INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- CHANNEL SELECTION ALCORITHM

SIMULATION

CONCLUSION

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks

Ying Dai, Jie Wu

Department of Computer and Information Sciences, Temple University

MOTIVATION

INTRODUCTION

System Model

- OVERVIEW
- Problem
- FORMULATION STATE
- TRANSITION
- DIAGRAM CHANNEL
- SELECTION ALGORITHM
- SIMULATION
- CONCLUSION

• Spectrum sensing is one of the key phases in Cognitive radio networks (CRNs).

CROWNCOM13

MOTIVATION

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE
- TRANSITION
- Diagram Channel
- Selection Algorithm
- SIMULATION
- CONCLUSION

- Spectrum sensing is one of the key phases in Cognitive radio networks (CRNs).
- Before data transmission happens, each node (secondary user) needs to find one available channel.

MOTIVATION

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE
- TRANSITION
- DIAGRAM
- Channel Selection
- Algorithm Simulation
- CONCLUSION

- Spectrum sensing is one of the key phases in Cognitive radio networks (CRNs).
- Before data transmission happens, each node (secondary user) needs to find one available channel.
- If the channel is unavailable, it needs to adjust its parameters and switch to sense another channel.

MOTIVATION

INTRODUCTION

System Model

OVERVIEW Problem

Formulation State

TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

An example:

CROWNCOM13

MOTIVATION

INTRODUCTION

System Model

OVERVIEW

Problem Formulation

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

An example:

MOTIVATION

INTRODUCTION

System Model

OVERVIEW PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

An example:

Q: How to increase the efficiency for spectrum sensing?

CROWNCOM13

MOTIVATION

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE
- TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

• Before spectrum sensing, choose the channel that is more likely to be available for sensing.

CROWNCOM13

MOTIVATION

INTRODUCTION

- OVERVIEW Problem
- FORMULATION
- STATE TRANSITION
- DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- Before spectrum sensing, choose the channel that is more likely to be available for sensing.
- This is practical with the help of nodes nearby.

MOTIVATION

INTRODUCTION

System Model

- OVERVIEW Problem
- FORMULATION
- STATE TRANSITION
- DIAGRAM
- CHANNEL SELECTION ALCORITHM

SIMULATION

CONCLUSION

- Before spectrum sensing, choose the channel that is more likely to be available for sensing.
- This is practical with the help of nodes nearby.
 - \circ For example, in previous figure, node u is likely to know which channels are more likely to be available by overhearing some information provided by v and w.

INTRODUCTION

System Model

OVERVIEW

- PROBLEM FORMULATION STATE TRANSITION DIAGRAM CHANNEL
- Selection Algorithm
- SIMULATION
- CONCLUSION

• How to choose a channel for sensing for each node at the beginning:

OVERVIEW

OVERVIEW

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION STATE TRANSITION DIAGRAM
- Channel Selection Algorithm

SIMULATION

CONCLUSION

• How to choose a channel for sensing for each node at the beginning:

 \circ "Pre-phase" of spectrum sensing: it happens before the spectrum sensing

OVERVIEW

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION STATE TRANSITION DIAGRAM
- CHANNEL SELECTION ALGORITHM
- SIMULATION
- CONCLUSION

- How to choose a channel for sensing for each node at the beginning:
 - \circ "Pre-phase" of spectrum sensing: it happens before the spectrum sensing
- We propose a sense-in-order (SIO) model for the pre-phase problem:

OVERVIEW

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION STATE TRANSITION DIAGRAM CHANNEL
- Selection Algorithm
- SIMULATION
- CONCLUSION

- How to choose a channel for sensing for each node at the beginning:
 - \circ "Pre-phase" of spectrum sensing: it happens before the spectrum sensing
- We propose a sense-in-order (SIO) model for the pre-phase problem:
 - \circ The order is determined before the spectrum sensing, and is maintained as a list by each node.

OVERVIEW

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION STATE TRANSITION DIAGRAM CHANNEL
- Selection Algorithm
- SIMULATION
- CONCLUSION

- How to choose a channel for sensing for each node at the beginning:
 - \circ "Pre-phase" of spectrum sensing: it happens before the spectrum sensing
- We propose a sense-in-order (SIO) model for the pre-phase problem:
 - \circ The order is determined before the spectrum sensing, and is maintained as a list by each node.
- Each looks up the list and selects a channel for sensing.

OVERVIEW

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION STATE TRANSITION DIAGRAM CHANNEL
- Selection Algorithm
- SIMULATION
- CONCLUSION

- How to choose a channel for sensing for each node at the beginning:
 - \circ "Pre-phase" of spectrum sensing: it happens before the spectrum sensing
- We propose a sense-in-order (SIO) model for the pre-phase problem:
 - \circ The order is determined before the spectrum sensing, and is maintained as a list by each node.
- Each looks up the list and selects a channel for sensing.
 Each node knows the order to sense, which results in a reduction of switches among channels during spectrum sensing.

INTRODUCTION System Model overview

PROBLEM FORMULATION

- A channel is sensed as available if and only if it is neither occupied by primary users nor secondary users.
- Diagram Channel Selection Algorithm

STATE TRANSITION

SIMULATION

CONCLUSION

PROBLEM FORMULATION

- INTRODUCTION System
- Model
- OVERVIEW
- Problem Formulation
- STATE TRANSITION DIAGRAM
- CHANNEL SELECTION ALGORITHM
- SIMULATION
- CONCLUSION

- A channel is sensed as available if and only if it is neither occupied by primary users nor secondary users.
- We define the cost C_v of each node v during the spectrum sensing as the number of switches among channels that are needed until an available one is found.

PROBLEM FORMULATION

- INTRODUCTION SYSTEM
- Model
- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM CHANNEL
- Selection Algorithm
- SIMULATION
- CONCLUSION

- A channel is sensed as available if and only if it is neither occupied by primary users nor secondary users.
- We define the cost C_v of each node v during the spectrum sensing as the number of switches among channels that are needed until an available one is found.
- Objective: Provide an order of channels for sensing so that the cost during the spectrum sensing phase is minimized: Min ∑_{v∈N} C_v.

Sense-in-order Model

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION
- DIAGRAM
- Selection Algorithm
- SIMULATION
- CONCLUSION

• Each node senses the channel when it needs a channel for transmission, and broadcasts the sensing results through common control channel.

CROWNCOM13

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- Each node senses the channel when it needs a channel for transmission, and broadcasts the sensing results through common control channel.
- If the node finds an available channel, it will access that channel.

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- Each node senses the channel when it needs a channel for transmission, and broadcasts the sensing results through common control channel.
- If the node finds an available channel, it will access that channel.
- The node will also broadcast when it accesses and when it quits that channel.

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

The broadcast information can be implemented using the following three signals:

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

The broadcast information can be implemented using the following three signals:

• PO_m : channel *m* is occupied by primary users;

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

The broadcast information can be implemented using the following three signals:

- PO_m : channel m is occupied by primary users;
- SO_m: channel m is free from primary users, but is occupied by the secondary user who sent this signal;

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

Problem Formulation

STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

The broadcast information can be implemented using the following three signals:

- PO_m : channel m is occupied by primary users;
- SO_m: channel m is free from primary users, but is occupied by the secondary user who sent this signal;
- SF_m : Secondary user finishes transmission and quit from channel m.

Sense-in-order Model

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

• Based on the received signals, a node v is able to identify four different states, $S = \{S_i, 1 \le i \le 4\}$, for a channel m.

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- CHANNEL SELECTION ALGORITHM
- SIMULATION
- CONCLUSION

- Based on the received signals, a node v is able to identify four different states, S = {S_i, 1 ≤ i ≤ 4}, for a channel m.
- We use $\langle S_i, m \rangle$ to indicate that channel m is in state S_i :

Sense-in-order Model

- Based on the received signals, a node v is able to identify four different states, $S = \{S_i, 1 \le i \le 4\}$, for a channel m.
 - We use $\langle S_i, m \rangle$ to indicate that channel m is in state S_i :
 - $\circ < S_1, m >: m$ is occupied by primary users;

 $\circ < S_2, m >: m$ is not occupied by primary users, but is occupied by the secondary user;

 $\circ < S_3, m >$: the secondary user previously using m has finished transmission and quit from m;

 $\circ < S_4, m >:$ no signal is received about m.

INTRODUCTION System

Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

CHANNEL SELECTION ALGORITHM

SIMULATION

CONCLUSION

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

CHANNEL SELECTION ALGORITHM

SIMULATION

CONCLUSION

• The four states are maintained on each node itself.

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- CHANNEL SELECTION ALCORITHM
- SIMULATION
- CONCLUSION

- The four states are maintained on each node itself.
- For $< S_1, m >$, node v is not sure about whether the primary users have finished transmission on m if no other sensing results are received from other nodes.

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- The four states are maintained on each node itself.
- For $< S_1, m >$, node v is not sure about whether the primary users have finished transmission on m if no other sensing results are received from other nodes.
- For $< S_2, m >$, node v should avoid sensing m until v receives the signal SF_m .

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- The four states are maintained on each node itself.
- For $< S_1, m >$, node v is not sure about whether the primary users have finished transmission on m if no other sensing results are received from other nodes.
- For $< S_2, m >$, node v should avoid sensing m until v receives the signal SF_m .
- For $< S_3, m >$, node v should assign higher probabilities for selecting m to sense.

Sense-in-order Model

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- The four states are maintained on each node itself.
- For $< S_1, m >$, node v is not sure about whether the primary users have finished transmission on m if no other sensing results are received from other nodes.
- For $< S_2, m >$, node v should avoid sensing m until v receives the signal SF_m .
- For $< S_3, m >$, node v should assign higher probabilities for selecting m to sense.
- For $< S_4, m >$, v is not sure about the availability of m either.

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION DIAGRAM

CHANNEL SELECTION ALGORITHM

SIMULATION

CONCLUSION

• Each node changes among the four states based on the signal it receives.

Sense-in-order Model

- INTRODUCTION
- System Model
- OVERVIEW
- Problem Formulation
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

• Each node changes among the four states based on the signal it receives.

Sense-in-order Model

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION
- DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

• How does each node define preferences on different channels:

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION
- DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

${\small Sense-in-order} {\small \ Model}$

- How does each node define preferences on different channels:
- Each node divides the whole channel set into four (at most) different subsets, based on the state of each channel.

INTRODUCTION

System Model

- OVERVIEW
- Problem Formulation
- STATE TRANSITION
- DIAGRAM
- CHANNEL SELECTION ALGORITHM
- SIMULATION
- CONCLUSION

Sense-in-order Model

- How does each node define preferences on different channels:
- Each node divides the whole channel set into four (at most) different subsets, based on the state of each channel.

 \circ For node v, the whole channel set M is divided into four subsets $M_v(S_i), \ 1 \leq i \leq 4.$

 \circ If channel $m \in M_v(S_i),$ channel m is identified as state S_i by node v.

INTRODUCTION

System Model

- OVERVIEW
- PROBLEM FORMULATION
- STATE TRANSITION
- DIAGRAM
- CHANNEL SELECTION ALGORITHM
- SIMULATION

CONCLUSION

${\small Sense-in-order} {\small \ Model}$

- How does each node define preferences on different channels:
- Each node divides the whole channel set into four (at most) different subsets, based on the state of each channel.

 \circ For node v, the whole channel set M is divided into four subsets $M_v(S_i), \ 1 \leq i \leq 4.$

 \circ If channel $m \in M_v(S_i),$ channel m is identified as state S_i by node v.

• The probability of each channel to be chosen for sensing is:

$$p_v^m = \begin{cases} \frac{t_m}{\sum_{m_0 \in M_v(S_1)} t_{m_0}} \times P_v(S_1) & m \in M_v(S_1) \\\\ 0 & m \in M_v(S_2) \\\\ \frac{T - t_m}{\sum_{m_0 \in M_v(S_3)} (T - t_{m_0})} \times P_v(S_3) & m \in M_v(S_3) \\\\ \frac{P_v(S_4)}{|M_v(S_4)|} & m \in M_v(S_4) \end{cases}$$

Sense-in-order Model

INTRODUCTION

System Model

- OVERVIEW PROBLEM FORMULATION
- STATE TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

The overall structure of our algorithm for a node v is:

• v updates the state of each channel based on the received signal;

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW PROBLEM FORMULATION STATE

TRANSITION DIAGRAM CHANNEL

SELECTION ALGORITHM

SIMULATION

CONCLUSION

The overall structure of our algorithm for a node v is:

- v updates the state of each channel based on the received signal;
- When v needs to transmit data, it calculates the probability of each channel to be chosen and selects one channel to sense until it finds an available one;

Sense-in-order Model

INTRODUCTION

System Model

OVERVIEW PROBLEM FORMULATION STATE TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

The overall structure of our algorithm for a node v is:

- v updates the state of each channel based on the received signal;
- When v needs to transmit data, it calculates the probability of each channel to be chosen and selects one channel to sense until it finds an available one;
- v shares its sensing results with others and sends out the corresponding signal when it accesses and quits that channel.

SIMULATION RESULTS

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE TRANSITION

DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

We evaluate our algorithm performance by varying different parameters, including both network parameters and algorithm parameters.

(a) change W_4/W_1

(b) change W_3/W_4

CONCLUSION

INTRODUCTION

- OVERVIEW
- PROBLEM FORMULATION
- STATE
- TRANSITION DIAGRAM
- Channel Selection Algorithm
- SIMULATION
- CONCLUSION

- We consider the pre-phase of spectrum sensing, which focus on how to choose a channel for sensing for each node in cognitive radio networks (CRNs).
- We propose an SIO model, which constructs a state transition diagram and a corresponding algorithm for each node to calculate the probability of each channel being chosen for sensing.
- Extensive simulation results testify the efficiency of our model.

INTRODUCTION

System Model

OVERVIEW

PROBLEM FORMULATION

STATE

TRANSITION DIAGRAM

Channel Selection Algorithm

SIMULATION

CONCLUSION

Thank you!