
A New View of Privacy in Social Networks:

Strengthening Privacy during Propagation

Wei Chang

Temple University, USA

Jie Wu

Temple University, USA

ABSTRACT
Many smartphone-based applications need microdata, but publishing a microdata table may leak respondents’

privacy. Conventional researches on privacy-preserving data publishing focus on providing identical privacy

protection to all data requesters. Considering that, instead of trapping in a small coterie, information usually

propagates from friend to friend. The authors study the privacy-preserving data publishing problem on a mobile

social network. Along a propagation path, a series of tables will be locally created at each participant, and the tables’

privacy-levels should be gradually enhanced. However, the tradeoff between these tables’ overall utility and their

individual privacy requirements are not trivial: any inappropriate sanitization operation under a lower privacy

requirement may cause dramatic utility loss on the subsequent tables. For solving the problem, the authors propose

an approximation algorithm by previewing the future privacy requirements. Extensive results show that this approach

successfully increases the overall data utility, and meet the strengthening privacy requirements.

Keywords: Data Utility, Distributed System, Increasing Privacy Levels, Microdata, Multi-Hop Relays, Privacy-

Preserving Data Publishing, Sanitization, Social Networks.

INTRODUCTION

Learning others' social features can significantly improve the performance of many mobile social network-related
tasks, such as data routing [1], personalized recommendation [2] and social relationship prediction [3]. In these
scenarios, a participant needs access to a large volume of personal information in order to spot the pattern [4]. A
dataset, which consists of the information at the level of individual respondents, is known as microdata dataset. In
order to protect the privacy of each individual respondent, data holders must carefully sanitize (also known as
anonymize) the dataset before publishing. In the past decade, many privacy standards have been proposed, such as k-
anonymity [5], l-diversity [6], and t-closeness [7].

Unlike the conventional centralized database system, where data requesters directly interact with data owners,
information on a mobile social network is disseminated from user to user via multi-hop relays. Considering the well-
known limitations with centralized systems, such as system bottlenecks or a single point of attacks problem, in this
paper, we study the problem of multi-hop relay-based privacy-preserving data publishing, where a microdata table is
gradually propagated from its original owner to distant people. However, under this scheme, the recipients will
present different trust-levels regarding to the original data owner. Intuitively, after each time of relay, one should
further provide more privacy protections on the data. For example, in Fig. 1(a), along a social path with length K,
each user eventually will get one copy of 𝑣0 's table, and we need the tables' privacy to be gradually reinforced, as
shown by Fig. 1(b). Data privacy and data utility are naturally at odds with each other [4]: The more privacy a dataset
preserves, the less utility the dataset has. This propagation scheme creates a unique problem: `for a group of friends,
how can they create a series of tables with maximal overall data utility, and assure that the tables' privacy are
increasingly protected at the same time?' To our best knowledge, this unique problem has never been proposed or
solved.

Take Fig. 2 as an example. Suppose that l -diversity is the privacy requirement, and the total target propagation
distance l is equal to 2. Assume that the corresponding participants arev0 ,v1 andv2 . With the growing of the
propagation distance, the parameter l becomes larger and larger (i.e. after the first hop, the table should satisfy 2 -
diversity, and after the second hop, it should satisfy 3-diversity). The original dataset is given by Fig. 2(a). Figs. 2(b)
and (c) give the results by directly using anonymizing operations on the original tableT0. We can see that the sanitized
values are different in these two tables. However, during multi-hop relays, a participant can only observe the table

passed from the previous one, and therefore, if v0 gives T1 to v1 , v2 can only obtain Fig. 2(c), instead of T2 .
Consider that the tables, which satisfy (l +1)-diversity, must satisfy l -diversity. For v0 , he has two options for
sending the dataset to v1: he either sends T3 or T2 . For the first case, the user v1 only needs to forward T3 to v2
without any changes, while for the other case, v1 should further sanitize T2 and send the result T3 to v2. Clearly, we
cannot simply claim which approach is better; this is because it depends on the utility value of each attribute. For
instance, if we define that any suppression operation costs 1 unit of utility, then the first option loses a total of 12
units of utility (as 6 units of utility are lost for T1), while the second one costs 16 units (as 4 utility units are lost for T2
and 12 for T3). However, if the age attribute is more important than the zip code, assuming that suppression on age
costs 2.5 units of utility and suppression on zip code costs 1, the utility loss of the second option becomes 28, while
that of the first option is 30.

Figure 1 An example of the target problem. In fig. (a), the black nodes consists of a social chain with length 4. The source v0 possesses a data

table and wants to propagate it to the other four nodes (from v1 to v4). Since the source node has a different trust level to these destination nodes,

the privacy protection of the table’s content should be further enhanced after each time of relays. In fig. (b), the dash lines represent the

enhanced privacy requirements and the bars stand for the real privacy value of the table.

Figure 2 Generated tables based on requirements with different privacy levels.

In order to solve the problem, we first propose two greedy schemes: a bottom-up algorithm and a top-down
algorithm. The bottom-up algorithm works at the tuple-level, and it always merges similar tuples into one equivalent
class until all classes meet the corresponding privacy requirement. The top-down approach is based on the observation
that the larger an equivalent class is, the safer its members are. This approach considers how to split a table into the
maximum number of sub-tables, such that each small table has the required privacy protection. By comparing the
results of both algorithms, we propose another approximation algorithm for optimally creating a series of tables.
Consider that if a table satisfies a higher privacy requirement, the n it also meets the lower one. At each participant,
the algorithm does not simply maximize the data utility at its required privacy-level; instead, it takes future, more
stringent privacy requirements into consideration. Extensive simulation results show that more data utilities are
preserved by adopting our scheme.

The contribution of this chapter is threefold. First, to our best knowledge, we are the first to consider the multiple-
level privacy-preserving data publishing problem within a distributed system. Second, since there are two objects with
the problem, we propose a bottom-up approach and a top-down one, which give different priorities to the objects. In
order to achieve maximal overall utility, we introduce the concept of `forward looking': the sanitization at an earlier
phase should not significantly jeopardize the data utilities on the later phase. Lastly, our real data-based evaluation
demonstrates that the forward looking scheme can produce a 5.6% higher total utility than the top-down and bottom-
up approaches.

RELATED WORK

Privacy-preserving data publishing has received considerable attention in the past decade. Based on the different

goals of privacy-preservation and data features, a variety of privacy protection techniques have been designed.
Statistical databases are used for the purpose of statistical analysis, and it aims to provide aggregated knowledge.
Since intelligent users may use a combination of aggregate queries to derive information about an individual record,
statistical databases need privacy protection. Commonly used privacy-preservation techniques in this field include
adding random noise while maintaining certain statistical features [8], [9], and making perturbation on the query-
results [10], [11]. Differential privacy [12], [13] aims to provide an indistinguishability regarding the existence of an
individual respondent, during interactive queries. Unlike traditional approaches, differential privacy puts restrictions
on the release mechanism instead of the original dataset.

Unlike a statistical database, a microdata database publishes information at the level of individual respondents
[14], and its records are unperturbed. In order to preserve individual respondents' privacy, many privacy metrics have
been developed, such as k-anonymity [5], l-diversity [6], and t-closeness [7]. In order to achieve these metrics, certain
anonymizing operations are adopted; generalization and suppression [15], [16] to quasi-identifiers are the most two
commonly used operations. Essentially, the anonymizing operations divide tuples of a table into multiple disjoint
groups, and the tuples from the same group form an equivalence class. k-anonymity requires that the size of each
group must be at least k; l-diversity needs each group to contain at least l unique sensitive values, and t-closeness
requests the distribution of the sensitive attributes within each group to be similar to the distribution within the
original dataset. However, almost all of the existing studies focus on providing a single privacy-preserving level,
while, in practice, the recipients are not equally trustable [17], especially on a social network. To our best knowledge,
only papers [17], [18] consider multi-level privacy preserving on statistical databases. Due to the differences about
the goal of privacy-preservation and anonymizing operations, their approaches cannot be applied on microdata tables.
Moreover, they use a centralized scheme, but our problem considers a distributed scenario.

The cost of privacy is the loss of data utility. For a centralized database system, before publishing a table, the data
holder first defines a privacy requirement, and then, anonymizes the table with the minimal utility damage. Certain
works [4], [19], [20] have been done on this kind of tradeoff between privacy and utility. However, few people have
worked on the privacy-utility tradeoff about multiple related tables. Unlike the traditional database, propagating a
dataset along a social path with enhancing privacy-preserving requirements essentially creates multiple mutually-
related tables. In practice, it is often necessary to maximize the overall utilities of the whole tables, instead of simply
optimizing one table's utility. In addition, the optimization of overall utility is usually not equivalent to the simple
combination of individual tables' optimal results, as we have shown in Section I of the paper.

PROBLEM MODEL AND FORMULATION

Conventional privacy-preserving data publishing problems focus on providing uniform privacy protection to all
requesters, and therefore, in their models, the database is the only source of information. However, in real life,
information usually propagates from person to person in a distributed way, instead of being trapped in a small coterie.
In this paper, we propose a distributed privacy-preserving scheme, which provides a multi-level privacy for different
social users. The most significant feature of the proposing scheme is that, after each time of dissemination, the data's
privacy is further strengthened. In this section, we present the problem formulation, system model, and some
commonly used symbols.

A. Basic Model
On a social network, there is a social chain consisting of 𝑙 + 1 participants (also called nodes),

assuming𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑙. Let 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚} be a microdata table of 𝑚 tuples and 𝑛 attributes 𝐴 = {𝐴𝑖} . Usually,

we have 𝑚 ≫ 𝑛. In practice, a microdata table may contain several sensitive attributes, such as salary and disease.

Since we can regard each possible combination of the sensitive attributes as a data point (vector) in a hyper-

dimension, here, we assume that there is only one sensitive attribute, which is An. In other words, attributes

{𝐴1, 𝐴2, … , 𝐴𝑛−1} are the quasi-identifiers (non-sensitive attributes), and 𝐴𝑛 is the sensitive attribute.

Definition 1: In a table 𝑇 , tuples with the same quasi-identifiers' values form an equivalent class < 𝑡 >.

For example, in Fig. 2(b), < 𝑡3 > means the equivalent class of the third tuple, and therefore, < 𝑡3 > =< 𝑡4 > = {(28,

19***, Flu); (28, 19***, Cancer)}. Also, in Fig. 2(c), < 𝑡4 > =< 𝑡5 > =< 𝑡6 > = {(2*, 19122, Cancer); (2*, 19122,

Hepatitis); (2*, 19122, Bronchitis)}.

Let 𝜎 be the selection operation from a table, and 𝜎𝑖(𝑇𝑗) stands for the 𝑖th tuple of table 𝑇𝑗. For instance, in Fig.

2(b), 𝜎3(𝑇1) means selecting the third tuple from 𝑇1, and therefore, 𝜎3(𝑇1) ={(28, 19***, Flu)}. In Fig. 2(c), 𝜎3(𝑇2)

={(2*, 19122, Cancer)}. We use 𝜋 as the projection operation on a table. 𝜋𝑖(𝑇) gives the 𝑖th column of table 𝑇 . For

instance, in Fig. 2(a), 𝜋3(𝑇0) ={Hepatitis; Bronchitis; Flu; Cancer; Hepatitis; Bronchitis }. Since we assume that the

nth attribute is the sensitive one, 𝜋𝑛(𝑇) means the sensitive values in 𝑇. For the ease of description, for the rest of the

paper, let 𝜋(𝑇) be the short of 𝜋𝑛(𝑇). So, 𝜋(𝑇0) = 𝜋3(𝑇0). In addition, any value in table 𝑇𝑘, attribute (column) 𝐴𝑗 ,

tuple (row) 𝑡𝑖 is represented as𝜎𝑖(𝜋𝑗(𝑇𝑘)). In Fig. 2(b), 𝜎3(𝜋(𝑇1)) ={Flu}, and 𝜎<3>(𝜋(𝑇1)). ={Flu, Cancer}.
Along the social chain, 𝑣0 is the original data owner, and based on trust relations, user 𝑣𝑖 (i ∈ [1, l]) receives an

anonymized table 𝑇𝑖 from his previous user, and sends a modified version, 𝑇𝑖+1, to the next one. For instance, 𝑣0

sends table 𝑇1 to 𝑣1; based on 𝑇1, the receiver, 𝑣1, creates table 𝑇2 and sends it to 𝑣2, and so on. Essentially, each user

locally builds a table based on previous user's data, and therefore, 𝑇𝑖 is a sub-table of 𝑇𝑖−1. Considering the fact that

trust fades along a social path, instead of having l tables with the same privacy-preserving strength, our system builds

a series of tables with increasing privacy protections. Therefore, table 𝑇𝑖+1 is the sanitization result of table 𝑇𝑖. For

benefiting the whole society on a social chain, the data owner wants to provide the maximal overall utility of these

tables.

Definition 2: Given a pair of tables 𝑇 and 𝑇′, if the value of any tuple in 𝑇 is covered by the value of 𝑇′ 's

corresponding tuple, ∀i ∈ [1, l], ∀j ∈ [1, m], 𝜎𝑖(𝜋𝑗(𝑇)) ⊆ 𝜎𝑖(𝜋𝑗(𝑇′)), then we call 𝑇′ a sanitization result of 𝑇 .

For example, value “19**2” covers “191*2”, since the value’s range of “191*2” is a subset of the former one.

Note that any value covers itself, e.g. “19**2” covers “19**2”.

In practice, different attributes may have different levels of importance. For example, for the data published by
Screen Actors Guild, the public cares more on the actor/actress's age or weight than their academic performance. In
our model, we classify users into several types, and for the tables owned by each type of user, there is a set of utility
weights W = {𝑤1, 𝑤2, … , 𝑤𝑛−1} associated with quasi-identifiers (𝑤i ∈ [0, 1], ∑ 𝑤𝑖𝑖 = 1). The larger the weight is,

the more important the attribute is. Utility weight is a source-based concept: along a table's propagation path, all
participants use the same utility weights since the tables have the same source.

B. Problem Formulation

1) Privacy Disclosure Measurement: Let 𝑝(∙)denote the distribution of a given set of values, then 𝑝(𝜋(𝑇))

represents the sensitive values' distribution over the whole table , and 𝑝 (𝜎<𝑡>(𝜋(𝑇))) indicates that distribution

within an equivalent class< 𝑡 >. For a given table , its privacy disclosure 𝑃(𝑇) is measured as the maximum amount

of privacy disclosure from its equivalent classes:

𝑃(𝑇) = 𝑚𝑎𝑥∀<𝑡>⊆𝑇 𝐽𝑆 (𝑝(𝜋(𝑇)), 𝑝(𝜋<𝑡>(𝑇)))

where 𝐽𝑆(∙,∙) is Jensen-Shannon divergence function [21], which measures the similarity between two distributions.

𝐽𝑆 ∈ [0, 1]. The smaller the 𝐽𝑆 is, the closer the distributions are.

2) Data Utility Measurement: Assume that 𝜎𝑖(𝜋𝑗(𝑇)) and 𝜎𝑖(𝜋𝑗(𝑇′)) are the same data point appearing in two

tables. Due to the sanitization operations, the values of them may not be same. Let 𝑑(𝜎𝑖(𝜋𝑗(𝑇)), 𝜎𝑖(𝜋𝑗(𝑇′))) be the

sematic distance between them. For instance, by using suppression operations, the distance between “19*22” and

“19***” is 2 units. If we use generalization, the distance between age “29” and range “[2 0-30)” is defined as the

distance from 29 to the mean age within that age group. For a given attribute, if its values are extremely similar to

each other, basically, the whole attribute becomes useless for most of the data mining task. As a result, the utility of

an attribute mainly comes from its diversity. If we use sanitization operations to merge all tuples of table 𝑇 into one

equivalent class, which has the same effects as only publishing sensitive attributes, then the resulting table 𝑇 reaches

maximum privacy but minimum utility. For the rest of the paper, we use �̃� to represent the resulting table by

sanitizing a given table 𝑇 into one equivalent class. Let 𝑈(𝑇) stand for the data utility of any table , then we have:

𝑈(𝑇) = ∑ [𝑤𝑖 ∑ 𝑑(𝜎𝑗(𝜋𝑖(𝑇)), 𝜎𝑗(𝜋𝑖(�̃�)))

𝑚

𝑗=1

]

𝑛−1

𝑖=1

3) Formulation and Features: By hiding the exact value of attributes, a table can gain more privacy but might lose

unity. Along a table's propagation path, the privacy protection on the table should be gradually enhanced, since the
trust relations between the original data owner and each receiver is fading. As a result, before disclosing a table to the
next recipient, each relay node must further anonymize the table until it reaches a certain privacy level. Here is the
problem formulation: for a given table 𝑇0, along a social path with length 𝑙, we want to create 𝑙 tables; each table 𝑇𝑖 is
the sanitization result of 𝑇𝑖−1 (i ∈ [1, l]), and these tables satisfy the following requirements:

Maximize
∑ 𝑈(𝑇𝑖)

𝑙

𝑖=1

Subject to 𝑃(𝑇𝑖) < (𝑙 − 𝑖 + 1)𝛿

Theorem 1: For a given microdata table 𝑇0 and a pair of source-selected parameters 𝛿, 𝑙, there is at least one series
of tables

𝑇1, 𝑇2, … , 𝑇𝑙 satisfied the increasing privacy requirements 𝑃(𝑇𝑖) < (𝑙 − 𝑖 + 1)𝛿 for ∀i ∈ [1, l].

Proof: One can delete all attributes of 𝑇0 except the sensitive ones, and let the result �̃� be 𝑇𝑖 . On table 𝑇𝑖, all

tuples form only one equivalent class, and therefore 𝑃(𝑇) = 𝑚𝑎𝑥∀<𝑡>⊆𝑇 𝐽𝑆 (𝑝(𝜋(𝑇)), 𝑝(𝜋<𝑡>(𝑇))) =0 . Since

(𝑙 − 𝑖 + 1)𝛿 > 0 for ∀i ∈ [1, 𝑙], the created tables, 𝑇1, 𝑇2, … , 𝑇𝑙 , always satisfy the privacy requirements.

Theorem 2: Along the tables' propagation path, the table utility 𝑈 is non-increasing: 𝑈(𝑇𝑖) ≥ 𝑈(𝑇𝑗), for ∀i, j, 1 ≤ i

< j ≤ 𝑙.

Proof: Because sanitization operations (i.e. generalization and suppression) are irreversible, for ∀i, j, 1 ≤ i < j ≤𝑙,
table 𝑇𝑗 must be a child-table of table 𝑇𝑖, and therefore, its utility should be less than 𝑇𝑖. Even if there exists a pair of

tables 𝑇′𝑖 and 𝑇′𝑗 , whose table utility satisfies 𝑈(𝑇′
𝑖) < 𝑈(𝑇′𝑗) , one can simply replace 𝑇′

𝑖 with 𝑇′
𝑗 because

𝑃(𝑇′
𝑗) < (𝑙 − 𝑗 + 1)𝛿 < (𝑙 − 𝑖 + 1)𝛿.

Theorem 3: The target problem: “given table 𝑇0, propagation length 𝑙, and a threshold 𝛿, maximize ∑ 𝑈(𝑇𝑖)𝑙

𝑖=1
subject to 𝑃(𝑇𝑖) < (𝑙 − 𝑖 + 1)𝛿 for ∀i ∈ [1, 𝑙]” is NP-hard.

Proof: We want to reduce our original problem to the classic optimal L-diversity problem, which is NP-hard [22].

Consider the simplest case of our problem, where 𝑙 = 1. Under this special case, our problem is reduced to: given table

𝑇0and a threshold 𝛿 > 0, Maximize 𝑈(𝑇1) subject to 𝑃(𝑇1) < 𝛿, where 𝑇1 is a sub-table of 𝑇0. Since the amount of

privacy disclosure is measured by Jensen-Shannon divergence, each type of sensitive value must appear at least once

within each equivalent class. Assume that there are a total of L types of sensitive values. After we further simplify the

problem into the situation that all sensitive values follow a uniform distribution, the problem becomes a typical L-

diversity problem. As a result, our target problem is NP-hard.

As Theorem. 3 shows, the target problem is NP-hard even if a table is propagated only one hop. Actually,

maximizing the overall utility of l tables is more challenging than the one-hop case. Since the anonymizing operations

are irreversible, once we put a tuple's value into a broader range via sanitization operations, for the remaining

participants in downstream, no one can change it back, or even put it in a narrower range. Therefore, the processing

effects of previous participants are accumulated.

Simply maximizing a table's utility subject to a current privacy requirement is not a good option: under a lower
privacy requirement, merging a pair of tuples may achieve a higher utility, but later, in a higher privacy condition, it
turns out that they should be placed in different equivalent classes. This problem not only happens when using our
privacy metric, but also exists when using the classic l-diversity or t-closeness standards. For example, in Fig. 2,
tuples 3 and 4 are closer to each other, and it is optimal to put them together for 2-diversity conditions. Once it is
done, their attributes become the same except for the sensitive attribute column. However, distances from the
modified tuples to their second closest tuples are increase d (e.g. the distance between tuples 2 and 3 in 𝑇1), which
may cause extra utility losses for creating tables with a higher privacy requirement. Clearly, when sequentially
creating a series of tables with increasing privacy protection, tuples grouping orders affect the overall utilities.

KEY OBSERVATIONS

Observation 1: After sanitization, each type of sensitive values must appear at least once in each equivalent class.

According to the definition of our privacy disclosure function P (·), if an equivalent class does not contain a
sensitive value, its Jensen-Shannon divergence distance becomes undefined, which breaks the privacy requirement of
our problem: 𝑃(𝑇𝑖) < (𝑙 − 𝑖 + 1)𝛿. Note that Jensen-Shannon divergence is based the Kullback-Leibler divergence.
If one type of value appears zero times in one distribution, then we will face the “Division by zero” problem.

Observation 2: In general, the larger a subset of records is, the more likely that its sensitive values' distribution is
close to the global one.

Based on Observation. 2, we infer that, if the privacy-preserving level of a set of records is far beyond the current
requirement, one can partition the set into multiple subsets to reduce each subset's privacy-preserving level; in the
meanwhile, the utility loss of using sanitization operations on the given records can also be reduced.

Observation 3: For a given set of records, whose sensitive values' occurrence times follow a certain distribution, if
we partition the given set into several subsets such that the sensitive values' occurrence frequencies in each subset are
unchanged, then the amount of privacy disclosure of each subset is the same as the original set's privacy disclosure.

When we use suppression/generalization on a set of records, the larger the set is, the more data utility that is lost.
After finding a set of records satisfying a given privacy requirement, one can further reduce the cost of sanitization
operations by dividing the set into smaller ones while keeping the distribution of sensitive values unchanged.

Figure 3 The grouping problem with BUA. On the graph, we assume that S1, S2 and S3 are three large sets of data points, and V is a

small set. We use the location distance d between a pair of nodes to represent the difficulties for merging the corresponding data into an

equivalent class. In Fig.(a), d1 < d2 < d4 < d1+d3.

Observation 4: For a given set of records, one can create several subsets by letting each subset uniquely dominate

on one or more sensitive value types. The merging of these subsets may reduce the statistical distance between their

sensitive values' distribution and the global one.

For instance, given a set of records, whose sensitive values' occurrence times are 3 : 5 : 7 : 9 : 11, we can create
two subsets with sensitive values' occurrence times 1 : 1 : 6 : 1 : 1 and 1 : 1 : 1 : 8 : 1, respectively. The JS distances of
these subsets to the original set are 0.6137 and 0.5994. After merging sets into one equivalent class, the occurrence
times of sensitive values become 2 : 2 : 7 : 9 : 2, whose JS distance becomes 0.3075.

SOLUTION DETAILS

This section consists of three parts. In part one, we propose a bottom-up table sanitization approach. The main idea
of the bottom-up approach is to merge similar tuples into an equivalent class until the table meets the privacy
requirement. By tracking any tuple's locations in the table series, we can see that, with the growth of privacy-
preserving level, the size of the tuple's resided equivalent class becomes larger and larger. In the second part, we
propose a top-down table sanitization approach. Unlike in the previous approach, the top-down approach gives more
concern on the table creation at higher privacy-levels. The intuition of the second approach is to gradually partition
tables into multiple clusters until any further partitioning will break the privacy requirement. In order to save more
data utility, after reaching the required privacy-level, both the bottom-up approach and top-down approach split the
equivalent classes into smaller ones by using observation 3's feature. In the last part, we first compare the above two
schemes, and then propose another approach by considering the utility loss at future higher privacy requirements.
Note that the first two algorithms only consider the instant privacy requirement (single level), while the last one takes
both current and future privacy requirements (multiple levels) into consideration.

A. Bottom-up Approach (BUA)

The Bottom-up Approach (BUA) treats each record individually, and the table creating process by BUA is similar
to the changing pattern of tuples' grouping during multi-hop relays: initially, there are lots of small-sized equivalent
classes, and gradually, more and more classes merge into others; with the growth of the sizes of equivalent classes, the
distribution of the sensitive values within each equivalent class becomes closer to the distribution over the whole
table.

There are two objections with our problem: on the one hand, we need to maximize a table's remaining utility after
sanitization operations, and on the other hand, the amount of privacy disclosure of the resulting table should be
bounded. Since privacy and utility are not comparable with each other, we cannot consider these two objections at the
same time. In order to meet the utility objection, one can merge similar tuples into one equivalent class, as many as
possible, until the class reaches the required privacy-level. For satisfying the privacy, one can group the tuples
according to the occurrence frequency of the sensitive values. For example, if the whole table's occurrence
frequencies of the sensitive values are 20% : 40% : 40%, then when creating an equivalent class, the operator should
merge at least 5 tuples in each time, including one tuple with sensitive value type I, two tuples with type II, and
another two tuples with type III. However, neither of the approaches can create a table with maximum utility and
satisfy a given privacy-preserving level.

The basic idea of BUA is as follows: at the lower privacy-preserving requirements, if each equivalent class
dominates in one type of sensitive value, the merging of different classes may make their sensitive values' distribution
closer to that of the whole table. BUA consists of two phases. Considering that each type of sensitive values must
occur once in each equivalent class, in phase I, BUA first creates several basic groups, where each sensitive value
appears once within each group. For the remaining records, we compute their quasi-identifiers' distance to each group.
BUA proportionally assigns each basic group with a dominating sensitive value type, according to the occurrence
frequency of sensitive values. Based on tuple's sensitive value and its distance to groups, each tuple joins a group. In
phase II, BUA gradually merges groups in order to satisfy a given privacy requirement, and the merging process will
not terminate until all equivalent classes reach the required privacy-level. Algorithm. 1 gives the procedure of BUA.

Essentially, by using BUA, along the propagation path, each node tries to locally maximize its table's utility

subject to the privacy requirement. However, the process may cause inappropriate grouping, especially when creating
the basic groups. As shown by Fig. 3, initially data point 𝑉 is slightly closer to equivalent class 𝑆1 than class 𝑆2. At a
lower privacy requirement (Fig. 3(b)), BUA should merge 𝑉 with 𝑆1, and in a later time (Fig. 3(c)), the 𝑆1 will merge
with another equivalent class 𝑆3. However, if we directly increase the privacy requirement from 3𝛿 to 𝛿, the data
point V will join the 𝑆2 set. In short, whether a node joins an equivalent class is determined not only by the attribute
distance between the node and the class, but also the distance between the node and other classes at which the class is
going to merge at higher privacy requirements. However, BUA does not consider the impacts of further merging
operations.

B. Top-down Approach (TDA)

Top-down Approach (TDA) considers how to partition a table into multiple sub-tables such that each sub-table
satisfies a single-level privacy requirement. The basic idea of TDA comes from paper [23]. Our TDA is based on two
insights. First, for a given set of data {S}, the distribution of which follows D({S}), if we partition the set {S} into
two subsets ({S1}, {S2}) and keep each value's occurrence frequency unchanged in both of the subsets, then we have

D({S1}) ≅ D({S}) and D({S2}) ≅ D({S}). This feature maximizes the protection of privacy but hurts data utility. The
second insight is that, if we randomly partition a table into several sub-tables, the larger a sub-table is, the more likely
that the distribution of a sensitive attribute in the sub-table is close to the distribution of the attribute in the original
table.

Based on these two insights, we propose our TDA, as shown in Algorithm 3. The algorithm consists of two phases.

The first phase gradually partitions the original data table into several sub-tables. This part tries to maximally preserve
data utility and satisfy the needs of privacy. Note that, during the process of the table's propagation, once a pair of
records been merged into one equivalent class at a node, it is hard for the following nodes to take them apart, since the
following nodes cannot discriminate the tuples from the same equivalent class. Based on this consideration, instead of
partitioning the original table at one time, we first divide the table into two parts, then we split each sub -table into
another two parts, and so on. For any sub-table, the partitioning process stops when the further partitioning on it will
break the privacy requirement. Due to the fact that the smaller an equivalent class is, the more data utility preserves,
the second phase tries to further reduce the size of each sub-table 𝑇, and in the meanwhile, keeps their privacy-
preserving degree unchanged by using Algorithm 2.

C. Forward Looking Approach (FLA)

In order to achieve the optimization of the overall utility of tables, we propose another algorithm called Forward
Looking-based table sanitization Approach (FLA), which improves the solutions from two aspects. For reducing the
impacts of locality, instead of only considering the current privacy requirement, FLA takes the next privacy-level into
account: FLA creates two tables 𝑇𝑖 and 𝑇𝑖+1 such that 𝑈(𝑇𝑖) + 𝑈(𝑇𝑖+1) is maximized subject to 𝑃(𝑇𝑖) <
(𝑙 − 𝑖 + 1)𝛿 and 𝑃(𝑇𝑖+1) < (𝑙 − 𝑖)𝛿.

FLA also improves the results from methodology. The advantage of BUA is that, by grouping tuples into
fragments dominating on certain sensitive values, one can easily create tables with different privacy-levels. However,
BUA's main problem is caused by the inappropriate merging at the lower privacy requirements, which results in lots
of utility loss at the conditions with higher privacy requirements. On the other hand, TDA can easily group tuples at
higher privacy requirements, but its phase II lacks flexibility: any partition on a sub-table will not change the sensitive
values' distribution, which potentially causes utility loss.

Figure 4 Forward looking the future privacy requirement.

FLA combines both TDA and BUA together. Suppose that we have a table 𝑇0 and two privacy thresholds (l−i+1)δ

and (l−i)δ, where 1 < i ≤ l. From 𝑇0 , FLA directly creates two tables 𝑇1 and 𝑇2 with maximal utilities, where
𝑃(𝑇1) < (𝑙 − 𝑖)𝛿 < (𝑙 − 𝑖 + 1)𝛿 and 𝑃(𝑇2) < (𝑙 − 𝑖 + 1)𝛿. Based on 𝑇2, FLA further builds up another table 𝑇3such
that 𝑃(𝑇3) < (𝑙 − 𝑖)𝛿, as shown by Fig. 4. Next, FLA compares the utilities between 2 × 𝑈(𝑇1) and 𝑈(𝑇2) + 𝑈(𝑇3).
If the former is greater, then FLA will publish T1 under the privacy requirement as (𝑙 − 𝑖 + 1)𝛿; otherwise, it will
publish 𝑇2 .

When creating a table 𝑇𝑖 with privacy level 𝛿ℎ , FLA adopts TDA Phase I to create server master equivalent

classes, and within each master class, FLA compares the utility loss by using BUA or TDA Phase II. Since BUA is
more flexible for satisfying the privacy requirement, FLA adopts TDA Phase I to partition data into multiple sub-
tables, and within each sub-table, FLA uses BUA and TDA to create equivalent classes. The final equivalent classes
come from the partitions with maximal utility.

During TDA Phase I, we strictly use binary partitioning, as shown by Fig. 5. The reason is that at a lower privacy-
level, one may create several clusters, for instance, assuming 3 clusters, and then, at a higher privacy-level, the
number of clusters becomes less, assuming 2 clusters. Clearly, one cluster in the lower privacy-level has to split and
merge with others in order to achieve a higher privacy-level later. Many data utilities will be lost while splitting an
equivalent class, especially when the size of the equivalent class is large. Usually, the higher the privacy-level is, the
bigger an equivalent class is. Although during a table's propagation, tuples are clustering from lower privacy-levels to
higher levels, during the top-down splitting process, the partitioning results at the earlier phases satisfy the higher-
level requirements, and then with the reducing of their sizes, they can no long meet the higher-level requirements.

Figure 5 The idea of FLA. In the figure 𝜹𝒉+𝟐 < 𝜹𝒉+𝟏 < 𝜹𝒉

For achieving a single privacy requirement 𝛿ℎ, FLA first gradually partitions the table into several blocks such that

each block meets the current privacy level. For example, in Fig. 5, data sets S5 to S10 represent these blocks. Next,
within their parent blocks, S1, S3, and S4, FLA uses BUA to create equivalent classes. Finally, FLA compares the
results of both BUA and TDA Phases, and adopts the best one as the equivalent class.

D. Example

Fig. 6 gives an example. Fig. 6 (a) is the original table, which consists of 24 tuples. The attributes: “Weight”,
“Age”, and “Zip Code” are the quasi-identifiers, the combination of which ma y unique identify a person. “Drug” is
the sensitive attribute, which has three types of value: “Heroin”, “Marijuana”, and “No”. The occurrence frequencies
of these three types of value follows “Heroin”:“No” :“Marijuana” = 1 : 2 : 3.

Figure 6 Example. The value of tuples 11 − 24 in both Figs. (d) and (e) are the same as them in Fig. (c).

Our proposed algorithms not only work on the condition that each attribute has a unique weight (also known as

source-based utility weights), but can be also applied under the scenario in which tuples have personalized weights. In
Fig. 6 (a), assume that there is a background knowledge in which tuples 1 to 10 are Hollywood stars, and tuples 11 to
24 are vagrants. Consider the fact that Hollywood stars care a lot about their weights and some of them use drugs,
such as heroin, to lose weight. The “Weight” attribute is important for these groups of data, but it is not for the
vagrants. Instead, the living area is an important factor about drug using habits. Therefore, during the creation of
equivalent classes, one may give different weights to different types of users' data. In this example, we give 0.5 utility
weight to “Weight” and another 0.5 weight to “Age” for the Hollywood group, while assigning 0.5 utility weight to
both “Zip Code” and “Age” attributes for the vagrant group. Here, we let the table be propagated twice, and let 𝛿 =
0.05. So, after the first time of transmission, the privacy disclosure of the result table should smaller than 2𝛿 = 0.1,
and after the second time, it should be less than 0.05. Figs 6 (b) and (c) show the sanitation results with and without
using the personalized weights. Since the personalized weights put similar users' tuples closer regarding the overall
attribute distance, Fig 6 (c) has more data utility than (b). Note that when using the personal weights the attribute
distance is no longer symmetric.

When using FLA preparing for the first time of propagation, FL A creates two clusters: tuples 1 − 10 and 11 − 24.

Since their privacy disclosure amount is 0.0069 and 0.0038, which are both smaller than the privacy requirement,
FLA continues splitting the clusters into tuple groups 1 − 5, 6 − 10, 11 − 18, and 19 − 24. The four groups' privacy
disclosure amount is 0.0292, 0.667, 0.0122, and 0 (as shown by Fig.(d)). Since any further partitioning breaks the
privacy restriction, Fig.(d) is the result by directly using TDA with privacy requirement as 0.1. However, FLA also
considers the utility cost of future sanitization, and therefore, FLA computes Figs.(c) and (e). In Fig.(c), FLA directly
adopts TDA to create a table for the future privacy level P < 0.05, and based on Fig.(d), FLA builds a table for the
next privacy-level, as shown by Fig.(d). After computing the utility loss of the results, FLA finds out that by directly
using Fig.(c) under the privacy requirements, P < 0.1 and P < 0.05 can save slightly more data utility than using
Figs.(d) and (e). FLA takes Fig.(c) as final result.

SECURITY ANALYSIS

In this paper, we consider an honest but curious attacking model, in which each participant of the system could be

an attacker. More specifically, in this model, the attackers will always follow the rule for providing correct
information to the next participant on a social chain. However, the attackers may be willing to learn more information
than he supposes to do. Note that, in practice, the information propagation paths form a graph, instead of a chain, and
therefore, the information that an attack is able to obtain only comes from his direct neighbors. In our paper, a system
is privacy-preserving if, for any participant, the overall information that he could learn from all of his neighbors is no
greater than the information that he directly obtained from the neighbor, who has the closest distance to the source
node v0. For the ease of description, let ‖𝑢 − 𝑣‖ be the social distance between users 𝑢 and 𝑣, which is counted as the
number of hops along the shortest path between them, ‖𝑢 − 𝑣‖ = ‖𝑣 − 𝑢‖ . Let 𝑇𝑣𝑖

 be the table possessed by user 𝑣𝑖

and 𝐻(𝐴𝑛|𝑇𝑣𝑖
) be the conditional entropy that one learns about the sensitive attribute based on table 𝑇𝑣𝑖

.

Theorem 4: Assume 𝑣𝑖, 𝑣𝑗 are two nodes along the same information propagation path from 𝑣0. If all participants

adopt the same 𝛿 and attribute weights{𝑊}, and‖𝑣𝑖 − 𝑣0 ‖ < ‖𝑣𝑗 − 𝑣0‖, then 𝑣𝑗 's table must be a sanitization result
of 𝑣𝑖 's table.

Proof: In the proposed scheme, along the information propagation path, the participants gradually hide more and
more information by putting tuple values into a broader ranger. The participant at downstream takes the output from
his previous participant as its input during sanitization operations. Since sanitization is irreversible, there exists a
series of participants, 𝑣𝑖+1, 𝑣𝑖+2, …, 𝑣𝑖+(𝑗−𝑖−1) such that any table belonging to them is the sanitization result of its
previous table. Therefore, 𝑣𝑗 's table must also be a sanitization result of 𝑣𝑖 's table.

Theorem 5: If all participants adopt the same 𝛿 and attribute weights {𝑊}, for any pair of participants 𝑣𝑖 and 𝑣𝑗

with ‖𝑣𝑖 − 𝑣0 ‖ = ‖𝑣𝑗 − 𝑣0‖,, we have 𝑇𝑖 = 𝑇𝑗 by using FLA.

Proof: Each step in FLA is determined: for the same input table 𝑇 and privacy requirement 𝛿, the output of FLA
is always the same. Note that, when using FLA, even if two tuples are identical, FLA uses the row numbers to provide
a unique operation order to them. As a result, there is no stochastic event in FLA. Now, consider two shortest
information propagation paths, assuming {𝑣1, 𝑣2, … , 𝑣𝑙} and {𝑣′1, 𝑣′2, … , 𝑣′𝑙} . Since all participants use the same 𝛿
and the original data owner 𝑣0 gives the same table to the first receiver on each chain, the outputs of 𝑣1 and 𝑣′1 are
the same. By induction, we know that whenever ‖𝑣𝑖 − 𝑣0 ‖ = ‖𝑣′𝑖 − 𝑣0‖, the sanitization results on 𝑣𝑖 and 𝑣′𝑖 will
be the same. Therefore, for the same initial owner 𝑣0 and parameters, the solution of FLA only relates with the
shortest hop numbers from its executer to 𝑣0.

Definition 3: A scheme is called anti-colluding if the total information gain from the tables of the colluding users,
𝐻(𝐴𝑛|𝑇𝑣1,𝑇𝑣2

, …), is not greater than cahoot's maximum information gain 𝑚𝑎𝑥𝑖𝐻(𝐴𝑛|𝑇𝑣𝑖
).

Note that colluding attackers may not be direct neighbors with each other. Let 𝑇𝑣𝑖

 be the table that an attacker
obtained from his social chain. Tables 𝑇𝑣𝑖

 and 𝑇𝑣𝑗
 may be created on different social chains.

Theorem 6: For a given initial table 𝑇0 at 𝑣0, FLA is naturally against colluding attacks, when all participants

adopt the same 𝛿 and attribute weights {𝑊},.

Proof: For a given threshold 𝛿 and propagation length 𝑙, the amount of disclosed information is only related to
the recipient's distance toward 𝑣0. According to theorem 4, if the distance between 𝑣 and source is smaller than that of
𝑣′ , then the obtained information of 𝑣′ ′ is a subset of that of 𝑣. For a group of cahoots, the maximum information that
they could obtain must come from the member with the least distance toward the source 𝑣0. As a result, our scheme is
against colluding attacks.

EVALUATION

In this section, we conduct extensive real data-based simulations to evaluate the performances of our scheme. For
the ease of comparison, we use black bars to represent the results by using the Bottom-Up Approach (BUA in Section
V.A); We use grey shadowed bars to represent the results of the Top-Down Approach (TDA in Section V.B). The
white shadowed bars stand for the results of the Forward Looking Approach (FLA in Section V.C), which compares
the following utility wastes of the best and the second best merging options.

A. Simulation Setup and Evaluation Metric

In the simulation, we use the Statlog (German Credit Data) Data Set, which consists of 1, 000 instances and 25
attributes. For the ease of simulation, we use the file named “german.data -numeric”, which coded categorical
attributes as integers. We let the first column be the sensitive attribute, and let the remaining 24 attributes be the
quasi-identifiers. During simulation, we consider the weighted Euclidean distance between tuples as their merging
costs:

𝑑(𝜎𝑖(𝑇), 𝜎𝑗(𝑇)) = √∑ 𝑤𝑖 × (𝜎𝑖(𝜋𝑘(𝑇)) − 𝜎𝑗(𝜋𝑘(𝑇)))
2

𝑛−1

𝑘=1

where 𝑤𝑖 is the attribute weight, ∑ 𝑤𝑖 = 1. In practice, this distance could be computed as hamming code distance or
the number of modified digits by using suppression. After creating an equivalent class, the values of its members'
quasi-identifiers will be replaced with their mean value within the class.

Instead of directly computing the remaining utility of each table, we count the percentage of data utility that has

been wasted after sanitization. Let 𝜎𝑖(𝑇′) be the members from the same equivalent class after a sanitization
operation, and 𝜎𝑖(𝑇) be their corresponding original data, then the utility loss 𝑈𝐿 is defined as following:

𝑈𝐿(𝜎𝑖(𝑇), 𝜎𝑖(𝑇′)) = 1 −
𝑑(𝜎𝑖(𝑇′), 𝜎𝑖(�̃�))

𝑑(𝜎𝑖(𝑇), 𝜎𝑖(�̃�))

where �̃̃� stands for the resulting table by sanitizing the initial table 𝑇0 into one equivalent class, �̃̃� = 𝜋(𝑇0).

B. Simulation Results

Figure 7 The number of created equivalent classes by different approaches.

Fig.7 shows the changing pattern of the number of created equivalent classes at each participating nodes during the
table's propagation. Note that, the closer a participating node is to the source, the greater the corresponding table's
utility that is preserved. As Fig.7 shows, the number of equivalent classes decreases along the information
propagation path. However, the reducing speed is not linear. As we have mentioned, the maximum number of
equivalent class is bounded by the number of sensitive values that have the minimum occurrences. Therefore, in the

first hop, TD A and FLA create the same number of equivalent classes. During the propagation, more and more tuples
merge into a larger group, and form a new equivalent class. Since certain approaches may inappropriately put some
tuples into an equivalent class at an earlier time, the creation of equivalent classes with higher privacy-preserving
requirements becomes harder and harder. As a result, they may build less equivalent classes than others at the later
time.

Figure 8 Average utility loss during propagation

The system's overall utility loss is shown by Fig. 8. In this figure, the x-axis indicates the total number of

propagated hops, and the y-axis gives the average utility loss per table. From the figure, we can see that the average
amount of utility loss increases with the growing length of propagations. FLA has the smallest growing speed, while
BUA has the largest one. In general, FLA preserves more data utilities than the other two approaches.

Figure 9 Average privacy of each table

During the table propagation, although all result tables satisfy the same set of privacy requirements, the exact

privacy-preserving values are different. Fig. 9 shows the changing pattern of each tables' privacy values. The
horizontal lines show the increasing privacy requirements. The y-axis represents the privacy-level of each created
table along a propagation path, and we measure the privacy-level by function (T) from section II. In most cases, BUA
preserves more privacy than TDA. Since FLA considers both the current and future privacy requirements, at hop 3 in
Fig. 9, it directly uses the privacy requirement of the fourth hop.

Fig. 10 gives the pattern of utility loss with an increase in privacy-disclosure threshold 𝛿. Note that, in the previous
three simulation, gradually create a serial of tables with increasing privacy-preserving levels: the input at hop 𝑖 is the

output of hop 𝑖 − 1. However, in Fig. 10, we always use the original table 𝑇0 as input, and assign different privacy-
preserving level δ. From the figure, we can see that the amount of utility loss dramatic ally increases at the higher
privacy-preserving threshold (a smaller 𝛿). As we expected, the tables created by BUA loses the most data utility,
since its tuple-merging scheme (at an earlier phase) may cause inappropriate overall clustering results. We can also
find that, at the condition of lower privacy-preserving thresholds, there are no significant differences between the
TDA and FLA. The main reason for this phenomenon is that the members of each class created by these two
approaches are basically similar to each other at the lower thresholds.

Figure 10 Utility lost by different approaches

Finally, we consider the computing complexities of these three methods in Fig. 11. Note that the solution space of

the attribute-level approach is in 𝑂(𝑛2) while that of the tuple-level approaches is in 𝑂(𝑚2), where m is the number
of records, n is the attributes, and 𝑚 ≫ 𝑛. As a result, the computing speed of the attribute-level approach is much
faster than the approaches at a tuple-level. Since the looking forward method uses both bottom-up and top-down
approaches multiple times and creates several tables at different privacy levels, it takes a significant time to find
tuples' merging results.

Figure 11 Computing time at each node

CONCLUSION

Privacy-preserving data publishing is a popular research problem. Based on the unique features of data tables, many

specific approaches have been designed. K-anonymity, l-diversity, and t-closeness are the three well-known

sanitization standards for publishing microdata tables. However, to our best knowledge, all of the existing studies

focus on providing a single level privacy protection via a centralized scheme. Consider that the table's recipients are

not equally trustable, especially on a social network. In this paper, we propose a new research problem: given a source

node and a social path with length l, how are we to sequentially generate l tables, such that their overall utility is

maximized and data privacy is gradually enhanced along the propagation path. For solving the problem, one has to

consider the similarity between individual records, together with the sensitive values' distribution within each

equivalent class. Clearly, the problem is more complex than the conventional optimization problems of K-anonymity

or t-closeness. In this paper, we first design two local algorithms for optimally sanitizing tables with a single privacy-

requirement, and then, we combine these two algorithms together and use a privacy requirement forward looking

scheme: during sanitization, instead of minimizing the utility loss under the current privacy-level, our scheme

considers the sanitization impacts on the future. Extensive simulation results show that our proposed algorithms can

successfully increase the overall data utility, and meet the enhancing privacy-preserving requirements.

REFERENCES

[1] Wu, J., & Wang, Y. (2012). Social feature-based multi-path routing in delay tolerant networks. In Proceedings of

the 31st Annual IEEE International Conference on Computer Communications (pp. 1368-1376). Orlando, Florida,

USA.

[2] Feng, W., & Wang, J. (2012). Incorporating heterogeneous information for personalized tag recommendation in

social tagging systems. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 1276-1284). Beijing, China.
[3] Aiello, L. M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., & Menczer, F. (2012). Friendship prediction
and homophily in social media. ACM Transactions on the Web, 6(2), 9.

[4] Meyerson, A., & Williams, R. (2004). On the complexity of optima l k-anonymity. In Proceedings of the twenty-

third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 223-228). Paris, France

[5] Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 10(5), 557-570.

[6] Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). l-diversity: Privacy beyond k-

anonymity. ACM Transactions on Knowledge Discovery from Data 1(1), 3.

[7] Li, N., Li, T., & Venkatasubramanian S. (2007). t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In

Proceedings of IEEE 23rd International Conference on Data Engineering (pp.106-115). Istanbul, Turkey.

[8] Chawla, S., Dwork, C., McSherry, F., Smith, A. & Wee, H. (2005). Toward privacy in public databases. In J.

Kilian (Ed.) Theory of Cryptography (pp. 363-385). Springer.

[9] Dwork, C. (2011). A firm foundation for private data analysis. Communications of the ACM 54(1), 86-95.

[10] Roth, A., & Roughgarden, T. (2010). Interactive privacy via the median mechanism. In Proceedings of the 42

ACM Symposium on Theory of Computing (pp. 765-774).

[11] Blum, A., Ligett, K., & Roth, A. (2013). A learning theory approach to non-interactive database privacy. Journal

of the ACM 60(2), 12.

[12] Dwork, C. (2006). Differential privacy. Theory of cryptography (pp. 496-502). Springer.

[13] Nissim, K., Smorodinsky, R., & Tennenholtz, M. (2012). Approximately optimal mechanism design via

differential privacy. In Proceedings of the 3rd ACM Innovations in Theoretical Computer Science Conference (pp.

203-213).

[14] Samarati, P. (2001). Protecting respondents identities in microdata release. IEEE Transactions on Knowledge

and Data Engineering, 13(6),1010-1027.

[15] Kisilevich, S., Rokach, L., Elovici, Y., & Shapira, B. (2010). Efficient multidimensional suppression for k-

anonymity. IEEE Transactions on Knowledge and Data Engineering, 22(3), 334-374

[16] Sweeney, L. (2002). Achieving k-anonymity privacy protection using generalization and suppression.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 571-588.

[17] Xiao, X., Tao, Y., & Chen, M. (2009). Optimal random perturbation on at multiple privacy levels. In

Proceedings of the VLDB Endowment (pp. 814-825). Lyon, France.

[18] Li, Y., Chen, M., Li, Q., & Zhang, W. (2012). Enabling multilevel trust in privacy preserving data mining. IEEE

Transactions on Knowledge and Data Engineering, 24(9), 1598-1612

[19] Brickell, J., & Shmatikov, V. (2008). The cost of privacy: destruction of data-mining utility in anonymized data

publishing. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining (pp.70-78), Las Vegas, NV, USA

[20] Li, T., & Li, N. (2009). On the tradeoff between privacy and utility in data publishing. In Proceedings of the

15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp.517-526). Paris, France

[21] Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory,

37(1), 145-151.

[22] Xiao, X., Yi, K., & Tao, Y. (2010). The hardness and approximate on algorithms for l-diversity. In Proceedings

of the 13th ACM International Conference on Extending Database Technology (pp. 135-146). Lausanne, Switzerland

[23] LeFevre, K., DeWitt, D., & Ramakrishnan, R. (2006). Mondrian multidimensional k-anonymity. In Proceedings

of the 22nd IEEE International Conference on Data Engineering. Atlanta, GA, USA

