
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Joint Server Assignment and Resource
Management for Edge-based MAR System

Can Wang, Sheng Zhang, Member, IEEE, Zhuzhong Qian, Member, IEEE, Mingjun Xiao, Member, IEEE,
Jie Wu, Fellow, IEEE, Baoliu Ye, Member, IEEE, and Sanglu Lu, Member, IEEE

Abstract—Mobile Augmented Reality (MAR) applications usually contain computation-intensive tasks which far outstrip the capability
of mobile devices. One way to overcome this is offloading computation-intensive MAR tasks to remote clouds. However, the wide area
network delay is hard to reduce. Thanks to edge computing, we can offload MAR tasks to nearby servers. Prior studies focus on either
single-task MAR applications offloading or dependent tasks offloading for a single user. In this paper, we study the offloading decision
of MAR applications from multiple users, each of which is comprised of a chain of dependent tasks, over a generic cloud-edge system
consisting of a group of heterogeneous edge servers and remote clouds. We formulate the Multi-user Multi-task MAR Application
Scheduling (M3AS) problem, which is NP-hard. We present Mutas, an efficient scheduling algorithm that jointly optimizes server
assignment and resource management. We also consider the online version of M3AS and present OnMutas. Extensive evaluations
demonstrate that both Mutas and OnMutas can significantly reduce the service delays of MAR applications when compared to three
other heuristics.

Index Terms—mobile augmented reality, edge computing, multi-task application, scheduling, resource management

F

1 INTRODUCTION

MOBILE augmented reality (MAR) enhances our per-
ception of the surrounding physical environment

by mixing the real world with computer generated visual
information [1]. Due to the wide spread of mobile de-
vices together with advances on computer vision, MAR
applications are gaining popularity in various industries
[2], such as navigation, tourism, entertainment and so
on. The MAR market is predicted to be worth $108
billion by 2021 [3].

MAR applications generally contain complicated
deep-learning algorithms as core components; however,
running these algorithms in mobile devices raises critical
challenges, i.e., high processing delay and power con-
sumption [4]. One way to overcome these limitations
is to use cloud resources for the execution of compu-
tation intensive tasks. However, compared to the ever
increasing data processing speed, the wide area network
bandwidth has come to a standstill [5], thus cloud-based
MAR may incur excessive transmission delay.

Edge computing is a new computing paradigm which
advocates processing data at the edge of the network [6].
Leveraging edge computing, the computation intensive

• C. Wang, S. Zhang, Z.Z. Qian, B.L. Ye, and S.L. Lu are with the State
Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, 210023, China.
E-mail: MF1733063@smail.nju.edu.cn, {sheng, qzz, yebl, san-
glu}@nju.edu.cn.

• M.J. Xiao is with with the School of Computer Science and Technology /
Suzhou Institute for Advanced Study, University of Science and Technol-
ogy of China, Hefei, China.
E-mail: xiaomj@ustc.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

tasks in MAR applications can be offloaded to nearby
edge servers. Since edge servers are placed in proximity
to users, the problem of high network delay is mitigated.

Indeed, more and more MAR applications can be
modeled as chains of dependent tasks [7], each of which
represents a certain operation on the input messages
(e.g., video frames) and passes its outputs down to
the succeeding task. Fig. 1 shows two example MAR
applications, both of which are constructed as pipelines
of tasks. Different MAR applications may consist of
different numbers of tasks. For example, in general MAR
applications [1], video analysis results could be derived
from the direct object recognition task, while some so-
phisticated MAR applications may involve additional
operations (e.g., object tracking task).

In this paper, we consider the offloading of multi-task
MAR applications from multiple users, over a generic
cloud-edge computing system comprising of a group of
heterogeneous edge servers and remote clouds. We make
task offloading decisions for all mobile devices, based on
considerations such as the network latency, the amount
of computations and the resource requirement. This is a
server assignment problem. On the other hand, a remote
cloud or edge server has to determine how to distribute
computing resources among all the tasks assigned to it,
which is a resource management problem.

There are many studies concerning with the appli-
cation scheduling in the edge environment, however,
they usually consider applications with two components,
one running in users’ devices and the other running in
edge servers [8], [9], [10]. Only a few works consider
the offloading of multiple dependent tasks [11], [12],
[13], [14]. Despite the works that have been done, they
have some inappropriate assumptions such as negligible

IEEE/ACM TRANSACTIONS ON NETWORKING 2

Decode&

Resizing

Frame

Selection

Generate

Virtual object
Results

408p1080p

DNN Object Recognition (e.g., YOLO)

Decode&

Resizing

Frame

Selection

Object Extracting

&Tracking

Selecting

Regions of

interest

Generate

Virtual

object

Results

data query data flow

MAR application B

(a) MAR chain A

virtual object database

(b) MAR chain B

1080p

DNN Object Recognition

MAR application A

Fig. 1. Example of AR applications. Different MAR appli-
cations may consist of different numbers of tasks.

data communication delay and machine-irrelated task
processing time. Most importantly, these existing designs
either assume unlimited computing resources on edge
servers or consider only the single-user scenario. To the
best of our knowledge, most existing related works are
not practical for multi-user MAR systems where resource
contention exits and resource management is required.

Challenges and Solution. There major challenges
for designing an effective scheduler for the edge-based
multi-user multi-task MAR system can be summarized
as follows: 1) The distribution of mobile users exhibits
highly spatial diversity [15]. Such a user distribution
will lead to imbalanced workloads among edge servers,
and thus a scheduler which can dynamically dispatch
MAR tasks is needed. 2) The precedence constraints and
data transfer requirements between tasks can drastically
complicate the scheduling decision [16], [17], [18], [19].
3) Edge servers are usually less powerful than cloud
servers, hence resource management becomes crucial. 4)
Tasks from multiple users may be diverse in data size
and computation complexity, being agnostic to task type
and data size makes simple fair sharing far from ideal
for multi-user multi-task MAR systems.

To address the challenges above, we design a sched-
uler to dynamically dispatch MAR applications to an
edge-cloud network, and also allocate resources to each
of them. In this paper, a MAR application is modeled as
a chain of inter-dependent tasks with data transmissions
between them, where each task can be offloaded to
different servers. The objective is to identify a server
assignment and resource allocation solution that mini-
mizes the average service delay for all MAR users.

Contributions. To the best of our knowledge, our
work is the first to decompose MAR applications as
pipelines of tasks in an edge environment, and design
both offline and online scheduling algorithms for a
multi-user MAR system. Our main contributions are as
follows:

• We formulate the Muti-user Multi-task MAR
Application Scheduling (M3AS) problem where var-
ious MAR applications with dependent tasks are
scheduled over an edge-cloud computing system for
delay minimization.

• We analyze the M3AS problem through transforma-
tion and relaxation, then we design a scheduling
algorithm named Mutas for the batch processing of
MAR applications, which boosts the performance of
an edge-based MAR system by jointly optimizing
server assignment and resource allocation.

• We also discuss the online version of the M3AS
problem. We present OnMutas, which adaptively
places MAR tasks among different servers and de-
cides how much computational capacity is provi-
sioned for each task.

• We conducted extensive experiments to evaluate the
performance of Mutas and OnMutas. The experi-
mental results show that both our offline and online
algorithm can significantly reduce the service delays
of MAR applications when compared to three other
heuristics. Our evaluation results also confirm that
our MAR system can support the integration of
various MAR applications.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes the system
model and the problem formulation. Section 4 develops
the Mutas algorithm. Section 5 studies the online version
of our problem and Section 6 evaluates our proposed
design using simulations. We present our system archi-
tecture and detail the experiments in Section 7. Some
extensions are discussed in Section 8 and conclusions
are made in Section 9.

2 RELATED WORK

Earlier work on application placement and scheduling
in Mobile Edge Computing (MEC) has considered ap-
plications with two components, one running in a cloud
(can be either edge cloud or core cloud) and the other
running in a user’s device [8], [9]. For example, in [10], a
dynamic programming algorithm is proposed to handle
deterministic and stochastic application deadlines. How-
ever, it only considers offloading from a mobile device to
a remote cloud. Moreover, they improperly assume that
the mobile device has infinite capacity and can execute
any number of tasks simultaneously without impacting
the processing time of each task. This assumption is un-
realistic since user devices are usually resource limited,
while we focus on multi-task MAR applications that can
be deployed and executed across one or multiple edge
clouds. The offloading of dependent tasks is complicated
by the need to satisfy precedence constraints.

The problem of offloading dependent tasks to multiple
types of edge servers has been considered in [16], [20],
and [21]. In [16], a fully polynomial time approximation
scheme is proposed to minimize the overall delay under
a resource cost constraint. However, the devices are

IEEE/ACM TRANSACTIONS ON NETWORKING 3

again assumed to possess infinite capacity in terms of the
number of tasks that can be processed simultaneously
without reduction in the processing speed for each task.
In [22], the online placement of multi-task applications
in edge environments is investigated, in which they
jointly consider task assignment and bandwidth alloca-
tion. However, these load balancing schemes are mainly
designed for tree edge-cloud networks and the main
objective is to optimize the network delay while the
processing time of each task is fixed.

In [19], the authors build a more generalized process-
ing model, and a load-balancing heuristic algorithm is
proposed for makespan minimization with dependent
tasks. However, they do not consider resource sharing
while the proposed scheduling algorithm must have
knowledge of the execution times of all tasks on different
servers. In addition, their design only aims to solve
the placement of a single application; more applications
cannot be processed simultaneously.

On the contrary, in this paper, we aim to design a
scheduler for a multi-user MAR system. Resource man-
agement and task dispatching are jointly considered; we
assume that the computing resource on an edge server
is limited and may be shared by all the tasks assigned to
it. This leads to a unique problem formulation that has
not been considered in the existing literature.

3 SYSTEM MODEL

3.1 Generalized edge-cloud network

We consider an edge-cloud network with a set of N
servers, denoted by N = {s1, s2, ..., sN}, including edge
servers and cloud servers. Here edge servers are het-
erogenous and may be installed in edge computing
hosts, cloudlet devices, or peer mobile devices [19]. As
we mentioned before, edge servers may be diverse in
physical locations and computing capability, connected
with each other through the Internet backbone. The
network architecture is illustrated in Fig. 2.

We further assume several remote cloud centers. Com-
pared with edge servers, a cloud center has richer
computing resources; however, application offloading to
the remote cloud suffers from long delays between the
mobile devices and the remote cloud. Let di,j be the end
to end delay between server si and sj . For simplicity of
illustration, we assume di,j = dj,i and di,j = 0 if i = j.

3.2 MAR application model

There are a set of M users in the MAR system, denoted
by U = {u1, u2, ..., uM}. Each user has an AR application
to be executed. As we mentioned before, an AR appli-
cation includes many computation-intensive computer
vision and artificial intelligence algorithms [4] as key
components (e.g. object recognition and object tracking).

Therefore, we model one MAR application as a com-
bination of multiple tasks, which can be offloaded sep-
arately to powerful computing nodes nearby. Denote

Service path Direct link

Different components in each MAR application

Edge cloud

Remote cloud

Wireless link

AP

Mobile device

Fig. 2. An illustration of the cloud-edge network system.

by Mk the number of tasks that the application from
uk contains. The computation complexity of each task
is jointly determined by the input data size and the
algorithm we adopt. For example, when recognizing
object in images, different recognition algorithms and
resolutions lead to different computational delays. We
use cik to denote the computational delay of the ith
task from user uk. Generally, an application profiler can
be used to collect relevant metrics and estimate the
computation amount of each task. Details about profiling
are discussed in Section 8, here we focus on scheduling
algorithms and assume that the profiler is given.

3.3 Service delay model

The service delay of the kth user can be defined as

Dk = Dw
k +Dt

k +Dp
k, (1)

where Dw
k is the wireless delay incurred by sending

video frames from the kth user to its associated wireless
access point; Dt

k is the core network delay caused by
data communication between tasks; and Dp

k presents the
total computational delay of all the tasks.

Wireless delay. The wireless delay consists of two
parts: the upload delay (the red line in Fig. 3), which
is caused by transmitting the input data from a user
to its associated wireless access point (AP), and the
download delay (the blue line in Fig. 3), which is caused
by transmitting the output data from an AP to a user.
Each part is determined by the data size and wireless
data rate between a user and an AP. Since the size of the
output data is usually small, the download delay can be
ignored [23]. Let Rk be the average wireless data rate
between user uk and its associated AP, and wk be the
size of the data which should be uploaded for uk. Then,
the wireless delay experienced by the kth user can be
modeled as

Dw
k = wk/Rk. (2)

Core network delay. Since the core network delay is
mainly determined by the aggregated traffic loads and
the geo-distance between servers. The impact of the data
transmission of a single user on the core network delay
is negligible [24]. Therefore, we do not consider such an

IEEE/ACM TRANSACTIONS ON NETWORKING 4

AP Server i Server j

w

kD

Upload

Download

Access

Access

Access

ik ,d j,id

The

k-th

user

Fig. 3. An simple illustration of the service delay model.

impact in our core network delay model. To represent
this delay, we first introduce a server assignment indi-
cator ajk,i:

ajk,i =

{
1 if the ith task from uk is placed at sj ,

0 otherwise.
(3)

For the simplicity of presentation, an AP is also re-
garded as a server with no computing ability in this
paper. Let dk,j be the core network delay between server
sj and the AP that user uk associates with.

The core network delay for user uk consists of three
parts (see Fig. 3 for example): 1) data transmission
delay between the AP that uk associates with and the
edge server that the first task of uk is assigned to, 2)
communication delay between consecutive tasks, and 3)
transmission delay of the final output data between the
server that the last task of uk is assigned to and the AP.
More specifically, we have

Dt
k =

N∑
j=1

ajk,1dk,j +

Mk∑
m=2

N∑
i=1

N∑
j=1

aik,m−1a
j
k,mdi,j

+

N∑
j=1

ajk,Mk
dk,j .

(4)

Computational delay. The computational delay is
closely related to the computational complexity of a
task and available computational resources on servers
[23]. We use Qj to denote the available computational
resources on the jth server. Let rjk,i be the percentage of
server j’s computational capacity being allocated to the
ith task of user uk. Then Qj ·rjk,i represents the amount of
the computational resources allocated to the ith task of
user uk on server sj . Therefore, the computational delay
experienced by uk can be modeled as:

Dp
k =

Mk∑
i=1

N∑
j=1

ajk,i
cik

Qjr
j
k,i

. (5)

3.4 Problem formulation

Combining Eqs. (1), (2), (4), and (5) together, we have

Dk =
wk
Rk

+

N∑
j=1

ajk,1dk,j +

Mk∑
i=1

N∑
j=1

ajk,i
cik

Qjr
j
k,i

+

Mk∑
m=2

N∑
i=1

N∑
j=1

aik,m−1a
j
k,mdi,j +

N∑
j=1

ajk,Mk
dk,j ,

(6)

and the total service delay of all users is:

D =
∑

uk∈U
Dk. (7)

On designing a scheduler, we aim to minimize the
average service delay, which is equivalent to minimizing
the total service delay. Denote A = {ajk,i|uk ∈ U , sj ∈
N , i ∈ [1,Mk]} as the set of server assignments. Denote
R = {rjk,i|uk ∈ U , sj ∈ N , i ∈ [1,Mk]} as the set of
resource allocations, the optimization problem is:

P1 : min
{A,R}

D =
∑

uk∈U
Dk.

s.t. C1 :
∑N

j=1
ajk,i = 1, uk ∈ U , i ∈ [1,Mk]

C2 :
∑M

k=1
rjk,i = 1, sj ∈ N , i ∈ [1,Mk]

C3 : ajk,i = {0, 1}, uk ∈ U , sj ∈ N

(8)

.
The constraints C1 and C3 ensure that each task is

assigned to one and only one server, and C2 is the
constraint on servers’ capacity. By reducing the NP-
complete Generalized Assignment Problem (GAP) [19]
to M3AS, we have the following theorem.

Theorem 1: The M3AS problem is NP-hard.
Proof. We prove this theorem by reduction from the

Generalized Assignment Problem (GAP).
Definition 1 (Generalized Assignment Problem).

Given a pair (E,S) where E is a set of n machines and
S is a set of m tasks. Each machine ej ∈ E has capacity
bj , and we use wk,j and pk,j to denote the cost and the
profit incurred by performing task sk on machine ej . The
generalized assignment problem examines the maximum
profit assignment of tasks to machines such that each
task is assigned to precisely one machine subject to
capacity restrictions on the machines.

Given an instance of GAP, we construct an instance
of M3AS as follows. We let N = n, M = m and
Qj = bj in M3AS. We assume that all offloaded ap-
plications contain only one task. For uk ∈ U , wireless
delay Dw

k and computational delay Dp
k can be infinitely

close to zero by setting uploaded data size and task
computational complexity to a sufficiently small value.
For the kth user, the core network delay between sj
and its associated AP (dk,j) is set to be Pmax + 1− pk,j ,
where Pmax = max {pk,j : k ∈ [1,M], j ∈ [1, N]}. The core
network delay between si and sj can be any reasonable
value. Let rjk,1 =

wk,j

Qj
, where wk,j is the resource demand

of task sk’ on machine ej in GAP.
Combining these together, the objective of M3AS

is min
∑M
k=1

∑N
j=1 a

j
k,1(pmax + 1− pk,j), since Pmax is

fixed, the objective of M3AS is then reduced to maxi-
mizing the assignment-profit under the constraint that
the total resource demand of tasks assigned to sj cannot
exceed its capacity Qj . Then, the problem is essentially
GAP. It is not hard to see that the construction can be
finished in polynomial time. Thus, we reduce solving
the NP-complete GAP problem to solving a special case

IEEE/ACM TRANSACTIONS ON NETWORKING 5

of M3AS, implying that M3AS is NP-hard. The theorem
follows immediately.

4 MUTAS FOR OFFLINE M3AS
4.1 Problem transformation and relaxation
Optimization problem P1 is a mixed integer nonlinear
programming, and it is non-convex due to its non-
convex quadratic terms in Eq. (4). However, we note that
for a certain user uk, the communication delay between
its (m− 1)th and mth tasks can be modified as follows:

N∑
i=1

N∑
j=1

aik,m−1a
j
k,mdi,j

=

N∑
i=1

N∑
j=1

di,j max[(aik,m−1 + ajk,m − 1), 0],

(9)

where the equality holds because ajk,i is binary. This
converts the non-convex term to a convex form.

Therefore, we perform the following two-step trans-
formation and relaxation on problem P1:
• Replace the communication terms in P1 with Eq. (9).
• Relax binary variables ajk,i’s to continuous variables
ãjk,i’s. Let Ã denote {ãjk,i|uk ∈ U , sj ∈ N , i ∈
[1,Mk]}.

The relaxed form of Dk in Eq. (6) is:

D̃k =
wk
Rk

+

N∑
j=1

ãjk,1dk,j +

Mk∑
i=1

N∑
j=1

ãjk,i
cik

Qjr
j
k,i

+

Mk∑
m=2

N∑
i=1

N∑
j=1

di,j max[(ãik,m−1 + ãjk,m − 1), 0]

+

N∑
j=1

ãjk,Mk
dk,j .

(10)

The relaxed P1 can be presented as follows:

P2 : min
{Ã,R}

D̃ =
∑
uk∈U

D̃k

s.t. C1, C2

C̃3 : 0 ≤ ãjk,i ≤ 1;uk ∈ U , sj ∈ N .

(11)

4.2 Formal analysis
In this section, we first introduce a central element in
convex optimization: the notion of convex function.

Theorem 2: Suppose a function f : Rn → R is
twice differentiable, then f is convex if and only if its
domain is a convex set and its Hessian matrix is positive
semidefinite: i.e., for any x ∈ D(f), ∆2f(x) � 0.

Proof: The detailed proof can be found in [25].
Similar to previous work [3], we then partition the

variables in P2 into two parts of variables, and prove that
the relaxed problem P2 is convex with respect to these
two parts, respectively. Based on the previous theorem,
we have the following two lemmas:

Algorithm 1: The Mutas Algorithm
Input: convergence condition τ ; initial assignment

Ã0 ; maximum iteration number Gk
Output: server assignment A, resource allocation R

1 Ã ← Ã0, i← 0;
2 while True do
3 R ← update R with fixed Ã;
4 Ã ← update Ã with fixed R;
5 D̃(i)← compute the total delay with Ã and R;
6 If |D̃(i)− D̃(i− 1)| ≤ τ or i ≥ Gk then break;
7 i← i+ 1;

8 recover a binary solution A according to Eq. (13) ;
9 R ← update R with fixed A;

10 return A,R

Lemma 1: The problem P2 is strictly convex with
respect to the relaxed server assignment Ã.

Proof: For any given ãjk,i , the objective function
only contains linear terms and the max function of ãjk,i.
The max function is convex, and the addition of convex
functions remains convex. The constraint C1 is linear.
The constraint C2 is irrelevant to Ã. Therefore, D̃ is
strictly convex with respect to Ã.

Lemma 2: The problem P2 is strictly convex with
respect to the resource allocation R.

Proof: For any feasible variables rpk,i, r
q
v,j , ∀uk, uv ∈

U , ∀sp, sq ∈ N ,

∂2D̃

∂rpk,i∂r
q
v,j

=


2cikQpa

p
k,iQq

(Qpr
p
k,i)

3 if k = v, i = j, p = q,

0 otherwise.
(12)

The Hessian matrix H = [∂2D̃
∂rpk,i∂r

q
v,j

] is symmetric and
positive definite. According to Theorem 2, function f is
strictly convex if its Hessian matrix H is positive definite
for all the variables. The constraint C2 is linear. The
constraints C1, C̃3 are irrelevant to R. Therefore, D̃ is
strictly convex with respect to R.

Lemma 1 confirms that, when server assignment Ã
is fixed, the total service delay D̃ can be decreased by
optimizing resource allocation R. Similarly, with Lemma
2, when resource allocation R is fixed, the processing
delay of each task on a server can be determined, thus
the relaxed service delay D̃ can be reduced by optimiz-
ing server assignment Ã. Based on these intuitions, we
developed a Multi-task application scheduling (Mutas)
algorithm, with further details in the next subsection.

4.3 Mutas design

The main idea behind Mutas is fixing one variable
while optimizing the other one, after several iterations,
the objective function converges to a certain value. For
example, we will derive a new server assignment after
optimizing Ã by the block coordinate descent method

IEEE/ACM TRANSACTIONS ON NETWORKING 6

Algorithm 2: The Mutas+SA Algorithm
Input: cooling parameter α; initial temperature

Tmax; terminating temperature Tmin
Output: server assignment A, resource allocation R

1 randomly generate an initial assignment Ãold;
2 Aold,Rold ← Mutas(Ãold);
3 f ← D(Aold,Rold); T ← Tmax;
4 while T > Tmin do
5 randomly generate a new assignment Ãnew in

the neighborhood of Ãold;
6 Anew,Rnew ← Mutas(Ãnew);
7 f ′ ← D(Anew,Rnew); ∆d = f − f ′;
8 if ∆d ≤ 0 then
9 Aold ← Anew; f ← f ′;

10 else if Rand(0, 1) < exp(−∆d
T) then

11 Aold ← Anew; f ← f ′;

12 T ← α · T ;

13 A ← Aold; R ← Rold;
14 return A,R

with fixed R, then this new assignment can be lever-
aged to generate an optimized R conversely. The above
iterative processes will continue until a pre-defined max-
imum number of iterations Gk has been reached or no
significant improvement can be achieved. The pseudo
code of Mutas is shown in Algorithm 1. After solving
Problem P2, ãjk,i are converted to ajk,i according to

ajk,i =

1 if j = arg max
sj∈N

ãjk,i,

0 otherwise.
(13)

Lemmas 1 and 2 lay the foundation for the conver-
gence of the Mutas algorithm. Since D̃ is convex with
respect to each block of variables, the convergence of
the proposed algorithm is guaranteed according to [26].

The last step is binary recovery which provides a
feasible solution to the original optimization problem P1.
The recovered solution is no longer optimal and can be
further improved by simulated annealing (SA).

Complexity analysis. The Mutas algorithm converges
to the optimal value for the transformed problem P2 in a
linear rate, in other words, the sequence of the objective
function values converges to the optimum in an O(1

ε)
rate, where ε is the parameter to control the accuracy.
The Mutas algorithm is developed based on the alter-
nating minimization method, and the convergence and
the optimality were proved in [27]. The corresponding
evaluations on the time cost of the Mutas algorithm is
given in Section 6.2.

4.4 Augmenting Mutas with simulated annealing

As we mentioned before, the last step of Mutas is to
recover a set of binary variables. However, the recov-
ered solution sometimes may be not so satisfactory. To

improve Mutas, we leverage simulated annealing (SA)
which can help Mutas to escape from local minimums.
Note that there are many other alternative algorithms
such as genetic algorithm (GA) and particle swarm
optimization (PSO). According to our previous research
[28], PSO has advantage over GA in both convergence
speed and accuracy. However, when compared with SA,
PSO has more parameters (inertia weight, learning factor
and so on) due to its complex design, making the setting
of parameters a very technical thing. Taking all the
considerations into account, we adopt SA for its easy
implementation and fast convergence.

The Mutas+SA algorithm is shown in Algorithm 2.
Note that, α is the cooling parameter in SA, Tmax and
Tmin are initial and terminating temperatures, respec-
tively. At the beginning, the simulated temperature T
equals to Tmax then decreases in each iteration, when
T = Tmin SA iterations terminate. Consequently, the SA
process has no bounded time complexity. Instead, its
time complexity depends on the parameter settings.

Generally, a longer searching time leads to a better
solution, but also increases the computational overhead
of the scheduling algorithm. We can flexibly control
the tradeoff between accuracy and running time by
adjusting the algorithm parameters. In Section 6, we will
investigate the impact of the SA cooling parameter on
the performance and time cost of the offline algorithm.

Mutas and SA each serves an important role in the
overall algorithm design. First, Mutas provides a suitable
starting point for SA. If we start from some randomly
chosen point in the solution space, SA can converge
to some sub-optimal solution. Second, an appropriate
starting point helps reduce the number of SA iterations.
Further numerical evaluation of the contribution of the
SA step is given in Section 6.2.

5 ONMUTAS FOR ONLINE M3AS
The Mutas algorithm calculates the whole service path
for a batch of users, and thus servers need to reserve re-
sources for tasks assigned to it. It is a waste of resources
since the computing capacity reserved for a task could
be utilized by other tasks before this task arrives. Based
on this intuition, in this section, we discuss the online
version of the M3AS problem, where user applications
arrive over the time, and we present the Online Multi-
task application scheduling (OnMutas) algorithm that
makes scheduling decisions on the task level.

5.1 Intuition

In the online case, we partition time into discrete time
slots of equal length. At the beginning of each time slot,
a scheduling decision should be made for tasks that are
ready to be executed. As shown in the Fig. 4, two tasks
(marked with stars in the figure) from users u3 and u4,
respectively, can be scheduled at the beginning of the
current time slot. User u2 still has task being executed at

IEEE/ACM TRANSACTIONS ON NETWORKING 7

time line

u1

u2

u3

u4

u5

current time slot

Fig. 4. An illustration of the online scenario where each
rectangle represents a task and each arrow represents
dependency. OnMutas makes scheduling decisions on
the task level.

this moment, hence the succeeding tasks are not ready
for execution due to data dependency.

Lemma 2 can beextended to the following theorem:
Theorem 3: When each ajk,i is fixed, the corresponding

optimal resource allocation to P1 is

rjk,i
∗

=

√
ajk,ic

i
k∑

uk∈U
∑Mk

i=1

√
ajk,ic

i
k

. (14)

Proof: The convexity of P1 over R is proved by
Lemma 2. The corresponding Lagrangian of P1 is:

L(R, µ) = D −
∑N

j=1
µj(

∑M

k=1

∑Mk

i=1
rjk,i − 1). (15)

By solving the KKT condition [29] of Eq. (15), we can
obtain the optimal solution rjk,i

∗
(i = [1,Mk], uk ∈ U , sj ∈

N) and the corresponding optimal value Dmin.
Theorem 1 shows that, when the placement for each

task is fixed, the corresponding resource allocation prob-
lem for these tasks is deterministic.

5.2 Branch and bond-based onMuta

Note that any application cannot have more than one
task that is ready for execution at the beginning of any
time slot. We assume there are m tasks to be scheduled,
and the computational complexities of them are c1, c2, ...,
and cm, respectively. If no confusion is caused, we also
use pre(ci) to denote the server where the predecessor
of task ci is placed.

Without loss of generality, we assume that the work-
loads c1, c2, ..., cm are sequentially determined to be
placed at the start time of a time slot. Therefore, we
only need to solve the following subproblem: given the
service assignment for c1, c2, ..., and ck, which server
should ck+1 be placed on? Based on this subproblem
definition, we have the following theorem:

Theorem 4: Let dk indicate the total amount of de-
lays for the k tasks having been placed, which can be
easily calculated by solving the corresponding convex
optimization problem based on Theorem 1. The lower

Fig. 5. An example branch and bound-based OnMutas.

bound on the total amount of delays for the remaining
(m− k) tasks can be presented as:

uk = dk +
∑m

i=k+1
[min
sj∈N

{ ci
Qj

+ dpre(ci),j}]. (16)

Proof: In Eq. (16) all the remaining (m− k) tasks are
provisioned with 100% capacity of a server, and thus uk
provides a lower bound on the total amount of delays
for the remaining (m− k) tasks.

Based on the above problem transformation, we then
develop OnMutas to determine the optimal values of
{ajk,i}. Our algorithm is based on the branch and bound
approach. Notice that the solutions of subproblems usu-
ally constitute a search tree for the original problem.
When applying depth-first search over subproblems, we
adopt a greedy heuristic by searching the one with the
smallest lower bound first. Each time when a leaf node in
the search tree is reached, all other branches with larger
values of lower bounds are pruned. The optimal solution
will be found until all the leaf nodes have been either
searched or pruned.

Fig. 5 shows an example of the proposed algorithm.
Assuming that there are 3 tasks c1, c2, and c3 with com-
putational complexities equal to 3, 2, and 1, respectively;
there are 2 servers s1 and s2 with capacities equal to
2 and 1, respectively; the data transmission delays1 are
dpre(c1),1 = 1, dpre(c1),2 = 2, dpre(c2),1 = 2, dpre(c2),2 = 1,
dpre(c3),1 = 1, and dpre(c3),2 = 1. As shown in the figure,
we are going to determine which server should c1 be
placed on? If task c1 is placed on s1, the lower bound of
this node is 3

2 + 1 + 2
1 + 1 + 1

2 + 1 = 7; similarly, the lower
bound of placing c1 on s2 is 8.5. We will search the node
with the smallest lower bound first. The first leaf node
we visit has a lower bound of 7.7, under the condition
that c1 and c3 are placed on s1 while c2 is placed on s2.
After that all the branches with lower bounds larger than
7.7 will be pruned. For all the leaf nodes in the figure, six
of them are pruned (gray nodes in the figure). Among
the rest two leaf nodes, the one with the smallest lower
bound indicates the optimal solution.

1. If ci has no predecessor, the delays indicate the data transmission
delay from the AP to the servers.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

20 40 60 80 100
The number of users

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 d
el

ay
 (

s)

Baseline
Opt-random
Opt-nearest
Mutas+SA

(a) User Number

0 100 200 300 400 500
Average network latency (ms)

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 d
el

ay
 (

s)

Baseline
Opt-random
Opt-nearest
Mutas+SA

(b) Average Network Latency

0.1 0.2 0.3 0.4 0.5
Average computations per task (gigacycles)

0.5

1

1.5

2

2.5

A
ve

ra
ge

 d
el

ay
(s

)

Baseline
Opt-random
Opt-nearest
Mutas+SA

(c) Computation Amounts

10 20 30 40 50
The number of servers

0

0.5

1

1.5

2

A
ve

ra
ge

 d
el

ay
 (

s)

Baseline
Opt-random
Opt-nearest
Mutas+SA

(d) Server Number

Fig. 6. Impact of different parameters on the performance of the offline algorithm

0 100 200 300 400

Iterations

0.5

0.52

0.54

0.56

0.58

0.6

0.62

A
ve

ra
ge

 d
el

ay
 (

s)

 α =0.99
 α =0.98
 α =0.9784 iterations

170 iterations

340 iterations

Fig. 7. The effect of the
cooling parameter α

5 10 15 20 25

Iterations

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 d
el

ay
 (

s)

SA
Mutas
Mutas+SA

Fig. 8. The contribution of
the Mutas+SA

6 SIMULATION RESULTS

In this section, we evaluate the performance of the
proposed offline and online algorithms by extensive sim-
ulations. The simulation is conducted on a Dell OptiPlex
7050 desktop computer with an Intel i5- 7500@3.4GHz
CPU and 8GB RAM.

6.1 Simulation setup
We simulate an edge network with 50 wireless access
points. The wireless data rates of users are uniformly
distributed between 1 to 10 Mbps. According to [3],
the computing capacities of edge servers are uniformly
generated between 2 GHZ and 5 GHZ, while the com-
puting capacities of edge servers are uniformly gener-
ated between 8 GHZ and 12 GHZ. For each task being
received by a server, we specify its amount of computa-
tion needed as the number of CPU cycles. Particularly,
if a task with 1 gigacycles is offloaded to a server
provisioned with 2GHz capacity, its computation delay
will be 0.5 seconds.

In the offline case, there are 20 servers, both edge
servers and cloud servers are included. The network
latencies between wireless APs and edge servers are gen-
erated according to a normal distribution with the mean
of 50ms. The network latencies between the wireless
access points and the cloud servers are also generated
based on a normal distribution but with the mean of
150ms. The edge servers and cloud servers are randomly
deployed in the network. In the online case, if not
specified explicitly, the task queue length is set to be 10.

Since the problem formulation is unique, other state-
of-the-art algorithms can be hardly found. As for dis-
patching policies, Nearest is the most friendly approach
to distributed systems. For example, task assignment

policy in [24] is to greedily dispatch a job to the server
which brings the least increase to the total response time.
As the mobile device only needs to communicate with
the nearest edge-clouds, most of the works (e.g., [30],
[31]) on edge clouds adopted Nearest as the job dis-
patching policy. The centralized scheduling algorithms
aim to find the optimal task assignment solution. For
example, the authors in [3] designed an edge network
orchestration algorithm named FACT which optimizes
the edge server assignment and video frame resolution
selection for MAR users. The problem is convex and the
optimal solution can be derived by convex optimization.
Random is close to the practical scenarios where the
global information about network topology is unknown.

As for the resource allocation policy, one popular
resource allocation policy is equal division (the available
computational resources on a server are evenly shared
by the tasks assigned to the server), which is commonly
used by the approaches designed for parallel multi-user
systems (e.g., [32], [3]). To ensure more efficient utiliza-
tion of computing resources, the work in [33] proposed a
workload placement algorithm that decides which edge
cloud servers the mobile programs are placed on and
how much computational capacity is provisioned to ex-
ecute each program. The workload placement algorithm
is developed based on brute-force search method and the
optimal scheme can be found using convex optimization.

Therefore, we design the comparisons as the combina-
tions of these typical dispatching and resource allocating
policies. In our simulations, we compare our algorithms
with four heuristics (Baseline, Opt-random, Nearest, and
Opt-nearest) summarized in Table 3. Each algorithm con-
tains two strategies for server assignment and resource
management, respectively. Table 3 shows which strategy
is used in each algorithm.

In the table, by “greedy server assignment”, we mean,
for the first task in an application, it will be sent to the
server with the smallest data upload delay; for other
task, the server we choose will be the nearest one from
where its predecessor is located. By “optimal resource
allocation”, we mean, if the server assignment of all tasks
is fixed, we can further optimize the total service delay
by solving the resource allocation problem.

In Mutas+SA, the initial temperature is generally set to
be a value that results in average acceptance probability
equal to 0.8 for bad mutations from initial solution [34].

IEEE/ACM TRANSACTIONS ON NETWORKING 9

TABLE 1
Algorithms in Comparison (opt is short for optimal)

resource allocation server assignment
average opt. random greedy opt

Mutas/OnMutas ! !

Baseline ! !

Opt-random ! !

Nearest ! !

Opt-nearest ! !

Hence, we randomly generate lots of cost-decreasing
mutations and compute the average decrease in cost
∆cost, then the initial temperature T is set to be − ∆cost

ln(0.8) .
When evaluating the performance of proposed offline
algorithm, the cooling parameter α is set to 0.97, and
the initial temperature and terminating temperature are
set to 10 and 1, respectively.

6.2 Offline performance
To evaluate the impact of cooling parameter on the
performance of the offline algorithm, we adjust the value
of cooling parameter and solve the scheduling problem
by SA based on the solution derived by Mutas. The
experiment results are shown in Fig. 7. Though a larger
value of α usually generates a better solution, but it
can also slow the speed of SA convergence, incurring
larger time cost of the algorithm itself. We can reduce
the number of iterations at a slight sacrifice of accuracy.

Despite the fact that the derived solution is not opti-
mal, we observe that the distance from the optimum are
generally negligible in our experiments. For example, in
the case depicted by Fig. 9, two edge servers and a cloud
center are deployed, there are three users connected to
the nearby APs, each with a two-transform application to
offload. The parameter settings including server capac-
ity, task computation complexity, and network latency
are given in Fig. 9, under which, the average delayS
generated by Mutas+SA and the brute force method are
0.85s and 0.82s respectively, we believe that this time
difference of 0.03s does little harm to the user perception.

To demonstrate the role and contribution of Mutas and
SA in the offline algorithm, we first run them separately
to provide a feasible solution to the original problem.
The convergence process of these algorithms is shown
in Fig. 8. First, Mutas algorithm converges to the local
optimum quickly in several iterations, Second, with an
appropriate starting point, SA pushes the solution to one
that is closer to the optimal solution. We can observe that
when combined together in the proposed manner, Mutas
and SA each serves an important role in the overall
algorithm design. For further performance evaluation,
we also consider the following factors:

The impact of the number of users. We first evaluate
the performance of Mutas with different numbers of
users. The MAR application of each user is independent
from all others. Fig. 6(a) reflects the impact of the number
of users on the performance of four different algorithms.
When the number of users increases, servers experience
more workloads. Thus, the service delay increases. When

0.05S

0.15S

0.08S

0.08S 0.18S 0.08S

0.08S

0.12S

0.02S

Cloud

Edge Edge
0.1s 0.2s

0.08s

Capacity: 5
Capacity: 10

Capacity:5
Mutas+SA

Optimal

Solution
u1 u2 u3

2c
1

1

1c
2

1

1c
1

2

1c
2

2

1c
1

3

2c
2

3

Fig. 9. The solution from Mutas+SA vs the Optimum.

compared with the other algorithms, the Mutas algo-
rithm achieves the smallest delay. As compared with
the Baseline algorithm, the Mutas algorithm gains up to
65% service delay reduction when the number of users is
100. Since Baseline and Opt-random both adopt random
server assignment, the difference between them reflects
the improvement gained from the optimization of re-
source allocation. We can observe that when workload
increases, such improvement becomes more obvious.

Meanwhile, the gap between Opt-nearest and Opt-
random narrows as task number increases. With the
amount of workloads increases, the resource contention
on each server leads to a longer processing time. As the
ratio of network latency to the total delay decreases, the
greedy server assignment gradually loses its advantage
over the random server assignment.

The impact of network latency. Fig. 6(b) shows the
impact of the average network latency on the perfor-
mance of different algorithms. Here, the average net-
work latency reflects the average transmission delay
between servers. As shown in the figure, the average
service delay increases when the average network la-
tency increases. Mutas significantly reduces the delay by
61% compared to the Baseline. The difference between
Opt-random and Baseline reflects the improvement from
the optimization of resource allocation. Note that, the
variance of the network latency has no impact on the
gap between Opt-random and Baseline, since network
latency is irrelevant to resource contention on servers.

Besides, the improvement from greedy task dispatch-
ing becomes significant as the network latency increases.
Since service delay comprises of data transmission delay
and computational delay; as network latency increases,
data transmission becomes the dominant component,
hence the improvement due to the optimization of data
transmission delay becomes more obvious.

The impact of the amounts of computations. The
performance of four algorithms with varying amounts
of computations is shown in Fig. 6(c). When more
workloads are included in each task, the service delay
increases. Mutas can reduce the average service delay
by 48%, compared to that of Baseline. Compared to Opt-
nearest, the delay reduction achieved by Mutas is about
22%. When comparing baseline with Opt-random, we

IEEE/ACM TRANSACTIONS ON NETWORKING 10

5 10 15 20
The number of users

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 ta
sk

 d
el

ay
 (

s)

OnMutus
Opt-nearest
Nearest
Baseline

(a) User Number

50 200 350 500
Average network latency (ms)

0

0.5

1

1.5

A
ve

ra
ge

 ta
sk

 d
el

ay
 (

s)

OnMutus
Opt-nearest
Nearest
Baseline

(b) Average Network Latency

5 15 35 50
The number of servers

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 ta
sk

 d
el

ay
(s

)

OnMutus
Opt-nearest
Nearest
Baseline

(c) Server Number

0.5 1 1.5 2
Average computations per task (gigacycles)

0

0.5

1

1.5

A
ve

ra
ge

 ta
sk

 d
el

ay
(s

)

OnMutus
Opt-nearest
Nearest
Baseline

(d) Computation Amounts

Fig. 10. Impact of different parameters on the performance of the online algorithm in terms of average task delay

can conclude that, with larger computation amounts, the
delay reduction brought by resource allocation optimiza-
tion becomes more obvious. Note that, the greedy server
assignment can even perform worse than the random
dispatching when servers experience more workloads.

The impact of the number of servers. The impact of
the number of servers is shown in Fig. 6(d). Obviously,
with more servers, all algorithms have smaller delays.
Compared with other algorithms, Mutas achieves the
smallest service delay. However, the performance gain
becomes very small when adding more servers after the
server number reaches 30. We can see that the perfor-
mance gain from the resource allocation optimization is
greater when the number of servers is limited.

TABLE 2
Mutas Runtime Evaluation

Mutas(Sec) SA(Sec)
Task num Avg runtime Iterations Avg runtime Iterations

10 0.142 4 0.009 84
20 0.271 5 0.017 84
30 0.396 7 0.024 84
40 0.535 9 0.032 84
50 0.813 10 0.048 84

The running time of the offline algorithm. The run-
ning time of other algorithms in comparison is negligible
in most cases, so we only record the average running
time of the proposed algorithm in the table 2, along with
the corresponding iteration number of Mutas and SA.
For Mutas, when task number rises from 10 to 50, it al-
ways converges within 10 iterations, however, since each
iteration involves solving a convex problem, the running
time increases significantly with problem scale. For SA,
with more tasks, the required iterations is fixed since
it only depends on the parameter settings, the running
time also shows a small increase. It can be observed from
table 2 that, even requires more iterations, SA has a fast
running speed than Mutas. At the meantime, as shown
in Fig. 8, the first few iterations brings the majority of
the decrease in objective function for Mutas. Based on
these two observations, when task number grows, we
suggest optimizing the proposed algorithm by cutting
the iterations of Mutas to save running time, which
means we have to accept a temporarily worse starting
point for SA, but as a compensation, we can add SA
iterations by adopting a larger α.

6.3 Online performance in terms of average task
delay
OnMutas is designed to schedule MAR tasks that are
ready for execution at the beginning of the current time
slot. In this subsection, we evaluate OnMutas in terms of
average task delay. The average task delay includes two
parts: the data transmission delay between its preceding
task and itself, and the computational delay of the task.

The impact of the number of users. Fig. 10(a) shows
the impact of the user number on the performance
of different algorithms. When the number of users in
queue increases, servers experience more workloads.
Thus, the service delay increases. Compared with other
algorithms, OnMutas achieves the smallest delay. Com-
pared with Baseline, OnMutas gains up to 47% service
delay reduction when the number of users is 20. The
performance gain of Opt-nearest over Nearest reflects the
influence of the resource allocation optimization.

The impact of network latency. Fig. 10(b) shows the
impact of the network latency on the performance of
different algorithms. As shown in the figure, the average
service delay increases when the average network la-
tency increases. We can see that the network latency can
greatly affect the performance of Nearest. For example,
the performance of Nearest and Baseline are similar in
the 50ms case, while the delay reduction of Nearest over
Baseline is up to 41% in the 500ms case.

The impact of the number of servers. Fig. 10(c)
shows the average service delay with different numbers
of servers. When compared with the other algorithms,
OnMutas achieves the smallest delay. Similar to the
offline case, the performance gain of adding more servers
is small after the server number reaches 15.

The impact of the amount of computations. Fig. 10(d)
indicates that average delay is affected by the amount
of computations. Note that a larger amount of com-
putations leads to more delay reduction. For example,
when the average amount of computations increases to
2 gigacycles, the delay reduction could be up to 60%.

The running time of onMutas. Table 3 shows the
running time of onMutas and depth-first search (DFS).
We configure two edge servers and a remote cloud with
task number rising from 10 to 30. When there are m
computing tasks and n servers, the time complexity to
exhaustively search the solution space is O(nm). Obvi-
ously, with more tasks, the running time of depth-first

IEEE/ACM TRANSACTIONS ON NETWORKING 11

1000 2000 3000 4000 5000
The number of users

0

1

2

3

4

5

A
ve

ra
ge

 d
el

ay
(s

)

O O
O

O

O

N

N

N

N

N

B

B

B

B

B

Computational Delay
Core Network Delay
Schedling Time
Wating Time

O:OnMutus
N:Opt-Nearest
B:Baseline

(a) User Number

50 100 200 400 500
Average network latency (ms)

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 d
el

ay
 (

s)

O
O O

O
O

N N
N

N NB B

B

B

B

(b) Average Network Latency

10 20 30 40 50
The number of servers

0

1

2

3

4

A
ve

ra
ge

 d
el

ay
(s

)

O

O

O O
O

N

N

N

N

N

B

B

B

B

B

(c) Server Number

0.1 0.2 0.3 0.4 0.5
Average computations per task (gigacycles)

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 d
el

ay
 (

s)

O

O

O

O

O

N

N

N

N

N

B

B
B

B
B

(d) Computation Amounts

Fig. 11. Impact of different parameters on the performance of the online algorithm in terms of average service delay

search increases significantly. The performance gain of
OnMutas can be regarded as the advantage of adopting
the branch and bound approach over DFS. The decreased
complexity varies in different cases and can be hardly
expressed in a unified mathematical form. According
to our simulations, the average time cost reduction of
OnMutas over DFS is up to 80%.

TABLE 3
OnMutas Runtime Evaluation

Task number

Avg runtime Algorithm
OnMutas(Sec) DFS(Sec)

10 0.021± 0.014 0.093± 0.027
15 0.045± 0.029 0.159± 0.149
20 0.183± 0.110 0.674± 0.520
25 0.244± 0.226 1.452± 1.139
30 0.577± 0.359 1.970± 1.447

6.4 Online performance in terms of average service
delay
As we mentioned before, the service delay includes
wireless delay, core network delay, and computational
delay. Since the wireless delay is irrelevant to the specific
scheduling algorithm, we will not consider it in this
subsection. We are also interested two other delays:
scheduling time and waiting time. The former is the
running time of OnMutas, while the latter is the waiting
time when a task is in the task queue.

We first investigate the influence of the number of
users on the performance of OnMutas. The results are
shown in Fig. 11(a). When the number of user increases,
servers experience more workloads, and thus both the
processing time and the waiting time of each application
increase. When the number of user increases, the length
of task queue also increases, leading to a longer running
time of OnMutas. Note that, the running time of other
heuristics is negligible in our experiments.

In Fig. 11(b), when the average network latency in-
creases, users experience longer service delays. Results
show that network latency has no impact on the process-
ing time and the waiting time of all tasks. As network
latency increases, the proportion of data transmission
delay increases, the performance of Opt-nearest hence
gets better due to its optimization on server assignment.

In Fig. 11(c), when adding more servers into the
system, the processing time and waiting time of tasks
decrease. Meanwhile, the running time of OnMutas in-
creases since adding servers enlarges the solution space.

Fig. 11(d) shows the average delay with different
amounts of computations. Obviously, as more compu-
tations are included in each task, a longer processing
time is needed. Note that, the delay reduction of OnMu-
tas over other heuristics becomes more obvious as the
amount of computations increases.

As a brief summary, we evaluated the performance
of Mutas and OnMutas with extensive simulations. The
results show that both our offline and online algorithms
can greatly reduce the service delay of MAR systems.

7 SYSTEM DESIGN AND EXPERIMENTS

We present the architecture of our MAR platform in this
section. As illustrated in Fig. 12, the requests are first
submitted to the centralized network controller, which
is deployed at the proximity of users. The monitoring
service and profiling service running in the network
controller keep collecting necessary information for the
scheduling algorithm. Note that the task is the unit of
the application for our system to make scheduling and
optimization decisions. The tasks are then sequentially
executed on the scheduled server and the analysis out-
put will be sent back to the corresponding MAR users.

Monitoring Service. The system status monitor con-
tinuously collects system run-time information including
network latency and server workload. The monitoring
of users wireless data rates is also necessary since wire-
less bandwidth exhibits substantial dynamics over time.
These information is then utilized by the scheduling
algorithm to co-optimize the task offloading decision
and resource allocation.

Profiling Service. The application profiler models the
impact of input datasize on the task computation com-
plexity. In prior studies, the computation complexity
with respect to the resolution is formulated as a concave
function for CNN-based object detection algorithms [3],
[35]. It is reasonable because for a specific CNN, the in-
put image size is fixed. A small CNN generally processes
images with low resolution, contrarily, a large CNN
takes images with high resolution as the input. Since
the running time of CNN increases with the number of
network layers, the running time of the deep-learning
algorithm is indirectly determined by the image resolu-
tion, in other words, when the input data size is fixed,
the computation complexity of image processing task

IEEE/ACM TRANSACTIONS ON NETWORKING 12

Edge Node 1

Task

Executor

Task

Executor

Edge Node n

Executor

Task

Executor
... Task

Application m

Monitoring

Service

Application 1

Scheduling

Service

Profiling

Service

Network Controller

Assign tasks

...

Placement &

 resource allocation
Report

machine

status

Query

profile

Fig. 12. The system architecture of our MAR platform.

is approximately the same. For other image-processing
algorithms involved in MAR application (e.g. object
tracking [36] and image rendering [37]), the algorithm
complexity is also closely relevant to the amount of
pixels in the image [38]. In conclusion, the running time
of image processing is determined by the input data size.
This observation allows us to build a profiling tool that
learns an accurate relationship between input datasize
and computation complexity (cik in Section 3.2) for each
task in AR applications. Since different applications tend
to have different profiles, we add a profiling phase to
the deployment of every new type of AR application.
For each AR request, the profiling service first estimates
the corresponding computation complexity of all tasks
involved according to its input datasize, the scheduling
module then relies on the information for task dispatch-
ing and resource management.

Scheduling Service. The third module is the sched-
uler, which is responsible for the task dispatching and
resource management. The key components of the sched-
uler are Mutas and onMutas algorithms. When the Mu-
tas algorithm solves the scheduling problem, prereq-
uisite information about the computation complexities
of all the tasks involved is required. The offline cen-
tralized scheduler applies to small MAR systems since
the scheduling delay increases with the network scale,
while the online scheduler is more general. The onMutas
algorithm is invoked periodically or based on the task
queue length, both of which are adjustable.

7.1 Evaluation setup
Our experiment consists of five virtual machines, among
which four are edge/cloud computing nodes, and the
other one is the network controller. The five virtual
machines are connected through virtual routers which
are emulated by virtual machines.

In our experiments, the link latency is emulated by
linux TC (traffic control) [39]. We roughly separate MAR
applications into four tasks, preprocessing (including
resizing, decoding and denoising), object extracting, ob-
ject recognizing and image construction. Fig. 13 depicts
two MAR applications we support, in which one AR
chain include complete four stages while the other do
not require the extracting of certain objects. Our im-
plementation uses OpenCV [40] for object abstraction,

P E R C

P image preprocessing

E object extraction

Client

R object recognition

C image composition

Fig. 13. Two MAR applications we support in our experi-
ment: P-E-R-C and P-R-C.

YOLO [41], a pre-trained neural network, for object
recognition and OPENGL for image construction. We
first use an offline process to build a default profile
on a server with 32-core CPU and 64G memory. The
profiler executes instrumented tasks multiple times with
different inputs and measures metrics including execu-
tion time, input/output data size, etc. More specifically,
in order to make CNN support different input datasizes,
we load five different CNN models with various input
resolutions. Fig. 14 shows the impact of the input data
size on the task computational delay. We observe that for
most image-related operations, the relationship between
input datasize and the computation complexity can be
modeled as concave functions.

7.2 Evaluation results
Fig. 15 shows the impact of the user number on the
average service latency. We compare onMutas with two
heuristics (Opt-random, Opt-nearest) mentioned before.
When the number of user rises from 2 to 4, the re-
sponse time shows slight variance, however, the aver-
age delay significantly increases with heavier system
load. We found that the performance of Opt-nearest
highly relies on the user distribution, Opt-nearest can
even perform worse than Opt-random with unbalanced
workload. Similar to our simulations, the performance
gain of OnMutas over other algorithms is obvious. We
also optimize the Mutas algorithm by allocating reserved
resources not in use to running tasks on the server.
The optimized Mutas algorithm performs slightly better
than onMutas in a few cases (e.g. when the number of
users equals to 8). Our experiment result shows that the
performance of these two algorithms is overall similar
when all the requests arrive at about the same time.

8 DISCUSSIONS

Handling DAG jobs. We notice that the interdepen-
dency of tasks in an application exhibits more com-
plicated patterns. For example, in [42], the car plate
detection application is partitioned into multiple tasks,
whose dependency is modeled as a directed acyclic
graph (DAG). Here we take a step further to extend
onMutas for DAG-based task graphs. For a given DAG
G =< V,E >, where V is the set of tasks and E is
the set of edges. The edge (i, k) on the graph specifies
that there is some required data transfer, eik, from task
i to task k and hence, k cannot start before i finishes.
Scheduling DAG applications consists of two steps. First,

IEEE/ACM TRANSACTIONS ON NETWORKING 13

200 300 400 500 600
Resolution

0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
)

Object Recognition
Fitted Curve
Object Extraction
Fitted Curve
Image Preprocessing
Fitted Curve
Image Composition
Fitted Curve

Fig. 14. The relationship
between datasize and
computation complexity
for AR-ralated operations.

2 4 6 8 10
Number of users

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er
ag

e
de

la
y(
s)

Mutas
OnMutas
Opt-nearest
Opt-random

Fig. 15. Impact of the num-
ber of users on the perfor-
mance in terms of average
service delay.

at the beginning of each slot, we find all the task nodes
with zero in-degree then a scheduling decision is made
for them. When these tasks finish, the DAG is updated
and zero in-degree tasks can join the queue waiting to
be executed. By this way, we decompose sophisticated
applications into several waves of tasks and thus they
can be successfully scheduled just as pipelines.

Beyond MAR. In this paper, we aim to develop an
effective scheduler for the edge-based mobile AR system.
However, our system can be easily extended to support
heterogeneous applications. For example, the video anal-
ysis application can be integrated to our system since
they are naturally composed of different computing-
intensive components. However, the profiling procedure
should be specified for each application due to the inner-
application and inter-application diversity.

9 CONCLUSION

In this paper, a MAR application is modeled as a chain of
inter-dependent tasks with data transmissions between
them, each task can be offloaded to different servers.
We hence consider the offloading of MAR applications
comprising multiple tasks, over a generic cloud-edge
computing system including a group of heterogeneous
edge servers and remote clouds. We design both of-
fline and online algorithms by optimizing the server
assignment and the resource allocation jointly. The ex-
perimental results show that both our offline and online
algorithms can significantly reduce the service delays of
MAR applications when compared to other heuristics.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China (2018YFB1004704), NSFC (61872175,
61832008), Natural Science Foundation of Jiangsu
Province (BK20181252), Jiangsu Key R&D Program
(BE2018116), and Collaborative Innovation Center of
Novel Software Technology and Industrialization. Sheng
Zhang is the corresponding author.

REFERENCES
[1] A. Henrysson and M. Ollila, “Umar: Ubiquitous mobile aug-

mented reality,” in Proc. of ACM Mobiquitous, 2004, pp. 41–45.

[2] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile
augmented reality survey: From where we are to where we go,”
IEEE Access, vol. 5, pp. 6917–6950, 2017.

[3] Q. Liu, J. O. Huang, Siqi, and T. Han, “An edge network orches-
trator for mobile augmented reality,” in Proc. of IEEE INFOCOM,
2018, pp. 1–9.

[4] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applica-
tions,” in Proc. of ACM MobiSys, 2017, pp. 82–95.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[7] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance.” in Proc. of NSDI, 2017, pp. 1–14.

[8] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-
clouds,” Performance Evaluation, vol. 91, pp. 205–228, 2015.

[9] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE
Transactions on Cloud Computing, vol. 7, no. 2, pp. 301–313, 2019.

[10] Y.-H. Kao and B. Krishnamachari, “Optimizing mobile com-
putational offloading with delay constraints,” in Proc. of IEEE
GLOBECOM, 2014, pp. 2289–2294.

[11] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload:
an efficient code partition algorithm for mobile cloud computing,”
in Proc. of IEEE CloudNet, 2012, pp. 80–86.

[12] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,” in
Proc of IEEE INFOCOM, 2013, pp. 190–194.

[13] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards
an elastic application model for augmenting the computing capa-
bilities of mobile devices with cloud computing,” Mobile Networks
and Applications, vol. 16, no. 3, pp. 270–284, 2011.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, no. 5, pp. 2795–2808, 2016.

[15] B. Cici, M. Gjoka, A. Markopoulou, and C. T. Butts, “On the
decomposition of cell phone activity patterns and their connection
with urban ecology,” in Proc. of ACM MobiHoc, 2015, pp. 317–326.

[16] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” IEEE Transactions on Mobile Computing, vol. 16, no. 11,
pp. 3056–3069, 2017.

[17] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud com-
puting,” in Proc. of IEEE INFOCOM WKSHPS, 2014, pp. 352–357.

[18] M.-A. H. Abdel-Jabbar, I. Kacem, and S. Martin, “Unrelated par-
allel machines with precedence constraints: application to cloud
computing,” in Proc. of IEEE CloudNet, 2014, pp. 438–442.

[19] S. Sundar and B. Liang, “Offloading dependent tasks with com-
munication delay and deadline constraint,” in Proc. of IEEE IN-
FOCOM, 2018, pp. 1–9.

[20] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto
clouds: Leveraging mobile devices to provide cloud service at
the edge,” in Proc. of IEEE Cloud, 2015, pp. 9–16.

[21] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260–274, 2002.

[22] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” arXiv
preprint arXiv:1605.08023, 2016.

[23] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[24] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. of IEEE INFOCOM, 2017,
pp. 1–9.

[25] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[26] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear gauss–seidel method under convex constraints,” Oper-
ations research letters, vol. 26, no. 3, pp. 127–136, 2000.

[27] T. L. Beck A, “On the convergence of block coordinate descent
type methods,” SIAM journal on Optimization, vol. 23, no. 4, pp.
2037–2060, 2013.

[28] C. Wang, S. Zhang, H. Zhang, Z. Qian, and S. Lu, “Edge cloud
capacity allocation for low delay computing on mobile devices,”
in Proc. of IEEE ISPA/IUCC, 2017, pp. 290–297.

[29] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload
analysis and demand prediction of enterprise data center appli-
cations,” in Proc. of IEEE IISWC, 2007, pp. 171–180.

[30] M. Jia and J. Cao, “Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,” in
Proc. of IEEE INFOCOM, 2016, pp. 1–9.

[31] L. Tawalbeh, Y. Jararweh, and F. Ababneh, “Large scale cloudlets
deployment for efficient mobile cloud computing,” Journal of
Networks, vol. 10, pp. 70–76, 2015.

[32] Z. Zhou and X. Chen, “Follow me at the edge: Mobility-aware
dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, pp. 2333–2345,
2018.

[33] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. of IEEE INFOCOM, 2016, pp. 1–9.

[34] S. Kirkpatrick, “Optimization by simulated annealing: Quantita-
tive studies,” Journal of statistical physics, vol. 34, no. 5-6, pp. 975–
986, 1984.

[35] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-
based real-time video analytics,” in Proc. of IEEE INFOCOM, 2020.

[36] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui,
“Visual object tracking using adaptive correlation filters,” in 2010
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE, 2010, pp. 2544–2550.

[37] L. Meylan and S. Susstrunk, “High dynamic range image ren-
dering with a retinex-based adaptive filter,” IEEE Transactions on
Image Processing, vol. 15, no. 9, pp. 2820–2830, 2006.

[38] M. Nixon and A. Aguado, Feature extraction and image processing
for computer vision. Academic press, 2019.

[39] M. A. Brown, “Traffic control howto,” Guide to IP Layer Network,
p. 49, 2006.

[40] G. Bradski, “The opencv library,” http://opencv.org, doctor
Dobbs Journal.

[41] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
arXiv preprint, 2017.

[42] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in
Proc. of ACM/IEEE SEC, 2017.

Can Wang received the BS degree in the School
of Computer Science, WuHan University. She is
currently working toward the MS degree in the
Department of Computer Science and Technol-
ogy, Nanjing University, under the supervision
of Prof. Sheng Zhang. Her research interests
include edge computing and wireless networks.

Sheng Zhang is an associate professor in the
Department of Computer Science and Technol-
ogy, Nanjing University. He is also a member
of the State Key Lab. for Novel Software Tech-
nology. He received the BS and PhD degrees
from Nanjing University in 2008 and 2014, re-
spectively. His research interests include cloud
computing and edge computing. To date, he has
published more than 70 papers, including those
appeared in TMC, TPDS, TC, MobiHoc, ICDCS,
INFOCOM, IWQoS, and ICPP. He received the

Best Paper Runner-Up Award from IEEE MASS 2012. He is the recipient
of the 2015 ACM China Doctoral Dissertation Nomination Award. He is
a member of the IEEE and a senior member of the CCF.

Zhuzhong Qian is an associate professor at the
Department of Computer Science and Technol-
ogy, Nanjing University, P. R. China. He received
his PhD. Degree in computer science in 2007.
Currently, his research interests include cloud
computing, distributed systems, and pervasive
computing. He is the chief member of several na-
tional research projects on cloud computing and
pervasive computing. He has published more
than 30 research papers in related fields.

Mingjun Xiao is an associate professor in the
School of Computer Science and Technology
at the University of Science and Technology
of China (USTC). He received his Ph.D. from
USTC in 2004. In 2012, he was a visiting scholar
at Temple University, under the supervision of
Dr. Jie Wu. He is a TPC member of many
conferences, including IEEE INFOCOM 2018,
IEEE ICDCS 2015, ACM Mobihoc 2014, etc, and
has served as a reviewer for many journal pa-
pers. His main research interests include mobile

crowdsensing, mobile social networks, and vehicular ad hoc networks.
He has published over 50 papers in refereed journals and conferences,
including TON, TMC, TPDS, TC, INFOCOM, etc.

Jie Wu (F’09) is the Director of the Center for
Networked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Univer-
sity. His current research interests include mobile computing and wire-
less networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP
2016, and IEEE CNS 2016, as well as program co-chair for IEEE
INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). Dr.
Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF) Overseas
Outstanding Achievement Award.

Baoliu Ye is a full professor at Department
of Computer Science and Technology, Nanjing
University. He received his Ph.D. in computer
science from Nanjing University, China in 2004,
and was a visiting researcher of the University of
Aizu, Japan from March 2005 to July 2006. Cur-
rently, he serves as the Dean of School of Com-
puter and Information, Hohai University, China.
His current research interests mainly include
distributed systems, cloud computing, wireless
networks. He has published over 100 papers in

referred journals and conferences in above ereas. He is the regent of
CCF, the Secretary-General of CCF Technical Committee of Distributed
Computing and Systems, and a distinguished member of CCF.

Sanglu Lu received her BS, MS, and PhD de-
grees from Nanjing University in 1992, 1995,
and 1997, respectively, all in computer science.
She is currently a professor in the Depart-
ment of Computer Science and Technology and
the State Key Laboratory for Novel Software
Technology. Her research interests include dis-
tributed computing, wireless networks, and per-
vasive computing. She has published over 80
papers in referred journals and conferences in
the above areas. She is a member of IEEE.

