

On Balancing Middlebox Set-up Cost and Bandwidth Consumption in NFV

Jie Wu
Center for Networked Computing
Temple University, USA

Roadmap

- 1. Introduction of Middlebox
- 2. Middlebox Placement Problems
- 3. Traffic Changing Effects
- 4. Our Model and Solutions
- 5. Simulation
- 6. Conclusion and Future Work



1. Introduction of Middlebox

- Network Function Virtualization (NFV)
 - Technology of virtualizing network functions into software building blocks
- Middlebox: software implementation of network services
 - Improve the network performance:
 - Web proxy and video transcoder, load balancer, ...
 - Enhance the security:
 - Firewall, IDS/IPS, passive network monitor, ...

Examples

Middlebox Dependency Relations [1]

- Multiple middleboxes may/may not have a serving order
 - Examples
 - Firewall usually before Proxy
 - Virus scanner either before or after NAT gateway
- Categories
 - Non-ordered middlebox set
 - Totally-ordered middlebox set (service chain)

Partially-ordered middlebox set

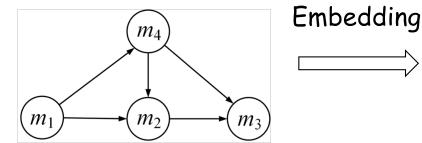
[1] Dynamic Service Function Chaining in SDN-Enabled Networks with Middleboxes (ICNP '16)

2. Middlebox Placement Problems

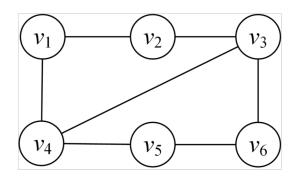
• Graph embedding [2]

• Middlebox graph, G_m , of multiple service chains that needs to be embedded in a give network graph, $G_{n.}$

Virtual network



Physical network

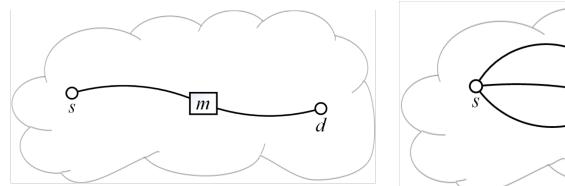


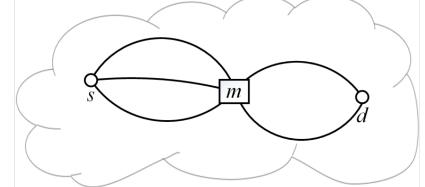
[2] Charting the Complexity Landscape of Virtual Network Embedding (IFIP '18)

Middlebox Placement Problems (cont'd)

• Graph flow routing [3]

• Shortest path or maximum flow between a given source and destination that have to go through a given middlebox in G_n .





[3] Provably Efficient Algorithms for Joint Placement and Allocation of Virtual Network Functions (INFOCOM '17)

Middlebox Placement Problem (cont'd)

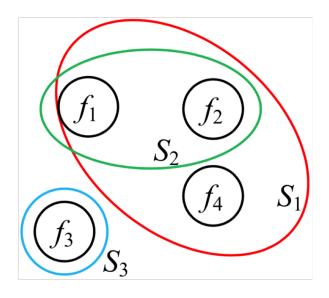
- Facility allocation [4]
 - Optimal placement of facilities (i.e., middlebox) to minimize transportation costs (i.e., traffic, including detour traffic from flows to middleboxes).
- Cost Setup cost f_2 Communication cost f_1
- Objective
 - Minimizing sum of middlebox setup cost and communication cost

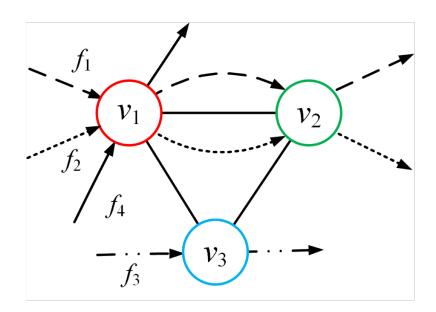
[4] Near Optimal Placement of Virtual Network Functions (INFOCOM '15)

Middlebox Placement Problems (cont'd)

Set covering

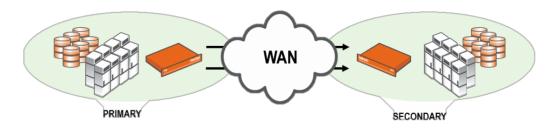
- Minimize the number of middleboxes used to cover all flows.
- NP-hard





3. Traffic Changing Effects [5]

- Middleboxes may change flow rates in different ways
 - Citrix CloudBridge WAN accelerator: 20% (diminishing)

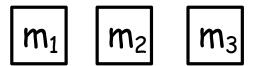


BCH(63,48) encoder: 130% (expanding)

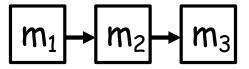
Objetive: minimizing total traffic

Service Chain Models

- Objective
 - Minimizing the total bandwidth consumption
- Solutions
 - Consider traffic-changing effects
 - Place middleboxes for a single flow



Non-ordered
(Optimal greedy: sort
traffic-changing ratios
in increasing order)



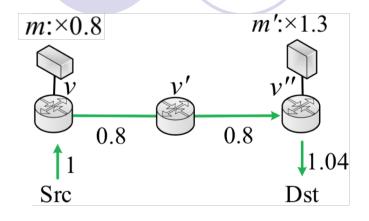
Totally-ordered (Optimal DP: latter middleboxes must be after front ones)

Partially-ordered (NP-hard: reduced from the Clique Problem)

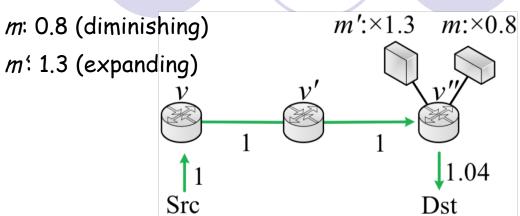
4. Our Model and Solutions

- Problem
 - Placing middleboxes to satisfy all flows' network service requests
- Network service requests
 - Multiple middleboxes
 - Middlebox set with or without dependency relations
- Cost
 - Middlebox setup
 - Sum of middlebox setup cost (amortized over a period of time)
 - Bandwidth consumption
 - Sum of each flow's bandwidth consumption cost on each link
- Objective
 - Minimizing total cost of middlebox setup and bandwidth consumption

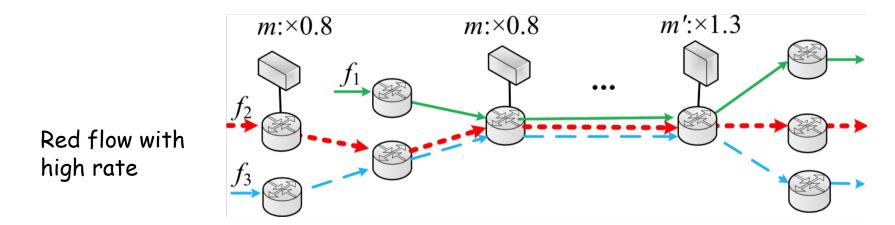
A Motivating Example



Independent middleboxes



Dependent middleboxes: m' before m



A flow covered by multiple middleboxes

(When additional setup cost is less than the reduced bandwidth consumption)

Problem Formulation

Middlebox setup cost

$$c_1 = \sum_{m \in M} \sum_{v \in V} c_m$$

- c_m : unit setup cost of middlebox m
- Bandwidth consumption cost

$$c_2 = \sum_{f \in F} \sum_{e \in p_f} w(b_f^e)$$

• $w(b_f^e)$: bandwidth cost function of flow f on link e

$$b_f^e = r_f \prod_m \lambda_m$$

- r_f: initial traffic rate of flow f
- λ_m : traffic-changing ratio of middlebox m

Objective

Minimizing c₁+c₂

Problem Formulation (cont'd)

Translog bandwidth cost function on each link^[6]

$$w(b_f^e) = \log(b_f^e) = \log(r_f \prod \lambda_m) = \log(r_f) + \sum \log(\lambda_m)$$

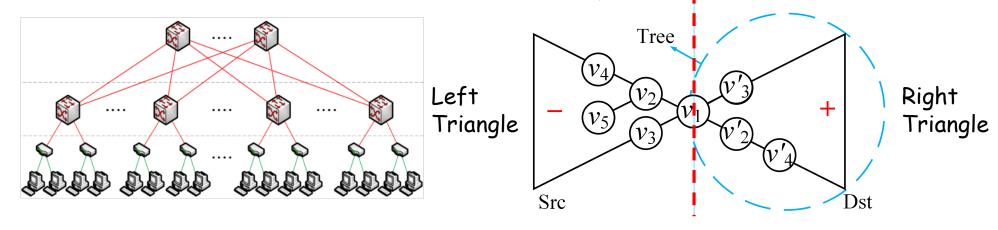
- Reasons
 - Widely used in Cisco EIGRP and OSPF protocols
 - Log-linear for easy calculation
- The weight of setup cost and bandwidth consumption
 - Adjusting the traffic-changing ratios and unit setup costs of middleboxes

Overview

- Optimal solutions for homogeneous flows
 - Single middlebox
 - Greedy
 - Non-ordered middlebox set
 - Greedy
 - Totally-ordered middlebox set
 - Dynamic Programming
- Performance-guaranteed solution for heterogeneous flows

Topology Structure

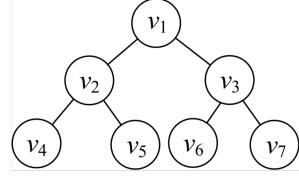
We focus on tree-structured topologies



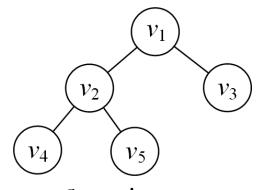
Tree-based data centers

Double-tree structure

Each triangle is mostly a perfect or complete tree



Perfect tree



Complete tree

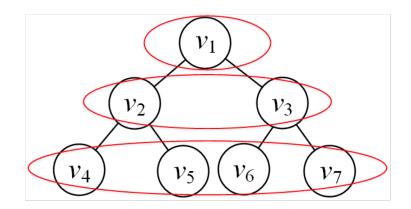
Placing a Single Middlebox

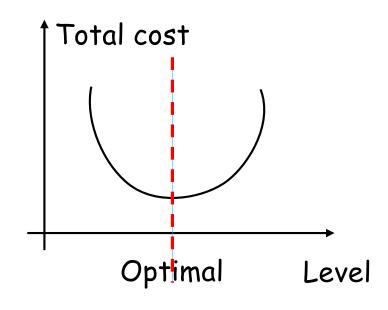
Solution

Local Greedy Algorithm (LGA)

Steps

- Calculate the total cost of placing middleboxes in a level
- Select the level with the minimum total cost
- Convex function: sufficient to select the local minimum





Placing a Single Middlebox (cont'd)

Time complexity (|V|: #node)

O(|V|) (O(log|V| for perfect tree)

Optimal for perfect tree topologies

- Symmetry of placement
- No multiple "coverage" situation

Also optimal for complete tree topologies

Also no multiple "coverage" situation

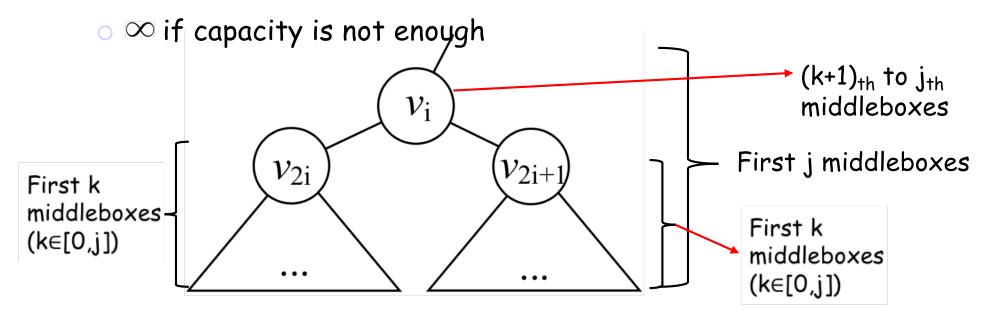
Placing Multiple Middleboxes

Non-ordered middlebox set placement

- Solution
 - Combined Local Greedy Algorithm (CLGA)
- Insight
 - Place each middlebox independently by applying LGA
- Time complexity (|V|: #node, |M|: #middlebox)
 - O(|M| |V|) or O(|M|log|V|)
- Optimal for perfect and complete trees

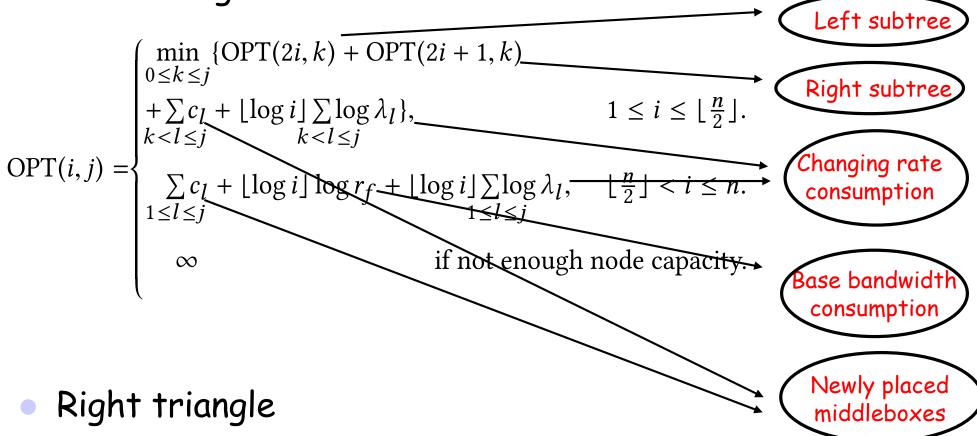
Totally-ordered Middlebox Set Placement

- Solution: Dynamic Programming (DP)
- Works for infinite and finite vertex capacity
- OPT(i, j)
 - Minimum cost of subtree with root v_i when placing first j middleboxes in the set



Dynamic Programming Formulation

Left triangle



Similar to the left triangle's formulation

Totally-ordered Middlebox Set Placement (cont'd)

Insights

 The optimal placement with root v_i by placing first j and its two subtrees by placing no more than j middleboxes

Perfect tree

- Transformed to a line
- Similar to a single flow placement

Complete tree

No multiple "coverage" situation

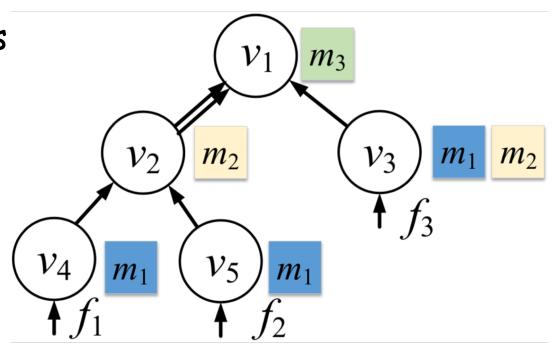
Time complexity (|V|: #node, |M|:#middlebox)

• $O(|M|^3 |V|)$ or $O(|M|^3 \log |V|)$

An Example

	m ₁	m ₂	m ₃
Traffic-changing ratio	0.5	0.8	1.1
Setup cost	0.2	0.4	0.3

- Dependency relations
 - $m_1->m_2->m_3$
- Initial traffic rate
 - $r_1=r_2=r_3=1$

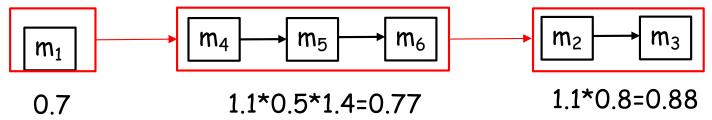


Partially-ordered Middlebox Set Placement

- NP-hard even for a single flow [2]
- One heuristic solution
 - Insight
 - Transform into a totally-ordered middlebox set
 - \circ Steps (λ : traffic-changing ratio)
 - Treat middleboxes with dependencies as a single middlebox
 - ullet Sort middleboxes in increasing order of λ
 - Example
 - Middlebox set

	m_1	m_2	m_3	m_4	m ₅	m ₆
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m₂ -> m₃, m₄ -> m₅-> m₆



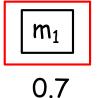
[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM '17)

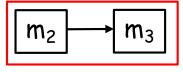
Partially-ordered Middlebox Set Placement (cont'd)

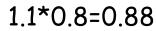
- Another heuristic solution
 - Insight
 - Transform into a non-ordered middlebox set
 - Steps
 - Treat middleboxes with dependencies as a single middlebox by a topological order
 - No dependency relations among new middleboxes
 - Example
 - Middlebox set

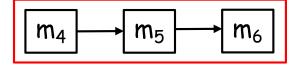
	m_1	m ₂	m ₃	m ₄	m ₅	m ₆
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m₂ -> m₃, m₄ -> m₅-> m₆





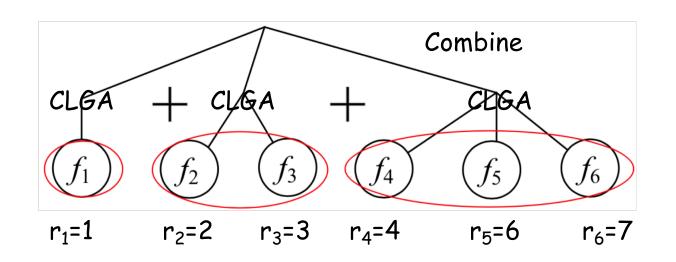




1.1*0.5*1.4=0.77

Handling Heterogeneous flows for Non-ordered Middlebox Set

- Group Flows by Initial Bandwidths (GFIB)
 - Group flows by initial traffic rates (r_f: f's traffic rate)
 - #group: $\lfloor \log_2 \frac{\max r_f}{\min r_f} \rfloor + 1$
 - The traffic rate range of the ith group: $2^{i-1} imes \min r_f \leq r_f < 2^i imes \min r_f$
 - Treat flows in each group as homogeneous
 - Apply CLGA for each group
- An example



max r_f= 7 min r_f= 1 Group 1: [1,2) Group 2: [2,4) Group 3: [4,8)

Handling Heterogeneous Flows for Non-ordered Middlebox Set (cont'd)

Time complexity

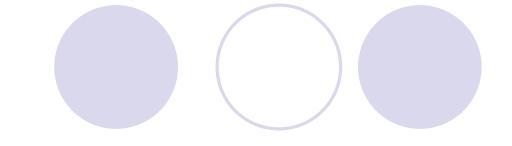
$$\max\{O(|V|\log|V|)\,,O(|V|(\left\lfloor\log_2\frac{\max r_f}{\min r_f}\right\rfloor+1))\}$$

- Performance-guaranteed algorithm
 - Approximation ratio [6]: $\left[\log_2 \frac{\max r_f}{\min r_f}\right] + 1$

4. Simulation

- Our algorithms
 - LGA
 - Single middlebox
 - Select the level with the minimum cost
 - CLGA
 - Non-ordered middlebox set
 - Apply LGA independently
 - o DP
 - Totally-ordered middlebox set
 - Dynamic programming
 - GFIB
 - Heterogeneous flows
 - Group flows by initial traffic rates
 - Combine placement by applying CLGA for each group

5. Simulation



- Comparison algorithms
 - Random-fit
 - Randomly place middleboxes until all flows are satisfied
 - NOSP [2]
 - For single middlebox or non-ordered middlebox set
 - Place middleboxes for each flow independently
 - TOSP [2]
 - For totally-ordered middlebox set with or without vertex capacity
 - Dynamic programming based algorithm for each flow independently

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM '17)

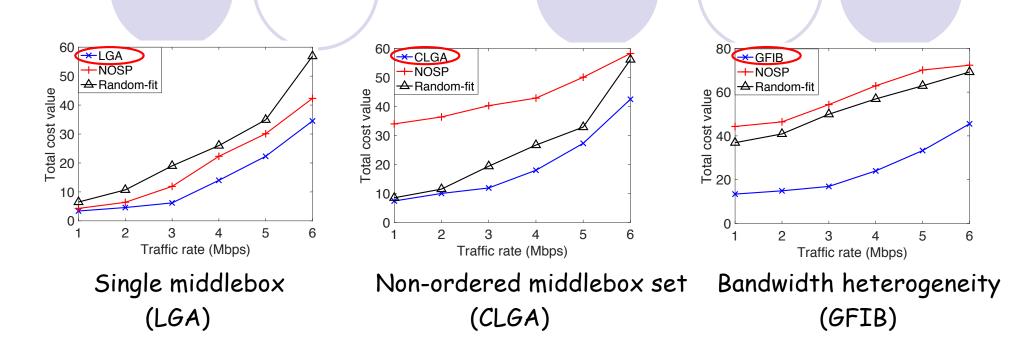
Settings

- Topology
 - Perfect 5-layer binary tree for each triangle
- Facebook data center traffic trace
 - Single-flow initial traffic rate: 1~6 Mb
- Middlebox set

	m ₁	m ₂	m ₃	m ₄
Traffic-changing ratio	0.7	0.8	1.1	1.2
Set-up cost	0.4	0.6	0.2	0.8

- Dependency relationship
 - $om_2 -> m_3 -> m_1 -> m_4$

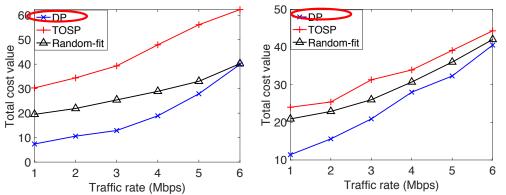
Simulation Results



- LGA costs 20.3% less than NOSP and 35.1% less than Random-fit.
- CLGA performs the best even with heavy traffic.
- For heterogeneous flows, GFIB saves about 36.9% and 34.0% compared to NOSP and Random-fit.

Simulation Results (cont'd)

Totally-ordered middlebox set with (2) and without vertex capacity



Totally-ordered middleboxes	Total cost	Set-up cost
$m_2 \rightarrow m_3 \rightarrow m_1 \rightarrow m_4$	20.9	10.4
$m_3 \rightarrow m_1 \rightarrow m_2 \rightarrow m_4$	23.7	12.0
$m_1 \rightarrow m_4 \rightarrow m_3 \rightarrow m_2$	22.8	9.6
$m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4$	11.9	4.4
$m_4 \rightarrow m_3 \rightarrow m_2 \rightarrow m_1$	24.7	10.2

Without vertex capacity With vertex capacity

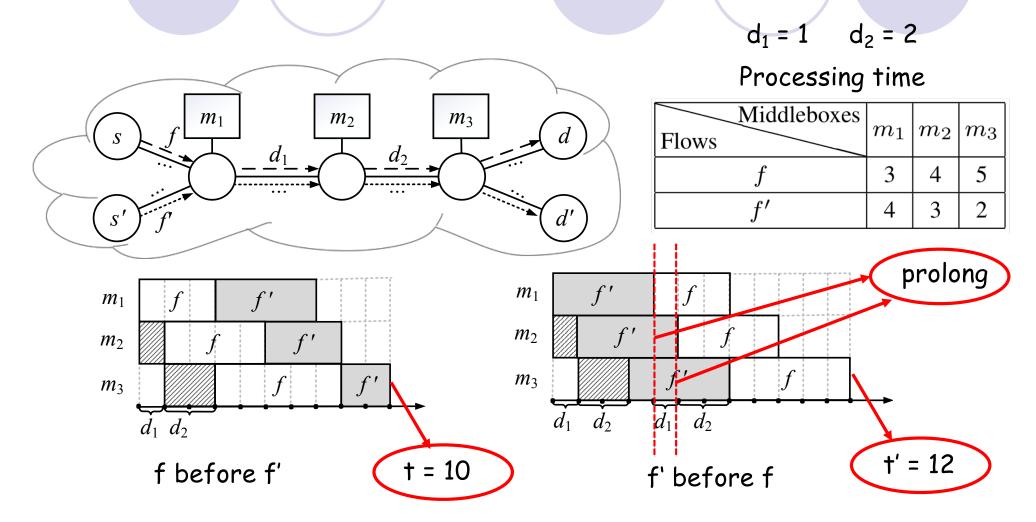
Middlebox order effect at 3 Mbps (DP)

- The total cost is larger than the non-ordered middlebox set.
- Limited vertex capacity increases the minimum cost.

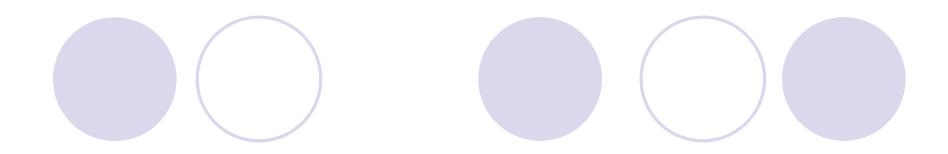
5. Conclusion and Future Work

- Middlebox constraints
 - Traffic-changing effects, dependency relations, and flow sharing
- Middlebox placement
 - Balancing middlebox set-up cost and bandwidth consumption
- Tree-structured topologies
 - Optimal algorithms for homogeneous flows
 - Performance-guaranteed algorithm for heterogeneous flows
- Future work
 - General tree-structure and other topologies

Future Work: Other Chain Models



- Minimizing the makespan (similar to flow shop)
- Minimizing the average completion time

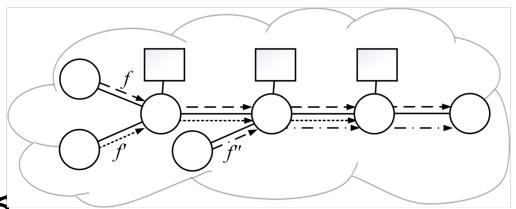


Q&A

- Y. Chen and J. Wu, "NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption," *Proc of ICPP*, August 13-16, 2018.
- Y. Chen, J. Wu, and B. Ji, "Virtual Network Function Deployment in Tree-structured Networks," *Proc. of ICNP*, September 24-27, 2018.

Other Service Chain Models

One box with different volumes/costs



Solutions

Type Topo	Het	erogeneous (NP-hard)	Homogeneous		
Tree	DP	P Optimal		Optimal	
		$O(V ^4 \times (c_{max} \times w_{max})^3)$		$O(V ^4 \times (c_{max})^3)$	
Line	Greedy	Approximate	Greedy	Optimal	
		$O(V ^2 \times M \times c_{max})$		$O(V \times c_{max})$	

V: set of vertices

M: set of box types (<10)

 c_{max} : Max box number per vertex (<30) w_{max} : Max box cost scale (tunable)