On Balancing Middlebox Set-up Cost and Bandwidth Consumption in NFV

Jie Wu

(PhD student: Yang Chen)
Center for Networked Computing
Temple University, USA

1. Introduction of Middlebox

- Network Function Virtualization (NFV)
- Technology of virtualizing network functions into software building blocks
- Middlebox: software implementation of network services
- Improve the network performance:
- Web proxy and video transcoder, load balancer, ...
- Enhance the security:
- Firewall, IDS/IPS, passive network monitor, ...
- Examples

Firewall

NAT

Middlebox Dependency Relations ${ }^{[1]}$

Multiple middleboxes may/may not have a serving order
Examples

- Firewall usually before Proxy
- Virus scanner either before or after NAT gateway

Categories

- Non-ordered middlebox set
- Totally-ordered middlebox set (service chain)

- Partially-ordered middlebox set

Middlebox Traffic Changing Effects ${ }^{[2]}$

- Middleboxes may change flow rates in different ways
- Citrix CloudBridge WAN accelerator: 20\% (diminishing)

$\mathrm{BCH}(63,48)$ encoder: 130% (expanding)
Data Checksum

1	0	1	1	1	0	1	0

Middlebox Placement Overview

- Problem
- Placing middleboxes to satisfy all flows' middlebox service requests
- Objectives:
- Minimizing middlebox setup cost ${ }^{[3]}$
- Minimizing bandwidth consumption ${ }^{[2]}$
- Constraints
- Dependency relations
- Traffic-changing effects
- Vertex capacity and middlebox processing volume
[2] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)
[3] Provably Efficient Algorithms for Joint Placement and Allocation of Virtual Network (INFOCOM '17)

A Middlebox Placement Model [4]

- Cost
- Objective Setup cost
- Minimizing sum of middlebox setup cost and communication cos \dagger
- Two special cases
- Facility location problem
- Single middlebox placement
- Generalized assignment problem
- Each middlebox has a limited processing volume
- Placing middleboxes and assigning to flows

A Service Chain Model [2]

- Objective
- Minimizing the total bandwidth consumption
- Solutions
- Consider traffic-changing effects
- Place middleboxes for a single flow

Non-ordered
(Optimal greedy: sort
traffic-changing ratios in increasing order)

Totally-ordered (Optimal DP: latter middleboxes must be after front ones)

Partially-ordered
(NP-hard: reduced from the Clique Problem)

2. Our Model

Problem

- Placing middleboxes to satisfy all flows' network service requests
- Network service requests
- Multiple middleboxes
- Middlebox set with or without dependency relations
- Cost
- Middlebox setup
- Sum of middlebox setup cost
- Bandwidth consumption
- Sum of each flow's bandwidth consumption cost on each link
- Objective
- Minimizing total cost of middlebox setup and bandwidth consumption

A Motivating Example

Independent middleboxes

Dependent middleboxes: m ' before m

Red flow with high rate

A flow covered by multiple middleboxes
(Multiple coverage: when additional setup cost is less than the reduced bandwidth consumption cost)

3. Problem Formulation

Middlebox setup cos \dagger

$$
c_{1}=\sum_{m \in M} \sum_{v \in V} c_{m}
$$

- c_{m} : unit setup cost of middlebox m
- Bandwidth consumption cost
$c_{2}=\sum_{f \in F} \sum_{e \in p_{f}} w\left(b_{f}^{e}\right)$
- $w\left(b_{f}{ }^{e}\right)$: bandwidth cost function of flow f on link e

$$
b_{f}^{e}=r_{f} \prod_{m} \lambda_{m}
$$

- r_{f} : initial traffic rate of flow f
- λ_{m} : traffic-changing ratio of middlebox m

Objective
Minimizing $c_{1}+c_{2}$

Problem Formulation (cont'd)

Translog bandwidth cost function on each link

$$
w\left(b_{f}^{e}\right)=\log \left(b_{f}^{e}\right)=\log \left(r_{f} \prod \lambda_{m}\right)=\log \left(r_{f}\right)+\sum \log \left(\lambda_{m}\right)
$$

- Reasons
- Widely used in Cisco EIGRP and OSPF protocols
- Log-linear for easy calculation
- The weight of setup cost and bandwidth consumption
- Adjusting the traffic-changing ratios and unit setup costs of middleboxes

Problem Complexity

NP-hard

- Even with no traffic-changing effects
- Even when placing a single middlebox

Proof

- Reduction from set-cover problem
- Use minimum number of middleboxes to "cover" all flows
- Flows as elements: $F=\left\{f_{1}, f_{2}, \ldots, f_{|F|}\right\}$
- Placed middleboxes as sets: $\left\{S_{1}, S_{2}, \ldots\right\}$
- $S_{1}=\left\{f_{1}, f_{2}, f_{4}\right\}, S_{2}=\left\{f_{1}, f_{2}\right\}, S_{3}=\left\{f_{3}\right\}$

Problem Complexity (cont'd)

- In this paper, we focus on tree-structured topologies

Tree-based data centers

Hierarchical data centers

Each triangle is mostly a perfect or complete tree

Perfect tree

Complete tree

4. Placing a Single Middlebox

Solution

- Local Greedy Algorithm (LGA)

Steps

- Calculate each total cost of placing middleboxes in a whole level
- Select the level with the minimum total cost
- Iterative implementation
- From top level to bottom, total costs will decrease and then increase
- Select the level with the local minimum

4. Placing a Single Middlebox (cont'd)

Time complexity ($|\mathrm{V}|:$ \#node)

- $O(|V|)$

Optimal for perfect tree topologies

- Symmetry of placement
- No multiple "coverage" situation

Also optimal for complete tree topologies

- Also multiple "coverage" situation
- The most unbalanced traffic distribution: left and right subtrees of root have a depth difference of 1

Illustration

Calculate level by level

5. Placing Multiple Middleboxes

Non-ordered middlebox set placement

- Solution
- Combined Local Greedy Algorithm (CLGA)
- Insight
- Place each middlebox independently by applying LGA
- Time complexity (|V|: \#node, $|M|$: \#middlebox)
- O(|V||M|)
- Optimal for complete trees

Totally-ordered Middlebox Set Placement

- Solution: Dynamic Programming (DP)
- Works for infinite and finite vertex capacity
- $\operatorname{OPT}(i, j)$
- Minimum cost of subtree with root v_{i} when placing first j middleboxes in the set
$-\infty$ if capacity is not enough

Dynamic Programming Formulation

Left triangle

- Right triangle

Similar to the left triangle's formulation

An Example

	m_{1}	m_{2}	m_{3}
Traffic-changing ratio	0.5	0.8	1.1
Setup cost	0.2	0.4	0.3

- Dependency relations
- $m_{1}->m_{2}->m_{3}$
- Initial traffic rate

$$
r_{1}=r_{2}=r_{3}=1
$$

Totally-ordered Middlebox Set Placement (cont'd)

Insights

- The optimal placement with root v_{i} by placing first j and its two subtrees by placing no more than j middleboxes

Perfect tree

- Transformed to a line
- Similar to a single flow placement

Complete tree
No multiple "coverage" situation
Time complexity (|V|: \#node, |M|:\#middlebox)

- $O\left(|V||M|^{3}\right)$

Partially-ordered Middlebox Set Placement

NP-hard even for a single flow ${ }^{[2]}$
One heuristic solution

- Insight
- Transform into a totally-ordered middlebox set
- Steps (λ : traffic-changing ratio)
- Treat middleboxes with dependencies as a single middlebox
- Sort middleboxes in increasing order of λ

Example

- Middlebox set

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
λ	0.7	1.1	0.8	1.1	0.5	1.4

- Dependency relationship: $m_{2} \rightarrow m_{3}, m_{4} \rightarrow m_{5} \rightarrow m_{6}$

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM '17)

Partially-ordered Middlebox Set Placement (cont'd)

Another heuristic solution

- Insight
- Transform into a non-ordered middlebox set
- Steps
- Treat middleboxes with dependencies as a single middlebox by a topological order
- No dependency relations among new middleboxes
- Example
- Middlebox set

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
λ	0.7	1.1	0.8	1.1	0.5	1.4

- Dependency relationship: $m_{2} \rightarrow m_{3}, m_{4} \rightarrow m_{5} \rightarrow m_{6}$

6. Handling Heterogeneous flows for Non-ordered Middlebox Set

- Group Flows by Initial Bandwidths (GFIB)

Group flows by initial traffic rates (r_{f} : f^{\prime} 's traffic rate)

- \#group: $\left\lfloor\log _{2} \frac{\max r_{f}}{\min r_{f}}\right\rfloor+1$
- The traffic rate range of the $\mathrm{i}^{\text {th }}$ group: $2^{i-1} \times \min r_{f} \leq r_{f}<2^{i} \times \min r_{f}$
- Treat flows in each group as homogeneous
- Apply CLGA for each group
- An example

$$
\begin{gathered}
\max r_{f}=7 \\
\min r_{f}=1 \\
\text { Group 1: }[1,2) \\
\text { Group 2: }[2,4) \\
\text { Group 3: }[4,8)
\end{gathered}
$$

6. Handling Heterogeneous Flows for Non-ordered Middlebox Set (cont'd)

Time complexity

$$
\max \left\{O(|V| \log |V|), O\left(|V|\left(\left|\log _{2} \frac{\max r_{f}}{\min r_{f}}\right|+1\right)\right)\right\}
$$

- Performance-guaranteed algorithm
- Approximation ratio [5]: $\left\lfloor\log _{2} \frac{\max r_{f}}{\min r_{f}}\right\rfloor+1$

7. Simulation

- Our algorithms
- LGA
- Single middlebox
- Select the level with the minimum cost
- CLGA
- Non-ordered middlebox set
- Apply LGA independently

DP

- Totally-ordered middlebox set
- Dynamic programming
-GFIB
- Heterogeneous flows
- Group flows by initial traffic rates
- Combine placement by applying CLGA for each group

7. Simulation

Comparison algorithms

- Random-fit
- Randomly place middleboxes until all flows are satisfied
- NOSP [2]
- Place middleboxes in increasing order of traffic-changing effects for each flow from source to destination independently
- For single middlebox or non-ordered middlebox set
- TOSP [2]
- Dynamic programming based algorithm for each flow independently
- For totally-ordered middlebox set with or without vertex capacity

Settings

- Topology
- Perfect 5-layer binary tree for each triangle
- Facebook data center traffic trace
- Single-flow initial traffic rate: 1~6 Mb

Middlebox set

	m_{1}	m_{2}	m_{3}	m_{4}
Traffic-changing ratio	0.7	0.8	1.1	1.2
Setup cost	0.4	0.6	0.2	0.8

- Dependency relationship
$m_{2} \rightarrow m_{3} \rightarrow m_{1} \rightarrow m_{4}$

Simulation Results

Single middlebox (LGA)

Non-ordered middlebox set Bandwidth heterogeneity (CLGA)

(GFIB)

- LGA costs 20.3% less than NOSP and 35.1% less than Random-fit.
- CLGA performs the best even with heavy traffic.
- The performance of Random-fit is not steady.
- For heterogeneous flows, GFIB saves about 36.9% and 34.0% compared to NOSP and Random-fit.

Simulation Results (cont'd)

Totally-ordered middlebox set

Without vertex capacity With vertex capacity

Totally-ordered middleboxes	Total cost	Set-up cost
$m_{2} \rightarrow m_{3} \rightarrow m_{1} \rightarrow m_{4}$	20.9	10.4
$m_{3} \rightarrow m_{1} \rightarrow m_{2} \rightarrow m_{4}$	23.7	12.0
$m_{1} \rightarrow m_{4} \rightarrow m_{3} \rightarrow m_{2}$	22.8	9.6
$m_{1} \rightarrow m_{2} \rightarrow m_{3} \rightarrow m_{4}$	11.9	4.4
$m_{4} \rightarrow m_{3} \rightarrow m_{2} \rightarrow m_{1}$	24.7	10.2

Middlebox order effect at 3 Mbps (DP)

- The total cost is larger than the non-ordered middlebox set.
- Limited vertex capacity increases the minimum cost.
- The order of a middlebox set matters not only for total cost but also for set-up cost.

8. Conclusion and Future Work

Middlebox constraints

- Traffic-changing effects
- Dependency relations
- Flow sharing
- Middlebox placement
- Balancing middlebox set-up cost and bandwidth consumption
- Tree-structured topologies
- Optimal algorithms for homogeneous flows
- Performance-guaranteed algorithm for heterogeneous flows
- Future work
-General tree-structures

Other Service Chain Models

- Minimizing the makespan
- Minimizing the average completion time

$$
Q \& A
$$

