Virtual Network Embedding with Substrate Support for Parallelization

Sheng Zhang, Nanjing University, P.R. China
Jie Wu, Temple University, USA
Sanglu Lu, Nanjing University, P.R. China

Presenter: Pouya Ostovari, Temple University, USA

IEEE Globecom 2012
Anaheim, CA,
3-7 Dec, 2012
Agenda

- Introduction
- Motivation for parallelization
- Virtual network embedding – parallelization version
- Two Algorithms
- Simulations
- Conclusions
The Internet has proven its worth by

- Improving the way we access and exchange information in the modern world
- Supporting multitude of distributed applications and a wide variety of network technologies

However, like many successful technologies, the Internet is suffering its adverse effects
Internet Ossification

Alternations to the Internet architecture are restricted to simple incremental updates, e.g., the deployment of IPv6

- Multiple network domains with conflicting interests
 - multilateral relationship? Difficult!
 - Deploy changes/updates? Global agreement!

- The Internet
 - security, routing stability, etc.
Network Virtualization

- **Infrastructure provider (InP)**
 - Maintains physical/substrate network (SN)

- **Service provider (SP)**
 - purchases slices of resource (e.g., CPU, bandwidth, memory) from the InP
 - then creates a customized virtual network (VN) to offer value-added service (e.g., content distribution, VoIP) to end users

- **End users**
Virtual Network Mapping

- VNM is to embed multiple VN requests with resource constraints into a substrate network.
- The objective is usually to maximize the utilization ratio of physical resources.

![Diagram of substrate network and VN requests](image)
Virtual Network Mapping

Given a VN request and a substrate network, the problem of determining whether the request can be embedded without any resource violation is \textit{NP-hard} \cite{Andersen2002}.
Related Work

○ Simulated annealing: [Ricci et al. 2003]

○ Load balancing: [Zhu & Ammar 2006]
 ● Unlimited resources

○ Path splitting: [Yu et al. 2008]
 ● Multi-commodity flow problem

○ Opportunistic resource sharing: [Zhang et al. 2011 & 2012]

○ Topology-aware: [Cheng et al. 2011][Zhang et al. 2012]
However

- There has been little research done on virtual network embedding with substrate support for parallelization
 - SN allows a virtual node to be mapped to multiple substrate nodes

- Advantages
 - Makes substrate resource utilization more **efficient**
 - Makes virtual networks more **reliable**, as computation can be quickly migrated to other substrate nodes in case a substrate node crashes.
A Motivational Example

parallelization

accept

reject

with/without parallelization

residual substrate network

VN request G^v_3
How to capture the parallelization?

○ The multiple substrate nodes, which one virtual node is mapped onto, should be close to each other so as to mitigate the effect of network latency.

○ This paper represents this "closeness" by forcing these multiple substrate nodes to form a star topology, i.e., all slave nodes are 1-hop away from the master node.
Virtual network embedding - the parallelization version

Virtual network embedding from a virtual network to a subset of a substrate network is composed of three components:

- **Master mapping**
 - A virtual node to a substrate node

- **Slave mapping**
 - A virtual node to a group of substrate nodes

- **Link mapping**
 - A virtual link to a substrate path

The objective is to maximize the utilization ratio of substrate resources
A Concrete Example

![Diagram showing virtual network embedding with substrate support for parallelization.](image)

Fig. 1. An illustration of virtual network embedding with substrate support for parallelization. For virtual network G^v_1, the master mapping is $\{a \to A, c \to G, b \to H\}$, the slave mapping is $\{a \to \emptyset, c \to \emptyset, b \to \{F\}\}$, and the link mapping is $\{(ac) \to AG, (cb) \to GH, (ba) \to HB, BA\}$. Ratio$(b) = \{0.6, 0.4\}$. For virtual network G^v_2, the master mapping is $\{d \to C, e \to E\}$, the slave mapping is $\{d \to \{B\}, e \to \{F\}\}$, and the link mapping is $\{(de) \to CD, DE\}$. Ratio$(d) = \{2/3, 1/3\}$, and Ratio$(e) = \{2/3, 1/3\}$.
The big picture of ProactiveP

- ProactiveP employs a greedy approach to deal with master mapping.
- The slave nodes are chosen from the neighbors of each master node.
- The link mapping utilizes Dijkstra to find the shortest path that meets the bandwidth requirements.
ProactiveP

 Initialization: every substrate node is set to be unused, and every node updates denoting the summation of the residual resources of the neighbors (including n^s itself) of n^s

 Master Mapping: all virtual nodes are sorted in the decreasing order of We then map each virtual node to the unused substrate node with the largest
ProactiveP

○ Slave Mapping: all the neighbors of a master node are chosen as the slave nodes. Then the CPU requirement is divided into pieces that are proportional to the residual units of CPU in neighbors of the master node.

○ Link Mapping: each virtual link is mapped to the shortest substrate path that satisfies the bandwidth requirement between the corresponding endpoints
LazyP

- LazyP shares most parts with ProactiveP, except the slave mapping phase,

- LazyP applies parallelization only when the residual units of CPU in the master node for a virtual node is not sufficient.

 - When there is a need for parallelization, LazyP iteratively chooses the unused node that has the most residual units of CPU among the neighbors of the master node for a virtual node, and tries to satisfy the CPU demand until the virtual node is successfully embedded.
Simulation Setup

Similar settings to several existing studies

○ Substrate network
 ● Topology: Arpanet & Erdos-Renyi Graph (20,0.4)
 ● CPU & Bandwidth: [50,100], uniform

○ Virtual network
 ● # of nodes: [2,10], uniform
 ● Each pair of nodes connects with probability 0.5
 ● Lifetime: 10 minutes, exponential
 ● Arrivals: Poission process (0.2 minutes)
Simulation Setup

Performance metrics
- Acceptance ratio: the higher, the better
- Node/link utilization: the higher, the better

Algorithms in comparison
- ProactiveP
- LazyP
- Random: node mapping is randomly generated
- Greedy: node mapping is greedily generated
Simulation Results - Acceptance Ratio

(a) On ArpaNet graph (b) On Erdős-Rényi model $G(20, 0.4)$
Simulation Results – Node Utilization

(a) On ArpaNet graph

(b) On Erdős-Rényi model $G(20, 0.4)$
Simulation Results – Link Utilization

(a) On *ArpaNet* graph
(b) On *Erdős-Rényi model* $G(20, 0.4)$
Conclusions

- To explore how we can design the substrate network to best serve the goals of network virtualization, we envision that the substrate network supports parallelization.

- We formulate the parallelization version of the virtual network embedding problem, for which we develop two algorithms and three extensions.

- In future work, we intend to look in detail into this problem and combine path splitting with parallelization.
Thanks for your attention!

Q&A

http://cs.nju.edu.cn/dislab