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ARTICLE

A real-time logo detection system using data offloading
on mobile devices
Jiacheng Shanga and Jie Wua

aCenter for Networked Computing, Temple University, Philadelphia, PA, USA

ABSTRACT
In the past few years, mobile augmented reality (AR) has
attracted a great deal of attention. It presents us a live, direct
or indirect view of a real-world environment whose elements
are augmented (or supplemented) by computer-generated
sensory inputs such as sound, video, graphics or GPS data.
Also, deep learning has the potential to improve the perfor-
mance of current AR systems. In this paper, we propose a
distributed mobile logo detection framework. Our system
consists of mobile AR devices and a back-end server. Mobile
AR devices can capture real-time videos and locally decide
which frame should be sent to the back-end server for logo
detection. The server schedules all detection jobs to minimise
the maximum latency. We implement our system on the
Google Nexus 5 and a desktop with a wireless network inter-
face. Evaluation results show that our system can detect the
view change activity with an accuracy of 95:7% and success-
fully process 40 image processing jobs before deadline.
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1. Introduction

In the past few years, mobile augmented reality (AR) has attracted a great deal of
attention. It presents us a live, direct or indirect view of a real-world environment
whose elements are augmented (or supplemented) by computer-generated
sensory inputs such as sound, video, graphics or GPS data. With the help of
advanced AR technology (e.g. computer vision and object detection), informa-
tion about the user’s real-world surroundings becomes interactive and digitally
manipulable. Many AR devices and systems, such as Microsoft HoloLens, Sony
SmartEyeglass and Google Glass, have recently been released. In this paper, we
consider the following AR application: a user goes shopping with an AR device
(e.g. Google Glass). The AR device captures real-time video and recognises logos.
Based on the recognised logos, the AR device displays corresponding deals and
promotion information to the user.
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To support this application, the system should provide accurate logo detec-
tion and recognition using limited resources. For example, the AR device
should extract important logo frames and label them correctly with an identi-
fier. However, achieving accurate, real-time logo detection and recognition on
mobile AR devices is challenging because of limited computation ability and
battery life. Current computer vision algorithms tend to require a lot of
computation resources, like graphics processing unit (GPU).

To achieve accurate, real-time logo detection and recognition on mobile AR
devices and minimise latency, we need to offload some tasks to the back-end
server. Mobile data offloading, often known as Wi-Fi offloading, is the use of
complementary network technologies that deliver data originally targeted for
cellular networks. Through proper data offloading, we can reduce the amount
of data carried on the cellular bands and free bandwidth for other users.
However, we must still be careful about what data should be offloaded to
the server since wireless network latencies are usually high and the server can
only support a limited number of jobs. In our system, users want to receive
detection results and related information before losing the logo in the camera.
Servers, on the other hand, need to determine the order to execute different
clients’ tasks based on their urgency. The system must also prevent bad users
from pretending that their tasks are urgent.

In this paper, we design a distributed, continuous and real-time logo
detection system based on data offloading. At the mobile AR devices side,
our system can reduce the latency of the AR devices by offloading compu-
tationally intensive jobs (feature extraction and classification) to the back-
end server. Our system also reduces bandwidth consumption by only off-
loading key frames that may have new logos. In order to extract important
frames that may contain useful logo information, we design a view change
detection model by leveraging embedded mobile sensors. At the server
side, we implement a deep learning model for logo detection based on
you only look once (YOLO) [1] and design a deadline-driven scheduling
algorithm to minimise the maximum lateness. In order to prevent some
‘bad users’ from continually marking their logo detection requests as
urgent, we further design a utility function for all users. Each user initially
owns limited ‘money’ and must pay for each logo request. We implement
our system on the Google Nexus 5 and a desktop with a wireless network
interface. Evaluation results show that our system can support about 40
offloaded jobs at the same time.

The remainder of this paper is organised as follows: In Section 2, we will
introduce the system pipeline, design challenges and proposed solutions. We
will discuss our local model in Section 3, including the view change detection,
important frame queue and priority assignment. The offloading model will be
defined and introduced in Section 4. In Sections 5 and 6, we will introduce our
experimental implementation and analyse the evaluation results. We discuss
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the generality and limitation of our system in Section 8. The final conclusion
and future work will be given in Section 9.

2. System design

In this section, we describe the logo detection pipeline, its challenges and our
solutions.

2.1. Logo detection pipeline

When we capture a video frame from the system, the logo detection pipeline
consists of four stages: view change detection, priority assignment, job sche-
duling and logo detection, as shown in Figure 1 and 2.

2.1.1. View change detection
In our experiment, we find that new logos tend to appear when a user
frequently changes the camera’s view. Based on this observation, we use
mobile devices’ motion sensors to detect view change activity. Then, frames
appearing after a view change are labelled as important frames and are
candidates for further classification.

2.1.2. Priorities assignment
This stage assigns priorities and deadlines to all important frame candidates.
Our observation is that a users’ frame should be assigned higher priority if the
logos will soon be out of view of the camera.

2.1.3. Job scheduling
After receiving frames that contain important logo information from all clients,
we assign different deadlines for the buffering of these frames based on their
priorities. Then, an earliest deadline scheduling-based algorithm is designed to
minimise the maximum lateness.

2.1.4. Logo detection
This stage finds the location of object in uploaded frames and assigns labels to
them. In our system, we implement YOLO on labelled object detection training
data set. Once a detection task is scheduled based on its deadline, the frame is
passed to the objected detection model. The detection result is then sent to
the mobile devices directly before the user loses the corresponding object.

2.2. Challenges and solutions

When we are designing, the naive idea is to implement all the functions on
local mobile AR devices. However, because of the limited resources, mobile AR
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devices cannot guarantee good performances for real-time object detection
(e.g. logo detection). Based on previous works [2], running object detection on
the mobile device can be 11 times to 21 times slower than running it on a
typical server machine, feature extraction can be 18 times slower and detec-
tion can be 14 times slower. As a result, we need to offload computationally
intensive detection works to the server to reduce the processing time. Energy
consumption is another important issue for mobile AR devices. Based on
Chen’s experimental results [2], the energy consumed by executing the entire
pipeline on the device is 12 times to 21 times more than the energy consumed
when each frame is offloaded to the server. Since the current mobile AR
devices have limited power, it is better to offload as much work as possible
to the server to reduce local energy consumption.

At the same time, we want to reduce the bandwidth usage. Ideally, every
frame should be sent to the server for further processing and detection.
However, this will waste bandwidth and server resources since some frames
may not have a logo or multiple frames may have the same logo. We need to
determine locally which frame is important so that mobile devices can send
only important information to the server. It is also difficult to determine the
important frames locally since running new logo detection on mobile devices
usually needs at least of hundreds of milliseconds, which is not practical in real
AR applications. In our system, we propose a local model to determine which
frame is important by monitoring view change events. The key observation is
that the camera often captures new logos when user’s view changes. After
offloading detection jobs to the back-end server, a proper scheduling strategy
should be designed to provide good performance for most connected users. In
our system, we adopt the earliest deadline first scheduling strategy to mini-
mise the maximum latency for all users.

3. Local model

In this section, we will introduce the designs of our view change detection
model, the important frame queue and the priority assignment.

3.1. View change detection

The goal of view change detection is to find frames that imply that a user’s
view has changed in a real-time video. Selected frames are candidates to that
will be offloaded to the roadside server.

Our approach to detecting view changes is based on the analysis of the data
from motion sensors. When a user changes the view by turning around, this
activity also influences the motion sensors embedded in the mobile device
(headsets or smartphones). In order to understand how to view change events
influence motion sensors, we collect data from accelerometers and gyroscope
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sensors embedded in smartphones. The influence that turning around has on
filtered gyroscope sensor data is illustrated in Figure 3(a). We can observe that
the waveforms in three axes are nearly steady if a user does not turn around
since there is no significant angle change. When a user tries to turn around,
the smartphone rotates a little with the motion of the user’s head, leading to
the significant peak in the Y and X axes. To detect a real-time view change
event caused by turning around, we first apply a moving average window with
a size of 30 to the raw gyroscope sensor data on the Y or X axes. Based on our
experiments, we find that turning around usually takes about 1 s so we adopt
a moving window with a size of 0.6 s in all experiments. Within each window,
we use the algorithm described in Algorithm 1 to check for a significant peak
with an absolute magnitude higher than 1 rad=s. If we find a peak in a moving
window, the latest video frame is marked as an important frame.

(a) View change detection (b) Priority assignment (c) Deadline assignment (d) Logo detection and
recognition

Figure 1. The four computationally intensive stages of the object detection pipeline: (a) View
change detection, (b) priority assignment, (c) deadline assignment and (d) logo detection and
recognition.
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Figure 3. Sensor data processing: (a) Filtered data collected from the gyroscope sensor and (b)
noise removal.
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In addition to turning around, human views also change due to motions.
Based on our experiments, human views totally change about every 3 m in a
shopping scenario. We collect the accelerometer sensor data for the Z axis
from a walking person, and the results are illustrated in Figure 3(b). Because
the walking activity is periodical, collected accelerometer sensor data also vary
periodically across time. We calculate the double integral of acceleration data
to get the coarse distance estimation. To obtain the distance estimation, we
apply a high-pass filter on the raw signal and velocity signal. The low-fre-
quency component of the signal appears as DC components, so generated
velocity and displacement signals become decreasing (sometimes increasing)
curves. The first and second integration results are shown in Figure 4(a,b). We
can see that our distance estimation model can get accurate results based on
raw sensor data. Then, we use the estimated distance to determine the
important frames. More specifically, if the distance exceeds 3 m, the latest
video frame is marked as an important frame.

3.2. Important frame queue

Based on the view change detection results, we get multiple important video
frames. Ideally, all the important frames detected should be offloaded to the
roadside server. However, lots of important frames may be detected in a short
period due to abnormal user activities (e.g. when a user is frequently shaking
his or her head). To limit the average rate of offloading important frames, we
adopt a FIFO (first in, first out) queue with a fixed size. Every 2 s, the system
uploads all the frames in the FIFO queue to the server. After that, the FIFO
queue is erased. There is a trade-off on how to set the queue size. If the size is
large, the system is more robust to noisy data, but the server cannot handle all
the requests from all users. If the size is small, the server can support more
users, but the system can be easily influenced by noisy sensor data. Based on
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Figure 4. Signal processing of accelerometer data: (a) The first integration and (b) the second
integration.
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our experiment settings and shopping scenario, we set the queue size to 2 to
get the best performance for all users in our experiments.

ALGORITHM 1: View change detection on one axis: source code
Input: A moving window W ¼ ðw1;w2 . . . ;wNÞ.
Output: Whether there is a view change.
1: while There is a new gyroscope sample g do
2: if Window W if full. then
3: Insert g to the end of W and delete w1.
4: if ð g� w1j j> 1Þ then
5: Report there is a view change detected.
6: remove all samples in W.
7: else
8: Insert g to the end of W.

3.3. Priority assignment

Though the system detects multiple important video frames, we argue that
these frames should have different priorities for scheduling. For example, if a
user is walking at a high speed, his or her frames should have higher
priorities for scheduling at the server side to ensure that the user can get
his or her prediction results before losing the logos. We argue that a user’s
important frames should be assigned a higher priority if the user is very
likely to lose logos in those frames. If a user changes the view frequently or
significantly, detected important frames will be assigned high priorities. If
not, we will look at user’s average speed in a period. The higher the average
speed is, the higher the priority that is assigned. Based on data collected
from motion sensors, we assign each frame a priority from 1 to 5, where 5
means the highest priority.

Fairness is another issue we need to consider for our priority strategy.
Imagine a ‘bad’ user frequently changes the view in order to always get a
high priority for his or her important frames. This is not fair to users who
always follow the rules since they cannot win a competition in the job
scheduling game on the server side. To address this problem, we propose
a credit-based approach. Every 150 s, each user is given 500 credits. The
user needs to pay for each priority assignment based on its calculated
priority, and the credit paid is the final priority assigned to that frame. The
highest priority that can be assigned to a frame Fi is calculated in the
following equation:

Fi ¼ C � 2
150� t

where t is the time from the beginning of each 150 s and C is the remaining
credit. Then, the final priority assigned to frame Pi is
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Pi ¼ Ps
4
� Fi

where Ps is the calculated priority based on sensor data with a range from 1
to 5.

We can see that proposed priority assignment strategy can prevent ‘bad’
users from assigning all frames a high priority. If a user spends too much, he or
she has to assign a low priority to all subsequent frames, which ensures that
no one can occupy server resources all the time and achieves fairness among
all users.

4. Offloading model

In this section, we will define our scheduling problem. Then, we formulate our
optimisation problem to solve for the optimal scheduling strategy.

4.1. Problem definition

In this paper, we consider a wireless network with multiple mobile devices and
one roadside server. Mobile devices can directly communicate with the road-
side server via Wi-Fi. Every 2 s, the server will receive frame detection requests
from all connected mobile devices and determine a scheduling sequence to
minimise the maximum lateness.

Suppose that there are N video frames to be scheduled on a single machine.
The machine can process at most one job at a time, and it must process a job
until its completion once it has begun processing. Suppose that each job Ji
must be processed for a specified Pi units of time, and the processing of job Ji
may begin no earlier than a specified release date Ri, i ¼ 1; . . . ;N. We assume
that the schedule starts at time 0 and each release date is nonnegative.
Furthermore, we assume that each job Ji has a specified due date Dj, and if
we complete its processing at time Ci, then its lateness Li is equal to ðCi � DiÞ.
We are interested in scheduling the jobs so as to minimise the maximum
lateness Lm that is defined as:

Lm ¼ maxLi

4.2. Priority and deadline

When the server receives a video frame from a mobile device, the metadata
includes the arrival date and assigned priority. In order to involve all the
metadata, we need to translate the assigned priority to the processing
deadline of a frame; i.e. we want to assign earlier deadlines to frames with
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higher priorities. Based on this intuition, we define the deadline of a job
Ji as

Di ¼ ð2� RiÞ
Pi

þ Ri

The priority of a video frame is from 1 to 5. When a frame has the lowest
priority 1, its deadline will be 2 based on the above equation, which is the end
of each cycle of the communication between mobile devices and the server. If
a frame has the highest priority, 5, its deadline will be set to 0:8Ri þ 0:3. Based
on the definition of Ri; Ri � 2 always holds, so we get that ð0:8Ri þ 0:4Þ � Di �
2 holds all the time.

4.3. Optimisation problem formulation

Consider a real-time application where multiple users send tasks to the server
and the arrival time and execution time of all tasks are acknowledged. Our
goal is to find an execution sequence that minimises the maximum lateness for
all users, that is,

minimize Lmax ¼ Ci � ð2�RiÞ
Pi

þ Risubject to0 � Ri < 2 (1)

4.4. Solution

ALGORITHM 2: Online earliest deadline scheduling: source code
Input: A set of jobs j with corresponding deadline dj.
Output: The order of execution.
1: Construct a min-heap using current tasks based on their deadline.
2: while The max-heap is not null do
3: if (Current time t< 2) then
4: Pick the task in the root to execute.
5: Add newly received tasks into the min-heap.
6: else
7: Terminate current processing and discard all remaining jobs.

Unfortunately, this problem is well known to be NP-hard, and in fact, even
deciding if there is a schedule for which Lmax � 0 is strongly NP-hard. Since we
have limited prior knowledge of the arrival time sequence and the estimated
execution time of each offloaded task, we adopt the earliest deadline first
scheduling. Our solution is to maintain a priority queen for all currently off-
loaded tasks based on their deadlines using a min-heap. The server always
picks the task with the nearest deadline to run. Each video frame has to be
executed before the end of the cycle. If the execution time of a frame exceeds
the given time slot, the processing of that frame is terminated, and the frame
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is also discarded. If the processing time exceeds the end of the cycle (2 s), the
execution sequence is not feasible, and all frames that are not processed yet
are discarded. The detailed algorithm is described in Algorithm 2.

5. Implementation

We have implemented the client on the Google Nexus 5 smartphone and the
server on a desktop with a wireless network interface.

5.1. Client

We implement our client on a Google Nexus 5 smartphone with all source
codes written in Java. More specifically, we use embedded signals to capture
the sensor signals and real-time videos. The linear acceleration signal and
gyroscope signal are sampled at about 50 samples per second. In order to
filter out the irrelevant impact that remains the same during the distance
estimation (like gravity), we adopt a three-order high-pass filter. Since the
impact that comes from walking is also of extremely low frequency, we set
the cut-off frequency as 1

1700 . For the view change detection model, we use
a moving window with a size of 30 samples, which is about 0.6 s based on
our observations. We let participants record videos and use extra tools to
cut them into frames. The participants are responsible for labelling frames,
and these frames are then used for the classification model training on the
server.

5.1.1. Server
The server implements the object detection model and detection job schedul-
ing pipeline. More specifically, we retrain YOLO [1] on PASCAL Visual Object
Classes (VOC) data set on an NVIDIA TITAN X Graphics Card and test it on VOC
2007 test data set. We use multithread socket programming to receive images
transmitted from the clients and to calculate corresponding deadlines.

6. Evaluation

In this section, we show the evaluation results of our view change detection,
distance estimation, uplink transmission delay and overall system performance
under different numbers of users.

6.1. View change detection

To evaluate the view change recognition performance of our system, we
collect data from three people with a smartphone attached to their heads.
Each participant is asked to change their view while they are standing or
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walking. The ground truth of the view change is recorded based on the video
captured using the smartphone’s front camera. We collect 100 instances from
each user for view change detection with or without movement.

The evaluation results are shown in Table 1. We can observe that the
recognition accuracy is almost 100% when the user does not move (walking
or running). Even if the user walks at different speeds, the view change
detection is still robust enough. The lowest detection accuracy is 93%. Based
on the experimental results, we can say that our view change detection model
can accurately detect view change events using the motion sensors embedded
in mobile devices.

6.2. Distance estimation

To better understand the performance of our distance estimation model, we
collect 120 measurements from three users and plot the distribution graph.
The results are shown in Figure 5(c). We can see it clearly that most distance
estimations have errors from under 0.6 m, which accounts for about at least
80% for all users. About 40% of the distance estimations have an error less
than 0.26 m. Only about 6% of the total measurements have an error larger
than 0.7 m. We further explore the mean, median and variance of the distance
estimation collected from our three participants, which is illustrated in Figure 5
(a,b). We can see that the mean error is at most 0.36 m for all participants, and
the median is at most 0.31 m. The variance is at most 0.663, which means that
most estimation errors are close to the mean error. Since the estimated
walking distance in our system is just a reference for important frame selec-
tion, we do not need accurate measurements. Considering human foot length

Table 1. View change detection performance.
Different users Without movement With movement

User 1 100% 98%
User 2 99% 93%
User 3 100% 96%
Overall 99:7% 95:7%

(a) Mean and Median (b) Variance (c) Error distribution

Figure 5. Distance estimation performance: (a) Mean and median, (b) variance and (c) error
distribution ..
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is about 0.27 m, a mean estimation error of about 0.35 m is acceptable. Based
on the second rule of view change detection, we argue that the mean
estimation error of 0.35 m is sufficient for detecting view change events in
our local model.

6.3. Uplink transmission delay

Based on the definition of our scheduling problem, different jobs may have
different release data. In this subsection, we evaluate the uplink transmission
delay between our mobile devices and the back-end server. We let a laptop
send a frame with a size of 154KB to the server. In our design, the server is
connected to the router via a wired connection. We capture the Transmission
Control Protocol (TCP) packets at both sides and compare the differences
between their timestamps. The server and the laptop are synchronised to
the same Network Time Protocol server in advance. We calculate the mean
latency, median of delay and the variance of delay at different distances, and
the results are listed in Figure 6(a,b). It is clear that the uplink transmission
delay rises with the increase of the distance between the mobile user and the
router. When the mobile user is close to the router, the uplink transmission
delay is no more than 0.1 s in most cases. Also, the uplink transmission delay is
more likely to be influenced by environmental changes with high distances.
We further plot the distribution of the uplink transmission delay via Wi-Fi
communication, as shown in Figure 6(c). We can observe that most transmis-
sion can be done in 0.5 s with a short distance, while only about 70% of the
transmissions can be done in 0.5 s when the distance is 5.7 m.

6.4. Scheduling performance

In this subsection, we further evaluate our scheduling algorithm. Based on the
distributions of the uplink transmission delay and image processing delay, we
conduct a simulation with different numbers of mobile devices. Figure 7(a)
shows the maximum lateness and finishing time for different numbers of users.

(a) Mean and Median (b) Variance (c) Delay distribution

Figure 6. Uplink transmission delay: (a) Mean and median, (b) variance and (c) delay
distribution.
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We can see clearly that both the maximum lateness and finishing increase with
the growth of numbers of frames. This is in line with our expectations since the
job executed last may need to wait for more jobs. Figure 7(b) shows the
numbers of successfully processed frames for a different number of offloaded
frames. It is clear that the maximum number of jobs one server can support is
about 40. To support more frames and more users, a distributed system with
multiple servers should be included. We also evaluate the distribution of
latency for three times when the number of offloaded frames is 50, and the
results are shown in Figure 7(c). We can see that about 90% of the total frames
have a latency under 0.5 s, and all the frames can be processed no later than
0.7 s after their deadlines. This means that we can ensure a low processing
latency for most of the offloaded jobs.

7. Related work

In this section, we introduce some existing works on object detection, mobile
edge computing and recent AR frameworks.

7.1. Object detection

Object detection is to confirm the existence and location of an object in a
video or picture. Object detection plays an important role in various applica-
tions such as video surveillance and AR. Many object detection models have
been proposed for different applications. In [3], Zhao et al. proposed an
approach for motion detection by increasing the weight of object information
and also restraining the static background. The system proposed in [4] can
detect and recognise objects by leveraging Deep Neural Networks. Ren et al.
further reduced the running time of detection networks by sharing convolu-
tional features between Fast R-CNN and Region Proposal Network [5]. SSD
proposed in [6] adopt a relatively simple approach that completely eliminates
proposal generation and encapsulates all computation in a single network.

(a)Maximum latency and finishing
time

(b) Number of finished jobs (c) distribution of latency

Figure 7. Evaluation results of our scheduling algorithm: (a) Maximum latency and finishing
time, (b) number of finished jobs and (c) distribution of latency.
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YOLO [1] achieves good detection performance by dividing the image into
regions and predicting bounding boxes and probabilities for each region.

7.2. Mobile-edge computing

Mobile-edge computing (MEC) is a new framework to provide co-locating
computing and storage resources at the edge. In MEC systems, mobile end
users offload resource-hunger tasks to the back-end server. Many works have
been proposed to address computation offloading problem in MEC. In [7],
Rudenko et al. found that significant power saving can be achieved by off-
loading certain tasks of realistic size. Gonzalo et al. in [8] proposed an adaptive
offloading mechanism that leverages the execution history. They collect the
consumed resources and the state of the device and use this information to
perform an offloading. In [9], Huang et al. proposed a dynamic offloading
algorithm based on Lyapunov optimisation to save energy and meet given
application execution time requirement. Barbera et al. conducted various
experiments in [10] and showed that wireless transmission affects the overall
offloading performance in a large degree. Wu et al. considered network
unavailability in mobile offloading in [11] and proposed a new offloading
decision and application partition algorithms to minimise energy consumption
and execution time. Wen et al. in [12] proposed a new offloading algorithm by
configuring the clock frequency of the mobile devices to minimise the energy
consumption. In [13], Xian et al. proposed a new offloading algorithm. By
setting a timeout, their work can achieve good offloading performance with-
out estimating the computation time in advance. These approaches only
consider the single user computation offloading problem, which may be not
practical in real applications.

Many systems are designed for offloading under the setting of multiple
mobile users. In [14], Chen et al. formulate the distributed computation off-
loading decision-making problem under the setting of multiple mobile users
as an offloading game. They showed that the offloading game admits a Nash
equilibrium and possesses the finite improvement property. Some systems are
designed specifically for consumer-oriented services that should put the end
users in the first place. In [15], Zhang el al. proposed an algorithm that can find
the best code partition and integration points.

7.3. Recent AR frameworks

Recently, various AR systems have been proposed for different networks. For
example, in [16], Ran et al. propose a distributed framework that ties together
front-end devices with more powerful back-end ‘helpers’ that allow deep
learning to be executed locally or to be offloaded. A virtual reality (VR) video
conferencing system over named data networks is proposed in [17]. The
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system is composed of three components: the producer, the consumer and the
sync manager. To ensure the real-time requirement, it adopts a prefetching
approach, in which the consumers request video chunks in advance [18]
presents a system over a 5G network where a collection of base stations
interconnected via back-haul links are sharing their caching and computing
resources to maximise the aggregate reward they earn by wireless clients.

8. Discussion

8.1. Generality of our system

First, our view change detection model consists of generic techniques that can
be applied to other mobile devices with embedded motion sensors. The image
processing and detection model at the server’s side can be replaced by any
computer vision model for different applications (e.g. face detection). The
scheduling problem we define is in line with the actual situation. Our view
change model can be used to select key frames and reduce the bandwidth
compared with existing approaches.

8.2. Limitations

Based on our current settings (one server and multiple mobile devices), only
about 20 users and 40 frames are supported in each cycle. In real shopping
scenarios, tens of users will exist in an area. To support more users, multiple
processing cores should be included for the distributed processing, and the
problem should be formulated again on multiple machines. Due to hardware
constraints, we do not cover this part in this paper.

Moreover, we do not discuss the coordination among different users. When
two users are close to each other, it is very likely that they will see same logos in a
short time. Sometimes, a user’s line of sight may be blocked by others. In this case,
multi-hop communication can be adopted to realise real-time logo detection.
Habak et al. proposed Femto clouds [19] that can offload computation to nearby
mobile devices. Similarly, framework designed in [20] offloads computation
among the peers within the tactical edge. Since mobile devices have limited
computation resources, it is hard to implement these two systems for AR applica-
tion. Currently, all mobile devices in our system have a queue of important frames
with a fixed size. In real shopping scenarios, it may be better to set different sizes
for different areas based on the distribution and density of users.

9. Conclusion

In this paper, we propose a real-time logo detection system for mobile devices.
Our system can capture important frames in real-time videos and recognise logos
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in them. Since the vision algorithms for object detection entail significant com-
putation, our system offloads these detection jobs to the roadside servers. To
reduce the bandwidth, we select important frames by a view change detection
model on the mobile devices. To minimise the worst performance for all offloaded
jobs, we use a greedy algorithm at the server side to minimise the maximum
lateness of all jobs. Various experiments are designed to evaluate our system. The
evaluation results show that our system can truly reduce the bandwidth usage
and maintain a great object detection performance using the view change
detection model. Up to 10 users can be supported using the current settings
(one server and multiple mobile devices). In the future, we want to further balance
the workloads between the server and the mobile devices. For example, mobile
devices can process images locally with battery consumption constraints as long
as the processing time is less than the time spent on the offloading.
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