On Balancing Middlebox Set-up Cost and Bandwidth Consumption in NFV

Jie Wu (PhD student: Yang Chen) Center for Networked Computing Temple University, USA

1. Introduction of Middlebox

- Network Function Virtualization (NFV)
 - Technology of virtualizing network functions into software building blocks
- Middlebox: software implementation of network services
 - Improve the network performance:
 - Web proxy and video transcoder, load balancer, ...
 - Enhance the security:
 - Firewall, IDS/IPS, passive network monitor, ...
- Examples

Middlebox Dependency Relations ^[1]

- Multiple middleboxes may/may not have a serving order
 - Examples
 - Firewall usually before Proxy
 - Virus scanner either before or after NAT gateway
- Categories
 - Non-ordered middlebox set
 - Totally-ordered middlebox set (service chain)

Partially-ordered middlebox set

[1] Dynamic Service Function Chaining in SDN-Enabled Networks with Middleboxes (ICNP '16)

Middlebox Traffic Changing Effects ^[2]

- Middleboxes may change flow rates in different ways
 - Citrix CloudBridge WAN accelerator: 20% (diminishing)

[2] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)

Middlebox Placement Overview

Problem

Placing middleboxes to satisfy all flows' middlebox service requests

Objectives:

- Minimizing middlebox setup cost ^[3]
- Minimizing bandwidth consumption ^[2]

Constraints

- Dependency relations
- Traffic-changing effects
- Vertex capacity and middlebox processing volume

 [2] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)
 [3] Provably Efficient Algorithms for Joint Placement and Allocation of Virtual Network (INFOCOM '17)

A Middlebox Placement Model^[4]

Minimizing sum of middlebox setup cost and communication cost

• Two special cases

- Facility location problem
 - Single middlebox placement
- Generalized assignment problem
 - Each middlebox has a limited processing volume
 - Placing middleboxes and assigning to flows

[4] Near Optimal Placement of Virtual Network Functions (INFOCOM '15)

A Service Chain Model^[2]

Objective

Minimizing the total bandwidth consumption

Solutions

- Consider traffic-changing effects
- Place middleboxes for a single flow

Non-ordered (Optimal greedy: sort traffic-changing ratios in increasing order)

Totally-ordered (Optimal DP: latter middleboxes must be after front ones)

Partially-ordered (NP-hard: reduced from the Clique Problem)

[2] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)

2. Our Model

- Problem
 - Placing middleboxes to satisfy all flows' network service requests
- Network service requests
 - Multiple middleboxes
 - Middlebox set with or without dependency relations
- Cost
 - Middlebox setup
 - Sum of middlebox setup cost
 - Bandwidth consumption
 - Sum of each flow's bandwidth consumption cost on each link

Objective

Minimizing total cost of middlebox setup and bandwidth consumption

A Motivating Example

Independent middleboxes

Dependent middleboxes: m' before m

3. Problem Formulation

Middlebox setup cost

$$c_1 = \sum_{m \in M} \sum_{\upsilon \in V} c_m$$

- c_m: unit setup cost of middlebox m
- Bandwidth consumption cost • $c_2 = \sum_{f \in F} \sum_{e \in p_f} w(b_f^e)$

w(b_f^e): bandwidth cost function of flow f on link e

$$b_f^e = r_f \prod_m \lambda_m$$

- r_f: initial traffic rate of flow f
- λ_m : traffic-changing ratio of middlebox m

Objective

• Minimizing c_1+c_2

Problem Formulation (cont'd)

Translog bandwidth cost function on each link

$$w(b_f^e) = \log(b_f^e) = \log(r_f \prod \lambda_m) = \log(r_f) + \sum \log(\lambda_m)$$

Reasons

- Widely used in Cisco EIGRP and OSPF protocols
- Log-linear for easy calculation

The weight of setup cost and bandwidth consumption

 Adjusting the traffic-changing ratios and unit setup costs of middleboxes

Problem Complexity

NP-hard

- Even with no traffic-changing effects
- Even when placing a single middlebox

Proof

- Reduction from set-cover problem
- Use minimum number of middleboxes to "cover" all flows
 - Flows as elements: F= {f₁, f₂,..., f_{|F|}}
 - Placed middleboxes as sets: {S₁, S₂,...}
 - $\circ S_1 = \{f_1, f_2, f_4\}, S_2 = \{f_1, f_2\}, S_3 = \{f_3\}$

Problem Complexity (cont'd)

In this paper, we focus on tree-structured topologies

4. Placing a Single Middlebox

Solution

Local Greedy Algorithm (LGA)

Steps

- Calculate each total cost of placing middleboxes in a whole level
- Select the level with the minimum total cost
- Iterative implementation
 - From top level to bottom, total costs will decrease and then increase
 - Select the level with the local minimum

4. Placing a Single Middlebox (cont'd)

Optimal for perfect tree topologies

- Symmetry of placement
- No multiple "coverage" situation

Also optimal for complete tree topologies

- Also multiple "coverage" situation
- The most unbalanced traffic distribution: left and right subtrees of root have a depth difference of 1

Illustration

Calculate level by level

5. Placing Multiple Middleboxes

Non-ordered middlebox set placement

Solution

- Combined Local Greedy Algorithm (CLGA)
- Insight
 - Place each middlebox independently by applying LGA
- Time complexity (|V|: #node, |M|: #middlebox)
 O(|V||M|)
- Optimal for complete trees

Totally-ordered Middlebox Set Placement

- Solution: Dynamic Programming (DP)
- Works for infinite and finite vertex capacity
- OPT(i, j)
 - Minimum cost of subtree with root v_i when placing first j middleboxes in the set

 $\circ \infty$ if capacity is not enough

Dynamic Programming Formulation

Left triangle

Similar to the left triangle's formulation

An Example

	m_1	m ₂	m ₃
Traffic-changing ratio	0.5	0.8	1.1
Setup cost	0.2	0.4	0.3

- Dependency relations
 - m₁->m₂->m₃
- Initial traffic rate
 r₁=r₂=r₃=1

Totally-ordered Middlebox Set Placement (cont'd)

Insights

 The optimal placement with root v_i by placing first j and its two subtrees by placing no more than j middleboxes

Perfect tree

- Transformed to a line
- Similar to a single flow placement

Complete tree

No multiple "coverage" situation

Time complexity (|V|: #node, |M|:#middlebox) O(|V||M|³)

Partially-ordered Middlebox Set Placement

- NP-hard even for a single flow ^[2]
- One heuristic solution
 - Insight
 - Transform into a totally-ordered middlebox set
 - \circ Steps (λ : traffic-changing ratio)
 - Treat middleboxes with dependencies as a single middlebox
 - Sort middleboxes in increasing order of λ
 - Example
 - Middlebox set

	m ₁	m ₂	m ₃	m_4	m_5	m 6
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m₂ -> m₃, m₄ -> m₅-> m₆

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM '17)

Partially-ordered Middlebox Set Placement (cont'd)

- Another heuristic solution
 - Insight
 - Transform into a non-ordered middlebox set
 - Steps
 - Treat middleboxes with dependencies as a single middlebox by a topological order
 - No dependency relations among new middleboxes
 - Example
 - Middlebox set

	m ₁	m ₂	m ₃	m_4	m 5	m ₆
λ	0.7	1.1	0.8	1.1	0.5	1.4

Dependency relationship: m₂ -> m₃, m₄ -> m₅-> m₆

0.7

1.1*0.8=0.88

1.1*0.5*1.4=0.77

6. Handling Heterogeneous flows for Non-ordered Middlebox Set

- Group Flows by Initial Bandwidths (GFIB)
 - Group flows by initial traffic rates (r_f : f's traffic rate) #group: $\lfloor \log_2 \frac{\max r_f}{\min r_f} \rfloor + 1$

 - The traffic rate range of the ith group: $2^{i-1} \times \min r_f \le r_f < 2^i \times \min r_f$
 - Treat flows in each group as homogeneous
 - Apply CLGA for each group

An example

max $r_f = 7$ min $r_f = 1$ Group 1: [1,2) Group 2: [2,4) Group 3: [4,8)

6. Handling Heterogeneous Flows for Non-ordered Middlebox Set (cont'd)

• Time complexity

 $\max\{O(|V|\log|V|), O(|V|(\left\lfloor \log_2 \frac{\max r_f}{\min r_f} \right\rfloor + 1))\}$

- Performance-guaranteed algorithm
 - Approximation ratio ^[5]: $\left[\log_2 \frac{\max r_f}{\min r_f}\right] + 1$

[5] On Optimal Scheduling of Multiple Mobile Chargers in Wireless Sensor Networks (MSCC '14)

7. Simulation

Our algorithms

- o LGA
 - Single middlebox
 - Select the level with the minimum cost
- o CLGA
 - Non-ordered middlebox set
 - Apply LGA independently
- o DP
 - Totally-ordered middlebox set
 - Dynamic programming
- o GFIB
 - Heterogeneous flows
 - Group flows by initial traffic rates
 - Combine placement by applying CLGA for each group

7. Simulation

- Comparison algorithms
 - Random-fit
 - Randomly place middleboxes until all flows are satisfied
 - NOSP [2]
 - Place middleboxes in increasing order of traffic-changing effects for each flow from source to destination independently
 - For single middlebox or non-ordered middlebox set
 - TOSP [2]
 - Dynamic programming based algorithm for each flow independently
 - For totally-ordered middlebox set with or without vertex capacity

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM '17)

Settings

- Topology
 - Perfect 5-layer binary tree for each triangle
- Facebook data center traffic trace
 - Single-flow initial traffic rate: 1~6 Mb
- Middlebox set

	m_1	m ₂	m ₃	m ₄
Traffic-changing ratio	0.7	0.8	1.1	1.2
Setup cost	0.4	0.6	0.2	0.8

Dependency relationship

 \circ m₂ -> m₃ -> m₁ -> m₄

- LGA costs 20.3% less than NOSP and 35.1% less than Random-fit.
- CLGA performs the best even with heavy traffic.
- The performance of Random-fit is not steady.
- For heterogeneous flows, GFIB saves about 36.9% and 34.0% compared to NOSP and Random-fit.

ion Results (cont'd)

Totally-ordered middlebox set

Totally-ordered middleboxes	Total cost	Set-up cost
$m_2 \rightarrow m_3 \rightarrow m_1 \rightarrow m_4$	20.9	10.4
$m_3 \rightarrow m_1 \rightarrow m_2 \rightarrow m_4$	23.7	12.0
$m_1 \rightarrow m_4 \rightarrow m_3 \rightarrow m_2$	22.8	9.6
$m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow m_4$	11.9	4.4
$m_4 \rightarrow m_3 \rightarrow m_2 \rightarrow m_1$	24.7	10.2

Middlebox order effect at 3 Mbps (DP)

- The total cost is larger than the non-ordered middlebox set.
- Limited vertex capacity increases the minimum cost.
- The order of a middlebox set matters not only for total cost but also for set-up cost.

8. Conclusion and Future Work

- Middlebox constraints
 - Traffic-changing effects
 - Dependency relations
 - Flow sharing
- Middlebox placement
 - Balancing middlebox set-up cost and bandwidth consumption
- Tree-structured topologies
 - Optimal algorithms for homogeneous flows
 - Performance-guaranteed algorithm for heterogeneous flows
- Future work
 - General tree-structures

Other Service Chain Models

- Minimizing the makespan
- Minimizing the average completion time

Q&A