

On Balancing Middlebox Set-up Cost and Bandwidth Consumption in NFV

Jie Wu (PhD student: Yang Chen) Center for Networked Computing Temple University, USA

1. Introduction of Middlebox

- Network Function Virtualization (NFV)
 - Technology of virtualizing network functions into software building blocks
- Middlebox: software implementation of network services
 - Improve the network performance:
 - Web proxy and video transcoder, load balancer, ...
 - Enhance the security:
 - Firewall, IDS/IPS, passive network monitor, ...
- Examples

Middlebox Dependency Relations [1]

- Multiple middleboxes may/may not have a serving order
 - Examples
 - Firewall usually before Proxy
 - Virus scanner either before or after NAT gateway
- Categories
 - Non-ordered middlebox set
 - Totally-ordered middlebox set (service chain)

Partially-ordered middlebox set

Middlebox Traffic Changing Effects [2]

- Middleboxes may change flow rates in different ways
 - Citrix CloudBridge WAN accelerator: 20% (diminishing)

BCH(63,48) encoder: 130% (expanding)

Middlebox Placement Overview

- Problem
 - Placing middleboxes to satisfy all flows' middlebox service requests
- Objectives:
 - Minimizing middlebox setup cost [3]
 - Minimizing bandwidth consumption [2]
- Constraints
 - Dependency relations
 - Traffic-changing effects
 - Vertex capacity and middlebox processing volume

- [2] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)
- [3] Provably Efficient Algorithms for Joint Placement and Allocation of Virtual Network (INFOCOM '17)

A Middlebox Placement Model [4]

Cost

- Objective
 - Minimizing sum of middlebox setup cost and communication cost
- Two special cases
 - Facility location problem
 - Single middlebox placement
 - Generalized assignment problem
 - Each middlebox has a limited processing volume
 - Placing middleboxes and assigning to flows

A Service Chain Model [2]

- Objective
 - Minimizing the total bandwidth consumption
- Solutions
 - Consider traffic-changing effects
 - Place middleboxes for a single flow

Non-ordered
(Optimal greedy: sort
traffic-changing ratios
in increasing order)

Totally-ordered (Optimal DP: latter middleboxes must be after front ones)

Partially-ordered (NP-hard: reduced from the Clique Problem)

2. Our Model

- Problem
 - Placing middleboxes to satisfy all flows' network service requests
- Network service requests
 - Multiple middleboxes
 - Middlebox set with or without dependency relations
- Cost
 - Middlebox setup
 - Sum of middlebox setup cost
 - Bandwidth consumption
 - Sum of each flow's bandwidth consumption cost on each link
- Objective
 - Minimizing total cost of middlebox setup and bandwidth consumption

A Motivating Example

Independent middleboxes

Dependent middleboxes: m' before m

A flow covered by multiple middleboxes

(Multiple coverage: when additional setup cost is less than the reduced bandwidth consumption cost)

3. Problem Formulation

Middlebox setup cost

$$^{\circ} c_1 = \sum_{m \in M} \sum_{v \in V} c_m$$

- cm: unit setup cost of middlebox m
- Bandwidth consumption cost

$$\circ c_2 = \sum_{f \in F} \sum_{e \in p_f} w(b_f^e)$$

w(bfe): bandwidth cost function of flow f on link e

$$b_f^e = r_f \prod_m \lambda_m$$

- rf: initial traffic rate of flow f
- ullet λ_m : traffic-changing ratio of middlebox m
- Objective
 - Minimizing c1+c2

Problem Formulation (cont'd)

Translog bandwidth cost function on each link

$$w(b_f^e) = \log(b_f^e) = \log(r_f \prod \lambda_m) = \log(r_f) + \sum \log(\lambda_m)$$

- Reasons
 - Widely used in Cisco EIGRP and OSPF protocols
 - Log-linear for easy calculation
- The weight of setup cost and bandwidth consumption
 - Adjusting the traffic-changing ratios and unit setup costs of middleboxes

Problem Complexity

NP-hard

- Even with no traffic-changing effects
- Even when placing a single middlebox

Proof

- Reduction from set-cover problem
- Use minimum number of middleboxes to "cover" all flows
 - Flows as elements: F= {f1,f2,..., f|F|}
 - Placed middleboxes as sets: {S1, S2,...}
 - $S_1=\{f_1, f_2, f_4\}, S_2=\{f_1, f_2\}, S_3=\{f_3\}$

Problem Complexity (cont'd)

In this paper, we focus on tree-structured topologies

Tree-based data centers

Hierarchical data centers

Each triangle is mostly a perfect or complete tree

Perfect tree

Complete tree

4. Placing a Single Middlebox

Solution

Local Greedy Algorithm (LGA)

Steps

- Calculate each total cost of placing middleboxes in a whole level
- Select the level with the minimum total cost
- Iterative implementation
 - From top level to bottom, total costs will decrease and then increase
 - Select the level with the local minimum

4. Placing a Single Middlebox (cont'd)

Time complexity (|V|: #node)

O(|V|)

Optimal for perfect tree topologies

- Symmetry of placement
- No multiple "coverage" situation

Also optimal for complete tree topologies

- Also multiple "coverage" situation
- The most unbalanced traffic distribution: left and right subtrees of root have a depth difference of 1

Illustration

Calculate level by level

5. Placing Multiple Middleboxes

Non-ordered middlebox set placement

- Solution
 - Combined Local Greedy Algorithm (CLGA)
- Insight
 - Place each middlebox independently by applying LGA
- Time complexity (|V|: #node, |M|: #middlebox)
 - O(|V||M|)
- Optimal for complete trees

Totally-ordered Middlebox Set Placement

- Solution: Dynamic Programming (DP)
- Works for infinite and finite vertex capacity
- OPT(i, j)
 - Minimum cost of subtree with root vi when placing first j middleboxes in the set

Dynamic Programming Formulation

Left triangle

- Right triangle
 - Similar to the left triangle's formulation

An Example

	m ₁	m 2	m 3
Traffic-changing ratio	0.5	0.8	1.1
Setup cost	0.2	0.4	0.3

Dependency relations

o m1->m2->m3

Initial traffic rate

 $or_1=r_2=r_3=1$

Totally-ordered Middlebox Set Placement (cont'd)

Insights

 The optimal placement with root vi by placing first j and its two subtrees by placing no more than j middleboxes

Perfect tree

- Transformed to a line
- Similar to a single flow placement

Complete tree

No multiple "coverage" situation

Time complexity (|V|: #node, |M|:#middlebox)

 $O(|V||M|^3)$

Partially-ordered Middlebox Set Placement

- NP-hard even for a single flow [2]
- One heuristic solution
 - Insight
 - Transform into a totally-ordered middlebox set
 - Steps (λ : traffic-changing ratio)
 - Treat middleboxes with dependencies as a single middlebox
 - ullet Sort middleboxes in increasing order of λ

Example

Middlebox set

	1					m 6
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m2 -> m3, m4 -> m5-> m6

Partially-ordered Middlebox Set Placement (cont'd)

- Another heuristic solution
 - Insight
 - Transform into a non-ordered middlebox set
 - Steps
 - Treat middleboxes with dependencies as a single middlebox by a topological order
 - No dependency relations among new middleboxes
 - Example
 - Middlebox set

					m 5	
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m2 -> m3, m4 -> m5-> m6

6. Handling Heterogeneous flows for Non-ordered Middlebox Set

- Group Flows by Initial Bandwidths (GFIB)
 - Group flows by initial traffic rates (rf: f's traffic rate)
 - #group: $\lfloor \log_2 \frac{\max r_f}{\min r_f} \rfloor + 1$
 - The traffic rate range of the ith group: $2^{i-1} \times \min r_f \le r_f < 2^i \times \min r_f$
 - Treat flows in each group as homogeneous
 - Apply CLGA for each group
- An example

max r_f= 7 min r_f= 1 Group 1: [1,2) Group 2: [2,4) Group 3: [4,8)

6. Handling Heterogeneous Flows for Non-ordered Middlebox Set (cont'd)

Time complexity

$$\max\{O(|V|\log|V|), O(|V|(\left\lfloor\log_2\frac{\max r_f}{\min r_f}\right\rfloor+1))\}$$

- Performance-guaranteed algorithm
 - O Approximation ratio [5]: $\left[\log_2 \frac{\max r_f}{\min r_f}\right] + 1$

7. Simulation

- Our algorithms
 - LGA
 - Single middlebox
 - Select the level with the minimum cost
 - CLGA
 - Non-ordered middlebox set
 - Apply LGA independently
 - O DP
 - Totally-ordered middlebox set
 - Dynamic programming
 - GFIB
 - Heterogeneous flows
 - Group flows by initial traffic rates
 - Combine placement by applying CLGA for each group

7. Simulation

- Comparison algorithms
 - Random-fit
 - Randomly place middleboxes until all flows are satisfied
 - NOSP [2]
 - Place middleboxes in increasing order of traffic-changing effects for each flow from source to destination independently
 - For single middlebox or non-ordered middlebox set
 - O TOSP [2]
 - Dynamic programming based algorithm for each flow independently
 - For totally-ordered middlebox set with or without vertex capacity

Settings

- Topology
 - Perfect 5-layer binary tree for each triangle
- Facebook data center traffic trace
 - Single-flow initial traffic rate: 1~6 Mb
- Middlebox set

	m ₁	m 2	m 3	m 4
Traffic-changing ratio	0.7	0.8	1.1	1.2
Setup cost	0.4	0.6	0.2	0.8

- Dependency relationship
 - 0 m2 -> m3 -> m1 -> m4

Simulation Results

Single middlebox (LGA)

Non-ordered middlebox set (CLGA)

Bandwidth heterogeneity (GFIB)

- LGA costs 20.3% less than NOSP and 35.1% less than Random-fit.
- CLGA performs the best even with heavy traffic.
- The performance of Random-fit is not steady.
- For heterogeneous flows, GFIB saves about 36.9% and 34.0% compared to NOSP and Random-fit.

ion Results (cont'd)

Totally-ordered middlebox set

Totally-ordered middleboxes	Total cost	Set-up cost
$m_2 \rightarrow m_3 \rightarrow m_1 \rightarrow m_4$	20.9	10.4
$m_3 \rightarrow m_1 \rightarrow m_2 \rightarrow m_4$	23.7	12.0
$m_1 \rightarrow m_4 \rightarrow m_3 \rightarrow m_2$	22.8	9.6
$m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4$	11.9	4.4
$m_4 \rightarrow m_3 \rightarrow m_2 \rightarrow m_1$	24.7	10.2

Without vertex capacity With vertex capacity

Middlebox order effect at 3 Mbps (DP)

- The total cost is larger than the non-ordered middlebox set.
- Limited vertex capacity increases the minimum cost.
- The order of a middlebox set matters not only for total cost but also for set-up cost.

8. Conclusion and Future Work

- Middlebox constraints
 - Traffic-changing effects
 - Dependency relations
 - Flow sharing
- Middlebox placement
 - Balancing middlebox set-up cost and bandwidth consumption
- Tree-structured topologies
 - Optimal algorithms for homogeneous flows
 - Performance-guaranteed algorithm for heterogeneous flows
- Future work
 - General tree-structures

Other Service Chain Models

- Minimizing the makespan
- Minimizing the average completion time

Q&A