated with quasi-identifiers (wi ∈
[0, 1],

∑
i wi = 1). The larger the weight is, the more impor-

tant the attribute is. Utility weight is a source-based con-
cept: along a table’s propagation path, all participants use
the same W since the tables have the same source. Let p(·)
denote the distribution of a given set of values, then p (π(T ))
represents the sensitive values’ distribution over the whole
table T , and p

(
σ〈t〉(π(T ))

)
indicates that distribution with-

in an equivalent class 〈t〉. For a given table T , its privacy
disclosure P (T ) is measured as the maximum amount of pri-
vacy disclosure from its equivalent classes:

P (T ) = max
∀〈t〉⊆T

JS
(
p(π(T )), p(σ〈t〉(π(T )))

)

where JS(·, ·) is the Jensen Shannon divergence function.
Let σi(πj(T )) and σi(πj(T

′)) be the same data point ap-
pearing in two tables. Due to the sanitization operations,
their values may be different. Let d (σi(πj(T )), σi(πj(T

′)))
be the sematic distance between them. The utility of an
attribute mainly comes from its diversity. If we use sani-
tization operations to merge all tuples of table T into one

equivalent class, then the resulting table T̃ reaches maxi-
mum privacy but minimum utility. Let U(T ) stand for the
data utility of any table T , then we have:

U(T ) =
n−1∑

i=1

[
wi

m∑

j=1

d
(
σj (πi(T )) , σj(πi(T̃ ))

)]

Problem Formulation: for a given table T0, along a
social path with length l, we want to create l tables; each
table Ti is the sanitization result of Ti−1 (i ∈ [1, l]), and
these tables satisfy the following requirements:

Maximize
l∑

i=1

U(Ti)

Subject to P (Ti) < (l − i+ 1)δ, for ∀i ∈ [1, l]

Remark 1. Given a microdata table T0 and a pair of
source-selected parameters δ, l, there is at least one series of



Algorithm 1: BUA

Data: Privacy threshold δ and original table T

Result: The grouping index set IDX

/*Phase I: Create sensitive-value dominating groups*/;
Create basic group set {g};
for Each basic group gi ∈ {g} do

for Each type of sensitive value ai ∈ An do

Compute distance d from gi to tuples with ai;

Assign dominating type ai to each group;
Each un-grouped tuple joins a group according to d, ai;
/*Phase II: Group combinations*/;
while ∃gi ∈ {g}, whose P (gi) > δ do

for Each group gj ∈ {g}, and gj �= gi do

Compute the distance d(gi, gj);

Sort d(gi, gj) in ascending orders;
for Each value in d(gi, gj) do

if P ({gi, gj}) < P (gi) then
merge gi and gj into one equivalent class;

Create grouping index IDX based on {g};
Call Algorithm. 2, IDX ← PLSA(δ, T, IDX);

tables T1 = T2 = . . . = Tl = π(T0) that satisfied the increas-
ing privacy requirements P (Ti) < (l − i+ 1)δ for ∀i ∈ [1, l].

Theorem 1. The target problem: “given table T0, prop-
agation length l, and a threshold δ, maximize

∑l

i=1 U(Ti)
subject to P (Ti) < (l − i+ 1)δ for ∀i ∈ [1, l]” is NP-hard.

Due to paper limitations, we only give the basic idea of
the proof. Consider the simplest case of our problem, where
l = 1, and all sensitive values follow a uniform distribu-
tion. Since the amount of privacy disclosure is measured
by Jensen-Shannon divergence, each type of sensitive val-
ue must appear at least once within each equivalent class.
Assume that there are a total of L types of sensitive val-
ues. Under this special case, our problem becomes a typical
L-diversity problem, which is NP-hard [5].

Maximizing the overall utility of l tables is more challeng-
ing than a single one. Simply maximizing a table’s utility
subject to a current privacy-level is not a good option. For
example, in Fig. 2, tuples 3 and 4 are closer to each other,
and it is optimal to put them together for a 2-diversity re-
quirement. Once it is done, their values become the same ex-
cept for the sensitive attribute column. However, distances
from the modified tuples to their second closest tuples are
increased (e.g. the distance between tuples 2 and 3 in T1),
which may cause extra utility losses for creating tables with
a higher privacy requirement. Clearly, when sequentially
creating multiple tables with increasing privacy protection,
tuples grouping orders affect the overall utilities.

3. SOLUTION DETAILS

3.1 Bottom-up Approach (BUA)
There are two objections to our problem: (i) maximiz-

ing tables’ overall remaining utility, and (ii) bounding each
table’s privacy disclosure amount. Since privacy and utili-
ty are not comparable with each other, we cannot consider
these two objections at the same time. The Bottom-up Ap-
proach (BUA) gives more consideration on the amount of

Algorithm 2: Privacy Level-preserved Split Algorithm

Data: δ, T , and grouping index IDX

Result: The grouping index set IDX

Setup: operating table set S ← IDX and IDX ← φ;
for S �= φ do

Fetch table T ′ from S, S ← S \ {T ′};
for Each type of sensitive value ai ∈ An in T ′ do

Assign tuples with ai to groups Sai
and S′

ai
;

Create T1, T2 by optimally combine {Sai
}, {S′

ai
};

if P (T1) < δ and P (T2) < δ then

Update the operation set S ← S
⋃
{T1, T2};

else

Update the index set IDX ← IDX
⋃
{T ′};

privacy disclosure. The basic idea of BUA (Algorithm. 1)
is as follows: if each equivalent class dominates in one type
of sensitive value, the merging of different classes may make
their sensitive values’ distribution closer to that of the w-
hole table. By merging different groups together, BUA can
create tables with different privacy disclosure amount.

BUA consists of two phases. Since each type of sensitive
values must occur once in each equivalent class, in phase I,
BUA first creates several basic groups, where each sensitive
value appears once within each group. For the remaining
tuples, we compute their quasi-identifiers’ distances to each
group. BUA proportionally assigns each basic group with a
dominating sensitive value type, according to the occurrence
frequency of sensitive values. Based on tuple’s sensitive val-
ues and their distance to groups, each tuple joins a group.
In phase II, BUA gradually merges groups in order to satisfy
a given privacy requirement, and the merging process will
not terminate until all equivalent classes reach the required
privacy-level. Algorithm 2 is an auxiliary algorithm, which
splits equivalent classes into smaller groups, while keeping
their privacy-level unchanged. The algorithm is based on
the fact that, for a given set of tuples, whose sensitivity
values’ occurrence times follow a certain distribution, if we
partition the set into several subsets such that the sensitive
values’ occurrence frequencies in each subset are unchanged,
then the amount of privacy disclosure of each subset is the
same as the original set’s privacy disclosure.

3.2 Top-down Approach (TDA)
Top-down Approach (TDA) considers how to partition a

table into multiple sub-tables under a single-level privacy
requirement. The basic idea of TDA comes from paper [1].
Our TDA is based on two insights. (1) For a given set of
data {S}, the distribution of which follows D({S}), if we
partition {S} into two subsets ({S1}, {S2}) and keep each
value’s occurrence frequency unchanged in the subsets, then
we have D({S1}) ≅ D({S}) and D({S2}) ≅ D({S}). This
feature maximizes the protection of privacy but hurts data
utility. (2) If we randomly partition a table into several sub-
tables, the larger a sub-table is, the more likely it is that the
distribution of a sensitive attribute in the sub-table is close
to the distribution of the attribute in the original table.

Based on these two insights, we propose TDA, as shown
in Algorithm 3. TDA consists of two phases. The first
phase gradually partitions the original data table into sev-
eral groups. This phase tries to maximally preserve data



Algorithm 3: TDA

Data: Privacy threshold δ and original table T

Result: The grouping index set IDX

Set up the operation table set by S ← {T};
Set up output equivalent class index set by IDX ← φ;
while S �= φ do

Fetch a table T ′ from S, S ← S \ {T ′}, and create
clusters T1 and T2 s.t. T1

⋂
T2 = φ, T1

⋃
T2 = T ′;

if P (T1) < δ and P (T2) < δ then

Update the operation set S ← S
⋃
{T1, T2};

else

Update the index set IDX ← IDX
⋃
{T ′};

Call Algorithm. 2, IDX ← PLSA(δ, T, IDX);

utility and to satisfy the needs of privacy. Here, one group
corresponds to an equivalent class; once a pair of tuples has
been merged into one equivalent class at one participant, it is
hard for the following participants to take them apart, since
they cannot discriminate the tuples from the same equiva-
lent class. Based on this consideration, during TDA Phase
I, we strictly use binary partitioning: TDA first partitions
the whole tuples into two groups, then splits each group into
another two sub-groups, and so on. For any sub-group, the
partitioning process stops when the further partitioning on
it will break the privacy requirement. Due to the fact that
the smaller an equivalent class is, the more data utility is p-
reserved, the second phase of TDA tries to further reduce the
size of each sub-table T , and in the meanwhile, keeps their
privacy-preserving degree unchanged by using Algorithm 2.

3.3 Forward Looking Approach (FLA)
In order to achieve the optimization of the overall utili-

ty of tables, we propose another algorithm called Forward
Looking-based table sanitization Approach (FLA). For re-
ducing the impacts of locality, instead of only considering the
current privacy requirement, FLA takes the next privacy-
level into account. Suppose that we have a table T0 and two
privacy thresholds (l− i+ 1)δ and (l− i)δ, where 1 < i ≤ l.
From T0, FLA directly creates two tables T1 and T2 with
maximal utilities, where P (T1) < (l − i)δ < (l − i + 1)δ
and P (T2) < (l − i+ 1)δ. Based on T2, FLA further builds
up another table T3 such that P (T3) < (l − i)δ, as shown
by Fig. 3(b). Next, FLA compares the utilities between
2 × U(T1) and U(T2) + U(T3). If the former is greater,
then FLA will publish T1 under the privacy requirement
as (l − i+ 1)δ; otherwise, it will publish T2.

FLA also improves the results from methodology. The
advantage of BUA is that, by clustering tuples into groups
dominating on certain sensitive values, one can create tables
with different privacy-levels. However, BUA’s main problem
is caused by the inappropriate merging at the lower privacy
requirements, which results in lots of utility loss at the con-
ditions with higher privacy requirements. The advantage of
TDA is that, during the top-down partitioning process, the
intermediate partitioning results always preserve more pri-
vacy than their children. Since TDA adopts a binary-style of
splitting, the partitioning of equivalent classes under a lower
privacy-level will never hinder the construction of equivalent
classes under a higher privacy-level. However, the phase II
of TDA lacks flexibility: any partition on a sub-table will not
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S3 S4

S9 S10S7 S8 h
f

1-hf

2-hf
h

f 1-hf

T0

T2
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(a) binary splitting process in TDA      (b) privacy-level forward looking 

Figure 3: The idea of FLA. δh+2 < δh+1 < δh.

change the sensitive values’ distributions, which potentially
cause utility loss.

FLA combines both TDA and BUA together. When cre-
ating a table Ti with the privacy-level δh, FLA first adopts
TDA Phase I to create server master equivalent classes, such
that each master class meets the current privacy level. For
example, in Fig. 3 (a), data sets S5 to S10 represent these
classes. Next, within each master class (i.e. S1, S3, and S4

in Fig. 3 (a)), FLA compares the utility loss by using BUA
or TDA Phase II. The final equivalent classes come from the
partitions with maximal utility.

4. SECURITY ANALYSIS
We consider an honest but curious attacking model: at-

tackers always follow the rule for providing correct infor-
mation to the next participant on a social chain, but they
want to learn more information than are supposed to. In
practice, the information propagation paths form a graph,
instead of a chain; the information that an attack is able to
obtain only comes from his direct neighbors. A system is
privacy-preserving if, for any participant, the overall infor-
mation that he could learn from all of his neighbors is no
greater than the information that he directly obtains from
the neighbor, who has the closest distance to the source node
v0. A scheme is called anti-colluding if the total information
gain from the tables of the colluding users is not greater
than cahoot’s maximum information gain. Let ‖u − v‖ be
the social distance between u and v, which is counted as the
number of hops along the shortest path.

Theorem 2. If all participants adopt the same δ and at-
tribute weights {W }, for any pair of participants vi and vj
with ‖vi − vo‖ ≤ ‖vj − vo‖, then Tj must be a sanitization
result of Ti by using FLA.

Proof. In FLA, along the information propagation path,
each participant takes the output from his previous partici-
pant as its input during sanitization operations. Since san-
itization is irreversible, if ‖vi − vo‖ < ‖vj − vo‖, then Tj

must be a sanitization result of Ti. Moreover, each step in
FLA is deterministic: for the same input table T and pri-
vacy requirement δ, the output of FLA is always the same
(Note that, even if two tuples are identical, FLA uses the
row numbers to provide a unique operation order to them.)
Now, consider two shortest information propagation paths
from vo, assuming {v1, v2, . . . , vl} and {v′1, v

′
2, . . . , v

′
l}. Since

all participants use the same δ and the original data owner
v0 gives the same table to the first receiver on each chain,
the outputs of v1 and v′1 are the same. By induction, we
know that whenever ‖vi − vo‖ = ‖v′i − vo‖, the sanitization
results on vi and v′i will be the same. Therefore, the result
of FLA only relates with the shortest hop numbers from its
executer to v0.
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Figure 6: Overall tables’ utility

Theorem 3. For a given initial table T0 at v0, FLA is
naturally against colluding attacks, when all participants adop-
t the same δ and attribute weights {W }.

Proof. For a given threshold δ and propagation length
l, the amount of disclosed information is only related to the
recipient’s distance toward v0. According to theorem 2, for a
group of cahoots, the maximum information that they could
obtain must come from the member with the least distance
toward the source v0. As a result, FLA is against colluding
attacks.

5. EVALUATION
In the simulation, we use the German Credit data set

(german.data-numeric). We use tuples’ weighted Euclidean
distances as their merging costs:

d(σi(T ), σj(T )) =

√√√√
n−1∑

k=1

wk × (σi(πk(T ))− σj(πk(T )))2

where wi is the attribute weight. In practice, this distance
could be computed as a hamming code distance or the num-
ber of modified digits by suppression. After creating an
equivalent class, the values of its members’ quasi-identifiers
are replaced with their mean value within the class. Instead
of directly computing the remaining utility of each table, we
count the percentage of data utility that has been wasted af-
ter sanitization. Let σi(T

′) be the members from the same
equivalent class after a sanitization operation, and σi(T ) be
their corresponding original data, then the utility loss UL is

defined as following: UL(σi(T ), σi(T
′)) = 1− d(σi(T

′),σi(T̃ ))

d(σi(T ),σi(T̃ ))

where T̃ stands for the resulting table by sanitizing the ini-

tial table T0 into one equivalent class, T̃ = π(T0).
Fig. 4 gives the pattern of utility loss with an increase

in privacy-disclosure threshold δ. From the figure, we can
see that the amount of utility loss dramatically increases at
the higher privacy-preserving threshold (a smaller δ). As we
expected, the tables created by BUA loses the most data
utility, since its tuple-merging scheme (at an earlier phase)
may cause inappropriate overall clustering results. We can
also find that, at the condition of lower privacy-preserving
thresholds, there are no significant differences between the
TDA and FLA. The main reason for this phenomenon is that
the members of each class created by these two approaches
are basically similar to each other at the lower thresholds.

During the table propagation, although all result tables
satisfy the same set of privacy requirements, the exact privacy-
preserving values are different. Fig. 5 shows the changing

pattern of each tables’ privacy values. The horizontal lines
show the increasing privacy requirements. The y-axis rep-
resents the privacy-level of each created table along a prop-
agation path, and we measure the privacy-level by function
P (T ) from section II. In most cases, BUA preserves more
privacy than TDA. Since FLA considers both the curren-
t and future privacy requirements, at hop 3 in Fig. 5, it
directly uses the privacy requirement of the fourth hop.

Fig. 6 shows system’s overall utility loss. The x-axis indi-
cates the total number of propagated hops, and the y-axis
gives the average utility loss per table. We can see that
the average amount of utility loss increases with the grow-
ing length of propagations. FLA has the smallest growing
speed, while BUA has the largest one. In general, FLA pre-
serves more data utilities than the other two approaches.

6. CONCLUSION
In this paper, we propose a new research problem: in a

distributed system, given a source node and an information
propagation path consisting of l participants, how can they
sequentially generate l tables, such that the tables’ overall
utility is maximized and data privacy is gradually enhanced
along the propagation path. To solve the problem, we first
design two local algorithms for sanitizing tables with a s-
ingle privacy-requirement, and then, we combine these two
algorithms together and use a privacy requirement forward
looking scheme. Extensive simulation results show that our
approach can successfully increase the overall data utility,
and meet the enhancing privacy-preserving requirements.
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