SRVoice: A Robust Sparse Representation-based Liveness Detection System

Jiacheng Shang, Si Chen, and Jie Wu Center for Networked Computing Temple University

Biometrics: Voiceprint

Voiceprint

- Promising alternative to password
- Primary way of communication
- Better user experience
- Integration with existing techniques for multi-factor authentication

Applications

citibank

HSB

Login Required			
User:			
Password:			
	Login Cancel		

Google

Biometrics: Voiceprint

Voiceprint example

Voiceprint-based authentication

Threats

- Human voice is often exposed to the public
- Attackers can "steal" victim's voice with recorders

Security issues

E.g. Adversary could impersonate the victim to spoof the voice-based authentication system

Reverse Turing Test

CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans

Previous work

Previous work

Systems	Limitations
Leveraging the magnetic fields of loudspeakers	 Low TAR: cannot work if magnetic noise exists Low true rejection rate (TRR): cannot work if the attacker uses non-conventional loudspeaker You Can Hear But You Cannot Steal: Defending against Voice Impersonation Attacks on Smartphones (S. Chen et al. ICDCS 2017)
Audio and throat motion-based	 Low TRR: Cannot work if users are performing other activities
	Defending Against Voice Spoofing: A Robust Software-based Liveness Detection System (J. Shang et al. MASS 2018)

Basic ideas

 Leveraging the structural differences between the vocal systems of human and loudspeakers

Attack model

- Mimicry attack
 - Attackers imitate victim's voice without extra device
- Replay attack
 - Attackers steal victim's voice at the mouth with recorder

Reconstruction attack

• Attackers reconstruct victim's throat voice using low-pass filter

Word Segmentation

- Recorded voice: the sequence of words and noise
- Segmenting each word:
 - Using Hidden Markov Model-based techniques

Feature Extraction

Feature Extraction

Feature Extraction

We further convert each spectra difference (matrix) to a vector

Liveness detection for a single word

- Feature selection among spectra difference is critical
- Sparse representation-based classification

Liveness detection for a single word

- If we do not know the label of y
 - \circ We can reversely compute x based on a sparse representation formulation

 $\widehat{x_1} = \arg \min ||x||_1$ subject to y = Ax

 $||x||_1 = sum(|x|)$

 If number of object classes is reasonably large, the x should be sparse enough, and this problem can be solved in polynomial time by standard linear programming method

Simple idea: assigning y to the object class with the single largest entry in $\widehat{x_1}$

--> does not harness linear structure of all training samples in the same class

Liveness detection for a single word

- We use estimation error E(y) for each possible class $E(y) = mean(||y - A\Delta_i \hat{x_1}||_1)$
 - $\Delta_i(\widehat{x_1})$ is the coefficient vector that only contains coefficients associated with the i^{th} class
 - $\circ y$ is labeled as the class whose E(y) is minimal

Liveness detection for a passphrase

- Improving performance by combining results of multiple words in a passphrase (weighted voting)
 - Each player is a tuple (user, word, weight)
 - Weight:
 - If the detected word \neq the argued word, weight is 0
 - **Otherwise**, $Weight(w) = 1 + log^{(1+N_{unvoiced}(w))}$

w: a word

N_{unvoiced}(w): the # of unvoiced phonemes in word w

classification results

Digital words	Weight
"One", "Nine"	1
"Two", "Three", "Four", "Five", "Seven", "Eight", "Ten"	1.3
"Six"	1.47

Liveness detection for a passphrase

- Improving performance by combining results of multiple words in a passphrase (weighted voting)
 - Each player is a tuple (user, word, weight)
 - Weight:
 - If the detected word \neq the argued word, weight is 0
 - Otherwise, $Weight(w) = 1 + log^{(1+N_{unvoiced}(w))}$ w: a word $N_{unvoiced}(w)$: the # of

N_{unvoiced}(w): the # of unvoiced phonemes in word w

classification results

```
Weight E.g. a user argues he/she is Bob (passphrase 7614)
```


Methodology

- Implement our system on real smartphones (nexus 4 and 5)
- Use two loudspeakers, 50% each, to perform replay attack

Maker	Model	Number of trumpets
Willnorn	SoundPlus	2
Amazon	Echo	2

Performance metrics

- The standard automatic speaker verification metrics
 - True Acceptance Rate (TAR)
 - True Rejection Rate (TRR)

Performance for normal users

- Average true acceptance rate for a single word: 87.83%
- Tolerating mistake by voting: combining detection results of 6 words, average TAR is improved to 99.04%

Performance against attackers

- Mimicry attack
- Replay attack
- Reconstruction attack
 - Attackers reconstruct victim's throat voice using low-pass filter

- Performance under different acoustic environments
 - When noise is under 70 dB, both systems can ensure at least 95% TAR for normal users
 - When the environment is pretty noisy, our system can provide 20% higher TAR than WeChat Voiceprint

Conclusion

- Smartphone-based liveness detection system
 - Leveraging microphones and motion sensors in smartphone - without additional hardware
 - Easy to integrate with off-the-shelf mobile phones (software-based approach)
- Good performance against strong attackers
 - Can detect a live speaker with mean accuracy of 99.04% and reject an attacker with an accuracy of 100%.

