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Abstract—Nowadays, personal identification number (PIN)
is one of the most popular methods for identity verification.
However, recent researches show that attackers can easily recover
victims’ PINs in spite of the large number of combinations
PIN provides. Existing protection approaches require alteration
of the original interaction between the user and PIN-based
authentication systems, or still fail if the attacker can observe and
mimic the victim’s input behavior. Considering these limitations,
we propose a defense system called LightDefender to protect
current PIN-based systems from PIN replay attacks using a single
ambient light sensor. Specifically, we protect the PIN input by
leveraging the biometrics in the received light intensity that is
influenced by input behaviors and biological features. To our best
knowledge, our work is the first one to protect PIN input using the
light intensity. Different from existing approaches, LightDefender
does not change the original interaction methods between the user
and PIN-based authentication systems, and the extra hardware
cost is low. In addition, by leveraging biological differences (e.g.
finger length) among different users, LightDefender still claims
high-security protection against strong attackers who can mimic
the victim’s input behaviors. Experiments with 10 volunteers
show that LightDefender can achieve an average true acceptance
rate of 95% for normal users. More importantly, LightDefender
can correctly reject two types attackers with an average true
rejection rate of at least 93.6% without data of new attackers.

Index Terms—Personal identification number, ambient light,
PIN input protection.

I. INTRODUCTION

User authentication is an important procedure for a system
to verify the identity of the user. Among all authentication
approaches, personal identification number (PIN) is one of
the most popular ones because of its combination of both
usability and security. A PIN is a numeric or alpha-numeric
password used in the process of authenticating a user accessing
a system. A 4-digit PIN can result in 10,000 possible com-
binations. Therefore, PIN is widely used to withdraw cash
from an ATM, unlock a mobile device, open a door, and
so on. However, recent researches show that attackers can
easily recover the victims’ PINs in spite of a large number
of combinations PIN provides. The attacks can be grouped
into three categories. First, to achieve good usability, users
tend to pick context-related PINs (e.g. birthday), which largely
decreases the randomness of PINs and makes it easier for the
attacker to hit the PIN [1]. Second, the attacker can perform
shoulder-surfing attacks or leverage a camera to record the
victim’s input procedure [2]–[6]. Third, recent researches show
that the attacker can use various sensor information and side
channel (e.g. acceleration and acoustic signals) to help in
recovering victims’ PINs [7]–[10]. Therefore, it is essential
to have a defense system that adds protection to PIN-based
authentication systems, especially if the PIN has been leaked.

Light sensor

Light source

Normal user

Attacker

Fig. 1. LightDefender system scenario.

To defend PIN users against potential threats of PIN leak-
age, most existing approaches focus on preventing the attacker
from acquiring the victim’s PIN, and they can be classi-
fied into two categories: challenge-response-based approaches
[11]–[13] and indirect input-based approaches [14]–[16]. In
challenge-response-based approaches, the user is asked to in-
put the correct response that is calculated using the PIN based
on a random challenge. However, by repeating the challenge
procedure, the attacker can still gather useful information
about the original PIN based on multiple challenge-response
pairs [17], [18]. To address this issue, various solutions are
proposed to prevent the attacker from observing the challenge-
response pairs by using secure secondary channels [19]–[28].
However, these approaches suffer from low usability and
high learning cost. Similar to the challenge-response-based
approaches, indirect input systems ask users to input on a sec-
ondary interface . However, indirect input-based approaches
still alter the original interaction methods. To ensure the good
usability of the defense system, other researchers propose to
defend against PIN leakage by leveraging the input behavior
(e.g. velocity and direction) during PIN input [29]. However,
since they only consider simple time-domain features (e.g.
velocity magnitude and directions), they fail to defend against
the attackers who can mimic the victim’s input behavior
through shoulder-surfing and recording attacks [30].

Considering the limitations of existing approaches, we
propose a defense system that aims to protect the current
PIN-based authentication systems from PIN replay attacks.
A defense system should meet three key requirements. First,
the defense system should have high usability, which means
that it cannot significantly change the original interaction
methods between the user and the PIN-based authentication
systems. Second, the defense system should provide high-
security protection to PIN input against strong attackers who
can mimic the victim’s input behavior. Third, the extra hard-
ware cost should be as low as possible. In this paper, to
meet the above requirements, we propose a new system called
LightDefender to defend against PIN replay attacks using a



single ambient light sensor. In PIN replay attacks, an attacker
already has the victim’s PIN via some way and aims to break
PIN-based authentication systems by inputting the victim’s
PIN. Specifically, we protect the PIN input by leveraging the
biometrics in the received light intensity that is influenced by
input behaviors and biological features (e.g. finger length).
Different from existing approaches, LightDefender does not
change the original interaction method between the user and
PIN-based authentication systems, and the extra hardware
cost is low. In addition, compared with input behavior-based
approaches, LightDefender provides protection against strong
attackers who can mimic the victim’s input behaviors.

As shown in Fig. 1, LightDefender consists of two major
components: a low-cost light sensor and a light source. The
ambient light sensor lies in the center of the PIN pad or
keyboard and converts the received light intensity to the output
voltage. The light source is over the light sensor and continu-
ously emits visible light. When a user inputs a PIN, the palm
and fingers block partial incident light, which generates differ-
ent light intensities received at the light sensor. Therefore, even
if an attacker can “replay” the victim’s PIN to authentication
systems, the light intensity signal is different from that of the
victim as long as the attacker does not follow the victim’s
input behavior. Moreover, even if an attacker can record and
mimic the victim’s input behavior by performing shoulder-
surfing and recording attacks, the received light intensity of
the attacker is still distinct from that of the victim because of
biological differences (e.g. finger length and width) between
the attacker and the victim. These biological differences also
introduce variances to the received light intensity. In this
paper, we investigate the possibility of protecting PIN input
using the biometrics in the raw output voltage of a single
ambient light sensor, while eliminating the influences of noise
(e.g. movement of nearby people). In particular, we develop
a mechanism to detect the fine-grained starting and ending
points of the PIN input only based on the raw output voltage
signals. Then, we extract 34 features from the raw output
voltage signals in the time domain, the frequency domain, and
the time-frequency domain. These features are used to build
a classification model that is used to determine whether the
input is from the normal user. Our contributions are as follows:

• Our work serves as a feasibility assessment to show that
the light intensity influenced by the PIN input contains
rich biometric information and can be used to verify the
identity of the user. To our best knowledge, our system
is the first to use ambient light to protect the PIN input.

• We propose a mechanism to accurately detect the starting
and ending point the PIN input by analyzing the raw
output voltage signals. In total, 34 features are extracted
and used to build a multiple additive regression tree-based
classification model for the final decision.

• We develop a prototype and conduct comprehensive
evaluations. Experiments with 10 volunteers show that
LightDefender can achieve an average true acceptance
rate of 95% for normal users. Moreover, LightDefender

can correctly reject two types of PIN replay attackers with
an average true rejection rate of at least 93.6% even if
no data of new attackers is available .

II. RELATED WORK

PIN leakage. Although PIN is proposed as an authentication
method with high security, recent researches show that it can
be reconstructed using various techniques. In general, these
attacks can be grouped into three categories: statistics-based
approaches [1], camera-based approaches [2]–[6], and side-
channel information-based approaches [7]–[10]. For statistics-
based approaches, a recent study shows that the most common
numbers follow some patterns and tend to be based on some
context (e.g. birth date) [1]. In camera-based approaches, the
attacker can reconstruct the PIN with high accuracy based on
the video-based side-channel information. Moreover, recent
researches show that sensors in the victim’s mobile and
wearable devices can reveal its sensitive PIN [7]–[9]. Other
works are also proposed to infer the PIN by using various
side-channel information (e.g. acoustic signals) [6], [8], [10].

Defence against PIN leakage. Considering the threats of
PIN leakage, various systems are designed to either prevent
the attacker from acquiring the victim’s PIN. These sys-
tems can be further classified into two categories: Challenge-
response-based approaches [11]–[13], [19]–[28] and Indirect
input-based approaches [14]–[16]. Challenge-response-based
approaches [11]–[13] are all based on the insight that the
attacker who does not know the mapping function cannot
recover the victim’s PIN based on the newly constructed
password. However, by repeating the challenge procedure, the
attacker can still gather useful information of the original PIN
based on multiple challenge-response pairs [17], [18]. To solve
this problem, various solutions are proposed by delivering the
random challenge through various secure secondary channels
that are invisible to the attacker [19]–[28]. Although their ap-
proaches achieve high accuracy on defending against shoulder-
surfing attackers, they usually come with low usability and
introduce extra cost to users for learning the new system.

Similar to the challenge-response-based approaches, indirect
input systems prevent the attacker from observing the PIN
input procedure by leveraging a secondary input interface.
However, indirect input-based approaches still alter the orig-
inal interaction method of the PIN input, and the secondary
interfaces usually introduce high hardware cost (e.g. Google
glass). There are also many systems that try to authenticate
the user by leveraging the biometrics in input behaviors or
keystrokes [29], [31]–[33]. However, they only consider simple
features mainly in the time domain such as velocity magnitude
and device acceleration. It is still possible for an attacker to
perfectly mimic the victim via shoulder-surfing attacks [30].

III. PRELIMINARY

A. Ambient light sensor

A light sensor generates an output signal indicating the
intensity of light by measuring the radiant energy that exists
in a very narrow range of frequencies basically called “light”,
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Fig. 2. Human vocal system and two propagation paths of the voice.

and which ranges in frequency from “Infra-red” to “Visible”
up to “Ultraviolet” light spectrum. Among all types of light
sensors, the photoconductive cell using Light Dependent Re-
sistor (LDR) is the most common. The LDR is made from
a piece of exposed semiconductor material that changes its
electrical resistance based on the received light intensity. Fig.
2(a) shows a circuit diagram of an LDR-based light sensor. We
can acquire the light intensity level by measuring the voltage
Vout at their junction. The output voltage Vout is determined
based on:

Vout = Vin ×
RLDR

RLDR +R1
, (1)

where Vin and Vout are input and output voltage, respectively.
R1 is a series resistor, and RLDR is the light dependent
resistor. When the light intensity is low, the resistance of the
light dependent resistor reaches a high value, which produces a
high output voltage. In contrast, the output voltage is low when
the received light intensity is high. Since the value of RLDR

will never be zero or infinity, the LDR sensor is expected to
measure the light intensity from 0 to infinity.

In our system, we embedded an LDR-based light sensor in
the middle of a keyboard. The underlying principle of light-
based gesture recognition systems [34]–[36] and our light-
based defense system are fundamentally similar: the hand can
reflect or block the light, which further influences the received
light intensity at the sensor. The light is from a fixed light
source that is over the PIN pad (e.g. attached on the shield)
and emits lights with consistent intensity. Fig. 2(b) shows how
the vertical and horizontal movements of the finger influence
the incident light on a 2-D plane. The yellow region illustrates
the space in which the light can reach the ambient light sensor.
The finger and hand are modeled as a line. We can observe
that, if the finger moves away from the light sensor vertically,
more light reaches the light sensor, which produces higher
light intensity. Similarly, if the finger moves away from the
light sensor horizontally, the received light intensity rises since
more direct light reaches the light sensor. Moreover, due to
the biological differences (e.g. finger length, finger width, and
palm size) among different users, the received light intensities
are also different even if the fingers and hands of two users
are at exactly the same location.

B. Attack model

In our attack models, the attacker aims to break PIN-based
authentication systems (e.g. ATM machine) by “replaying” the

(a) Normal user. (b) Simple replay attack (c) Strong replay attack

Fig. 3. The output voltage of light sensor when the normal user and two
types of attackers input the same PIN.

victim’s PIN to authentication systems. The capability of the
attacker is limited in the sense of:

A simple PIN replay attack. In this attack model, the
attacker can acquire the victim’s PIN by using non-vision
techniques (e.g. motion sensors). Therefore, the attacker only
has the victim’s PIN without knowing how the victim inputs
the PIN. To break the PIN-based authentication system, the
attacker inputs the PIN with a random input behavior (e.g.
different fingers).

A strong PIN replay attack. In this type of attack model,
we assume that the attacker can use vision-based techniques
(e.g. a hidden camera) to infer the victim’s input behavior,
which means that the attacker knows not only PIN but also the
victim’s input behavior. To break the PIN-based authentication
system, the attacker inputs the PIN while imitating the victim’s
input behavior.

C. Feasibility study

To validate our observations, we build a sensing platform by
embedding an LDR-based ambient light sensor in the middle
of a keyboard. A light-emitting diode (LED) bar is installed
over the keyboard to act as the major light source so the user’s
hand and fingers can block the light as long as they are over
the keyboard. The feasibility experiments are done in an office
room where multiple light sources exist. The details of the
platform setup are shown in Section VII. We first asked a
volunteer to input a six-digit PIN (“146928”) twice, and the
measured output voltage signals are shown in Fig. 3(a). We can
observe that the user’s input behavior introduces much greater
influences to the raw output voltage measurements than other
factors (e.g. the activities of other people in the same room).
Moreover, the output voltage patterns of the same user are
consistent overall. Although the same user cannot perfectly
reproduce the same pattern (small variations in the red box)
still exist, we can still extract useful knowledge (e.g. overall
shape and frequency) from the raw output voltage to match
the patterns from the same user.

Moreover, we first asked the simple replay attacker to input
the victim’s PIN in its own way on the same testbed, and the
raw output voltage is shown in Fig. 3(b). We can see that the
output voltage pattern is distinctive from that of the victim
because their input behaviors (e.g. finger used and habitual
hand) are different. Especially in the second phase of the input
behavior (green box), the peak-to-peak distance of the victim’s
data is much higher than that of the attacker’s data. We also
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collected data from the strong replay attacker, as shown in
Fig. 3(c). We used a camera to record the whole process of
the victim’s PIN input. The strong replay attacker is required to
watch the video until it is confident to imitate the victim’s input
behavior. We can see that the strong replay attacker is able to
produce a similar voltage pattern to the victim in terms of the
overall shape, but the amplitude is still significantly distinct
from that of the victim. In the first stage of the input behavior
(purple box), the average amplitude of the victim’s data is
about 0.5 V, while that of the strong replay attacker is about
0.4 V. The reason behind this is the biological differences
between the victim and the attacker. For example, even if two
different fingers are at the same location, different finger length
and width determine the amount of light that is blocked, which
produces different light intensity received at the light sensor.
Therefore, even if the strong replay attacker can perfectly
imitate the victim’s input behavior, it cannot produce the same
voltage pattern as long as its hand and fingers are biologically
different from those of the victim.

D. Challenges

Fine-grained input detection. In order to defend against
the PIN replay attack using an ambient light sensor, we first
need to extract the sensor signal that is influenced by the PIN
input. In general, the PIN input procedure consists of three
phases: moving hands over the keyboard, inputting the PIN,
and moving hands back. A naive solution is to acquire the key
pressing time from the PIN-based authentication system, but
this approach only reserves the sensor signal in the second
phase while losing all information in the other two phases. To
extract the sensor signals that contain the information in all
three phases, we proposed an energy-based input detection
approach based on the insight that PIN input has greater
influences on the sensor values than other factors.

Accurate classification model using proper features.
After getting the raw output voltage data of the whole PIN
input procedure, we need to extract features that are consistent
for the same user and distinctive between the user and the
attacker. Moreover, the classification model should be robust to
the collinearity of extracted features because features are het-
erogeneous across different domains. To address this problem,
we extract features from the time domain, frequency domain,
and time-frequency domain of the raw output voltage signal.
To leverage the collinearity of features from three domains,
we use a multiple additive regression tree for classification.

IV. SYSTEM OVERVIEW

We build a system that mainly contains two major phases:
the enrollment phase and the authentication phase. The pro-
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(a) The raw output volt-
age signal.
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(b) Fast Fourier trans-
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(c) The output signal of
high-pass filter.

Fig. 5. Analysis of the output voltage signal.

cesses of both phases follow the pipeline shown in Fig. 4.
Enrollment phase. In the enrollment phase, the user is

asked to repeat inputting its PIN several times. Since the
user is not able to give the accurate starting and ending time
of the PIN input, LightDefender processes the raw signal to
extract the output voltage signal that is influenced by the PIN
input. Considering the frequency of PIN input is at least 1
Hz, LightDefender first removes the influence of background
noise by filtering the output voltage signals through a high-
pass filter and detects the coarse-grained location of the PIN
input by studying the short-time energy of filtered signals.
Then, LightDefender detects the accurate starting and ending
time of the PIN input by analyzing the short-time energy
around the coarse-grained location based on a threshold. The
extracted output voltage signals are used to extract features
that can represent the identity of the user. These features are
trained together with attackers’ data (collected in advance) in
the database to build a strong classifier.

Authentication phase. After collecting enough training data
from the user, the system is ready to be used for authentication.
The system can be used by the normal user or an attacker. For
each authentication attempt, we first detect and extract the PIN
input in the same way as in the enrollment phase. After that,
we extract the same 34 features of the new input and send it to
the multiple additive regression tree-based model. An attacker
is detected and rejected if the classification model recognizes
the new input as from an attack.

V. PIN INPUT DETECTION

A. Coarse-grained PIN input detection

To defend against PIN replay attackers using the ambient
light sensor, we first need to accurately detect the starting and
ending time of the PIN input behavior. In general, the PIN
input behavior can be segmented into three stages: 1) Moving
the hand over the PIN pad; 2) Inputting PIN; 3) Moving the
hand back. A simple solution is to acquire the pressing time
of the first and last keys from the authentication systems.
However, this solution will lose the sensor information in the
first and the third stages. Moreover, the output voltage of the
ambient light sensor is also constantly influenced by other
factors (e.g. human activities nearby), which makes it hard to
detect the starting and ending points using a threshold.

To address this issue, instead of directly detecting the fine-
grained starting and ending points, we first find the coarse-



grained location of PIN input gesture in the noisy output
voltage signals using the finding algorithm in [37]. The
accurate starting and ending points are then detected around
the coarse-grained locations. Fig. 5(a) shows the raw output
voltage when a user walks to a PIN authentication system
and inputs a PIN. It is clear that the PIN input behavior will
introduce much greater influence than other human activities.
Moreover, as shown in Fig. 5(b), most background noise has
a frequency of less than 1Hz, while the PIN input still has
information with a frequency of larger than 1 Hz. Based on
these two observations, we find the coarse-grained location
of PIN input by analyzing the short-time energy of noisy
output voltage signals. In order to remove the pulses caused
by background noise, we apply a 3-order high-pass butter
filter on the raw signals with a cut-off frequency of 1 Hz,
and the filtered signal is shown in Fig. 5(c). We can see that
pulses introduced by the PIN input are much more significant
in the filtered output voltage signal. To further remove the
pulses caused by background noise, we apply a threshold
filter on the output of the high-pass filter. The threshold is
set as the mean of the high-pass filter’s output, excluding the
highest 40% and the lowest 40% of the measurements. All
measurements whose values are lower than the threshold will
be 0 after passing through the threshold filter. To find the
coarse-grained location of the PIN input, we apply a moving
window to the filtered output voltage signals and compute the
short-time energy within each window. The window size is
set to 1.8 seconds in our system for two reasons. First, it is
the minimal time to input a 6-digit PIN. Second, by using the
minimal time as the window size, we can ensure that the signal
within the window is only influenced by PIN input. Since the
pulses introduced by the PIN input are much more significant
in the filtered output voltage signal, the starting point of the
moving window must be within the PIN input procedure when
the short-time energy within the window reaches the highest
value. Therefore, the coarse-grained location of the PIN input
can be detected by solving:

arg max
s

([gs, gs+1, . . . , gs+w])([gs, gs+1, . . . , gs+w])
T
, (2)

where s is the coarse-grained location of the PIN input, G =
[g1, g2, . . . , gn] is the filtered output voltage signal, n is the
length of the filtered signal G, w is the size of the moving win-
dow, and ([gs, gs+1, . . . , gs+w])([gs, gs+1, . . . , gs+w])

T com-
putes the short-time energy of the window starting from the
sth sample to the (s+ w)

th sample. Fig. 6(a) shows the short-
time energy of windows starting from different samples. We
can see that the short-time energy reaches its highest value at
19.4 seconds, which is exactly during the PIN input.

B. Fine-grained starting and ending points detection

Since the detected coarse-grained location lies within the
procedure of PIN input, the accurate starting and ending points
must show near the coarse-grained location. Moreover, we
find that the output voltage values are pretty stable before
and after the PIN input because the user will not move
before and right after the PIN input. Therefore, the values
of these two stable stages should be close to zero after

Coarse-grained 
location of PIN input

(a) Coarse-grained detection.

Starting 
point

Ending 
point

(b) Fine-grained detection.
Fig. 6. PIN input detection.

filtering the raw output voltage signal with high-pass and
threshold filters. This observation enables us to detect the
accurate starting and ending points by checking short-time
energy changes before and after the coarse-grained location.
To detect accurate starting and ending points of PIN input, we
first apply a moving window on the filtered signal in coarse-
grained location detection. To achieve better granularity, we
set the window size to 0.3 seconds, and the result is shown in
Fig. 6(b). We can see that the short-time energy is very low
(close to zero) until the PIN input starts. Since the most noise
is removed in the filtered signal, we can accurately detect the
starting and ending time by finding the first and the last points
whose energy exceeds a threshold around the coarse-grained
location. In our testbed, the threshold is set to 0.00001 V 2.s,
and both starting and ending points should be within 5 seconds
from the detected coarse-grained location.

VI. USER AUTHENTICATION

A. Feature extraction

To train a strong classifier that can detect the replay attacker,
we need to extract useful features from output voltage signals
that are influenced by the PIN input. Here, useful features
are those that are consistent for the same user but distinctive
between the normal user and the attacker. In our system,
we select 34 different features from the time domain, the
frequency domain, and the time-frequency domain.

Features in the time domain. We extract six features
from the time domain, including the maximum, the average
amplitude, peak-to-peak distance, variance of the signal, root-
mean-square (RMS) level, and the average dynamic time
wrapping (DTW) distances between the new data and the
templates that are selected from the normal user’s pre-collected
data. Specifically, the maximum, the average amplitude, and
peak to peak distance describe the overall amplitude of the
raw output voltage, which is mainly influenced by biological
features such as finger length and width. The RMS level and
variance are used to describe the trend of the signal. The
DTW distance is used to measure whether the new data has a
similar shape as the user’s template that is collected during the
enrollment phase. Since we only consider the overall shape of
the detected output voltage signal, we normalize each output
voltage signal individually over the range of the ADC to
eliminate the influence of voltage value. Moreover, we smooth
each raw output voltage signal using a moving average filter
with a window length of 20 samples.
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(a) The Wigner-Ville distribution of the
signal influenced by the PIN input.
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(b) The low-frequency Wigner-Ville
distribution of the victim.
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(c) The low-frequency Wigner-Ville
distribution of the strong attacker.

Fig. 7. The Wigner-Ville distribution of the victim and the strong attacker.

Feature in the frequency domain. To capture the features
in the frequency domain, we perform a fast Fourier transform
(FFT) on the extracted output voltage signals. Six features
are extracted from the FFT result, including skewness, kur-
tosis, mean value, median value, variance, and peak-to-peak
distance. These features describe the rhythm of how the user
presses the key and blocks the incident light.

Feature in the time-frequency domain. Besides extracting
features from the time and frequency domains individually, we
also study how the PIN inputs influence the output voltage
signal in each time and frequency frame. We first apply
maximal overlap discrete wavelet transform (MODWT) using
the Haar wavelet down to the fourth level on the raw signal
and perform multiresolution analysis on the MODWT matrix.
The reason we choose MODWT rather than classic discrete
wavelet transform is that MODWT can achieve translation-
invariance by removing the downsamplers. We extract the
mean value, peak-to-peak distances, RMS, and variance from
the results of the multiresolution analysis as features. Also,
we calculate the Wigner-Ville distribution of the raw signal.
Compared to a short-time Fourier transform, the Wigner-Ville
distribution function can furnish higher clarity. For a discrete
signal G = [g1, g2, . . . , gn] with n samples, the Wigner-Ville
distribution is defined as:

WVDG(t, f) =

n∑
k=−n

G(t+
k

2
)G∗(t− k

2
)e

−j2πfk
n , (3)

where t is the time vector, f is the frequency vector, and
G∗(t − k/2) is the complex conjugate of G(t − k/2). Fig.
7(a) shows the Wigner-Ville distribution of the output voltage
signal influenced by the PIN input. We can observe that
the PIN input influences the output voltage signal mainly
in the low-frequency bands. Therefore, we further check the
Wigner-Ville distribution of the voltage signals influenced by
PIN inputs of the normal user and the strong replay attacker
respectively, and the results are shown in Figs. 7(b) and 7(c).
It is clear that the energy distribution is distinctive in the
low-frequency bands in two aspects. First, the entries with
the lowest amplitude appear at different locations in two
Wigner-Ville distributions. As shown in Fig. 7(b), in the user’s
distribution, the entry with the lowest amplitude is at the
later stage of the PIN input. While in the strong attacker’s
distribution, the entry with the lowest amplitude appears at the
middle stage of the PIN input. Second, the energy distribution
in each frequency band is very distinctive between the user
and strong replay attacker, which means that we can detect

the attacker by checking the standard deviation of the energy
distribution in each frequency frame. Therefore, we extract the
location of the minimal amplitude and its amplitude value as
three features. Moreover, we calculate the standard deviation
of the energy distribution for each frequency frame under 2 Hz
and include them into the feature vector. To deal with different
frequency resolutions caused by different lengths of signals,
we resize each Wigner-Ville distribution to the same size so
that the first 15 frequency frames exactly cover the frequency
range from 0 Hz to 2 Hz.

B. Classification based on multiple additive regression tree
To determine whether the extracted features are from the

normal user or any type of PIN replay attackers, we train a
binary classifier based on Multiple Additive Regression Tree
(MART). Compared with other machine learning models, the
gradient boosting-based approach has three major advantages.
First, MART is robust to various types of features with
different scales and units, which exactly exists in our feature
vectors. For example, the value of the maximal amplitude
is in the range from 0 to 1, while the values of DWT
features can be less than 0.001. Second, features extracted
from different domains may not be totally independent of each
other. By using MART, the classifier can effectively deal with
the colinearity of features across various domains.

The basic idea of MART is to build a strong classifier
using a set of weak classifiers. Different from other gradient
boosting approaches, MART specializes the gradient boosting
approach to the case where each weak classifier is a regression
tree. Here we use the formulation of MART in [38]. After
M rounds, the estimation F (x) of the strong classifier is an
additive expansion of the form

F (x) =
M∑

m=0

bmh(x; a), (4)

where h(x; a) is a weak classifier with parameters a =
{a1, a2, . . . , aK} and feature vector x = {x1, x2, . . . , xN}.
In each iteration, the coefficients bm and the parameters am
are jointly fit to the training data in a forward “stage-wise”
manner. Starting with an initial guess F0(x), the coefficients
bm and the parameters am in the mth iteration can be found
by solving the following problem:

(bm, am) = arg min
b,a

N∑
i=1

L(yi, Fm−1(xi) + bh(xi; a)), (5)

where yi is the diagnosis variable, and L(y, F ) is the loss
function that is used to define lack-of-fit. Therefore, the
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estimation of the strong classifier after the mth iteration is
expressed as

Fm(x) = Fm−1(x) + bmh(x; a). (6)
In our system, we implement the MART-based classifier

using the library of scikit-learn [39]. Specifically, we choose
the deviance function as the loss function, and the learning
rate is set to 0.1. Since the MART-based classifier is fairly
robust to over-fitting, we set the number of iterations to 5000
to achieve better performance. For each regression tree, the
maximal depth is set to 4, and the number of features to
consider when looking for the best split is set to 4.

VII. EVALUATION

A. Experimental prototype

Since commercial PIN pads or keyboards are not equipped
with an ambient light sensor, we built a prototype to mimic
the layout and structure of PIN pads that are widely used on
ATM machines. As shown in Fig. 8, our prototype consists of
five components: a prototype PIN pad (made by cardboard),
an LDR-based ambient light sensor (about $1), an analog-to-
digital converter (ADS1115 16 bit and 4-channel analog-to-
digital converter), a data sink and processing center (Raspberry
Pi 3 b+), and a light source (WORKRITE ERGONOMIC
VERANO LED array). Since the Raspberry Pi only accepts
digital signal from GIPO input, we used a 16-bit converter to
convert the analog output to digital signals. On the Raspberry
Pi board, we used a Python script and public library to read
the sensor data with a frequency of 100 Hz. The LDR-based
light sensor is attached in the middle of the PIN pad that is
placed under the light source. We implemented our prototype
in a shared office room where different human activities exist.

B. Data collection

Our experiments included 10 participants (4 males and 6
females) aged from 22 to 29. All participants are university
students who have no knowledge of our system details. We
asked each participant who acts as the normal user to randomly
choose a 6-digit PIN and input it on our prototype in a
comfortable way 43 times. Among them, three instances are
used as the template for calculating DTW distances and 20
randomly picked instances are used as training data to build
the MART-based classifier. The input behavior of each normal
user was recorded by a camera, and some details (e.g. number
of fingers used) of normal users’ input behaviors are shown
in Table I. Additionally, for each normal user, we asked three
other participants to act as an attacker. During a simple PIN
replay attack, we only gave each of the three attackers the
PIN of the victim. Each attacker input the victim’s PIN on
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Fig. 9. The overall performance.

our prototype in its preferred way 10 times, so we have 30
instances for the simple PIN replay attack. During a strong
PIN replay attack, we showed each of the three attackers
not only the victim’s PIN but also the videos of the victim’s
input behavior. When each attacker was confident enough to
mimic the victim’s behavior, the strong PIN replay attack was
launched 10 times. For each attacker in both simple and strong
PIN replay attacks, five randomly picked instances are used
as training data and the remaining five instances are used for
testing. Therefore, the training dataset of each user has 20
instances from the normal user, 15 instances from each simple
PIN replay attacker, and 15 instances from each strong PIN
replay attacker.

To evaluate the performance of our system, we used three
metrics, including true acceptance rate (TAR), true rejection
rate (TRR), and authentication time. The true acceptance rate
is defined as the rate at which a normal user is successfully
accepted by the system. Similarly, the true rejection rate is
defined as the rate at which an attacker is successfully rejected.
The authentication time is defined as the number of PIN input
attempts needed to pass our system.

C. System performance for normal users

We first evaluated the system performance for normal users
by repeating the experiment 20 times with randomly picked
training data and testing data. Fig. 9 shows the average true
acceptance rate for 10 participants. We can observe that our
system successfully accepts a normal user with an average true
acceptance rate of 95%. For user 5, 6, and 8, the average true
acceptance rate can reach near 100%. We further study why
user 10 has a lower true acceptance rate than other users. We
found that the user 10 used the most complex input behavior
with 4 fingers in our experiments, which makes her input
behaviors less consistent than those of other users and leads
to lower true acceptance rate. However, even in the worst case
(user 10), our system can still accept the normal user with an
average accuracy of at least 89%.

D. System performance against two types of PIN replay attack

With attackers’ training data. Similarly, we used the same
classifier in Section VII-C and repeated the experiment. The
experimental results are illustrated in Fig. 9. It is clear that our
system can provide high true rejection rates of about 98% and
96% for both types of PIN replay attacks, respectively. Espe-
cially for users 2 and 6, our system can reject all attackers with
nearly no errors. We also found that the system performance
can decrease to 91% against attackers when the input behavior
of a normal user is simple and easy to mimic. For example,
user 7 only used his index fingers to input the PIN while



TABLE I
THE PIN INPUT DETAILS OF 10 VOLUNTEERS

User ID 1 2 3 4 5 6 7 8 9 10
Gender Male Male Male Female Female Female Male Female Female Female

PIN 147536 125836 146928 145832 199423 891218 443659 921218 950131 462856
No. of fingers 1 1 2 1 1 3 1 1 1 4
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Fig. 10. The system performance without attackers’ training data.

other fingers are holding up, which makes it easier for strong
attackers to produce similar patterns of received light intensity.
Moreover, our system can achieve similar performance for 4-
digit PINs with a mean true acceptance rate of about 98.7%,
and both types of attackers can be rejected with an accuracy
of nearly 100%.

Without attackers’ training data.We also evaluated the
system performance against attackers whose data is not in our
training dataset, which is more common in practice. Fig. 10
illustrates the true rejection rates against two types of attackers.
We can see that our system can still ensure high-security
protection for users against simple PIN replay attackers with
a mean true rejection rate of 96.8%. Moreover, even if strong
attackers can imitate the victim’s input behaviors, our system
can still reject them with mean accuracy of 93.6%

E. Authentication time

The system performance above is for a single PIN input
attempt. In practice, to achieve good usability, PIN-based
authentication systems usually allow the user to input its
PIN for up to three or five times. Therefore, we studied the
system performance within the maximum number of input
attempts. Fig. 11(a) shows the authentication time distribution
of the normal user and two types of PIN replay attackers.
If the attacker cannot break our system within ten attempts,
its authentication time is set to 10 times to avoid an infinite
number. We can see that all normal users can be correctly
accepted by our system within two input attempts, while
any type of PIN replay attacker is falsely accepted with a
possibility of no more than 2%. Even if the attacker can launch
the PIN replay attack at most five times, our system can still
provide a high true rejection rate of at least 94.5%.

F. Influence of the size of training dataset

In practice, we need to control the size of the training dataset
to reduce the cost in the training phase. Therefore, we further
studied what is the minimal size of the training dataset needed
from the normal user. In our system, we assume that we can
collect the attacker’s training data in advance for any possible
PIN. In this experiment, we randomly selected a normal user
and adjusted the training dataset size from 1 to 20 while the
training dataset size of two types of attackers was fixed to 30
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Fig. 11. Authentication time and the influence of training dataset size.

instances. To eliminate the influence of extremely imbalanced
training data, we made the normal user’s training dataset size
constant at 20 by randomly duplicating the training instances.
Fig. 11(b) shows the average true acceptance rate and true
rejection rate against two types of PIN replay attacks. We can
see that true acceptance rate rises with more training instances
from the normal user, while the system performance against
two types of PIN replay attacks is relatively stable (over 99.7%
and 97.3%, respectively) no matter the amount of training
instances from the normal user. Specifically, with 9 normal
user’s training instances, our system can already provide an
average true acceptance rate of 91.75%.

G. Influence of light conditions

To further evaluate the system performance under lower
light intensities, we used an ANNT LED Desk Lamp as the
new light source that contains an LED array and can emit
lights of five levels from 315 lux to 610 lux. Fig. 12(a)
shows the true acceptance rates and true rejection rates under
six different light intensities. We can see that the system
performance is not influenced by the light intensity of the light
source within the range (315 lux to 825 lux) we considered.
When the received illuminance is only 315 lux, our system
can still correctly accept the normal user and reject the strong
PIN replay attacker with an accuracy of at least 98%. Based on
our experiment, the average received illuminance is about 350
lux under the fluorescent lamp. Therefore, the light intensity
required in our system is comfortable and acceptable for users.

H. Influence of gloves and wet hands

In our default settings, we assume users always interact
with our system using dry hands. However, in practice, users
may use our system in various conditions, e.g. wet hands
in the summer. To evaluate the robustness of our system
against various hand conditions, we asked a participant to
input his PIN when his hand is wet and in purple nitrile
gloves, respectively, and used the classifier that is trained
using dry hands to make prediction. Fig. 12(b) shows the
evaluation results. We find that our system can still correctly
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Fig. 12. Influences of different light intensities and hand conditions.

accept the user who used the wet hands with an average true
acceptance rate of 93.75%. However, the true acceptance rate
drops to about 10% if the user inputs its PIN while wearing
gloves. By checking raw output voltage signals, we found
that although the overall shapes of output voltage signals
are still consistent, the gloves result in higher received light
intensity than dry hands. In other words, the gloves change
the biological features of the user, which makes the original
classifier wrongly detect the user as a strong attacker.

I. Influence of sampling rate

As we discussed in Section V-A, the influences of PIN input
on output voltage signals are mainly in the frequency bands
from 0 Hz to 2.5 Hz, which means a sampling rate of 5 Hz
is enough to capture the information of PIN input in theory.
Although we use a high sampling rate of 100 Hz to capture
as much information as possible, it is always good to reduce
the sampling rate for saving energy. In this experiment, we
evaluated the system performance under different sampling
rates, and the results are shown in Fig. 13. It is clear that
the system performance, especially the true acceptance rate, is
improved with the greater sampling rate. When the sampling
rate is 5 Hz, the obtained information is enough for our system
to provide a high true acceptance rate of 90.5%. By including
the high-frequency features, we can achieve an average true
acceptance rate of 98% with a sampling rate of 100 Hz.

VIII. DISCUSSION

Long-term stability of input behavior. In our experiments,
we already show that the input behavior of the same user is
stable within a short term (1 week) for all 10 participants,
so we further study the long-term stability of their input
behaviors. We invited three participants to input their PIN
five weeks after they enrolled in our system. We first use the
classifier trained at the beginning to classify their new input
and the results that two of them can still be correctly accepted
by our system with a true acceptance rate of at least 98%. The
input behavior of the remaining one is slightly changed, which
introduces variation in the output voltage signals. This problem
can be solved by periodically including new instances that
represent the behavior changes into the training dataset. Our
experiments show that, by adding only five new instances, our
system can correctly accept the user with accuracy of 88.5%,
while the true rejection rate against strong PIN replay attacker
only decreases by 2%.
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Light sensor in PIN-based authentication systems. For
traditional keyboard-based PIN pads, the ambient light sensor
can be embedded in the keycap thanks to the small size of the
light sensor. For touchscreen-based PIN pads, new techniques
enable us to install the light sensor behind an organic light-
emitting diode (OLED) display. For example, Austrian Apple
supplier AMS announces that they have developed unique
algorithms which enable accurate detection of ambient light
levels without knowledge of the display pixel brightness above
the sensor [40]. Moreover, many wearable devices (e.g. Sam-
sung gear 3 smartwatches) have adopted this new technique.
Therefore, we can expect that all PIN pads can have at least
one ambient light sensor with reasonable cost.

Limitations and future work. Currently, we only consider
input behaviors for people who are of young age and can finish
the PIN input quickly. In the future, we also plan to study how
slow input behaviors of elder people and the dust influence the
system performance. In addition, although our system does
not change the original PIN input methods, users still need
to provide sufficient training data (at least 10 instances) to
obtain acceptable system performance. Besides, our results
serve as a feasibility assessment of using ambient light to
secure PIN input since our experiments are based on a limited
dataset collected from 10 participants. In the future, we will
evaluate our approaches on a larger dataset with participants
from diverse backgrounds. Moreover, we will further study the
influences of dynamic ambient light (e.g. sunlight) and diverse
sizes of PIN pads and design new processing techniques to
remove their influences.

IX. CONCLUSION

In this paper, we propose a new system called LightDe-
fender to defend against two types of PIN replay attacks by
leveraging the biometrics in the received light intensity that is
influenced by input procedure. The key insight is that different
input behaviors and biological differences result in different
output voltage signals. These differences can be reused as
biometrics to authenticate users right after the input procedure.
Different from existing approaches, LightDefender does not
change the original interaction methods between the user and
PIN-based authentication systems, and the extra hardware cost
is low. We built a prototype of our system and evaluated it with
10 volunteers. Experimental results show that LightDefender
can achieve an average true acceptance rate of 95% for normal
users and correctly reject two types of PIN replay attacker with
average true rejection rates of at least 93.6%.
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