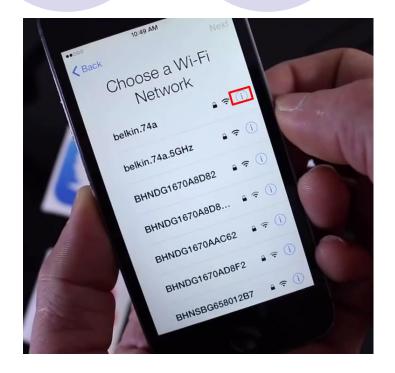
A Robust Sign Language Recognition System with Sparsely Labeled Instances Using Wi-Fi Signals

Jiacheng Shang, Jie Wu

Center for Networked Computing
Dept. of Computer and Info. Sciences
Temple University

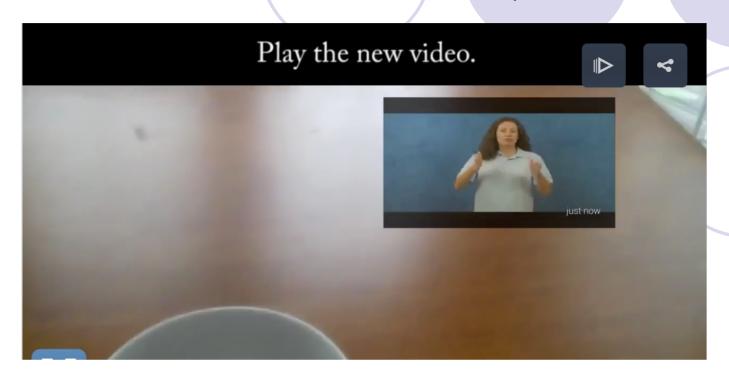
- Wi-Fi signals are available almost everywhere.
- Wi-Fi signals can monitor surrounding activities using Channel State Information (CSI).



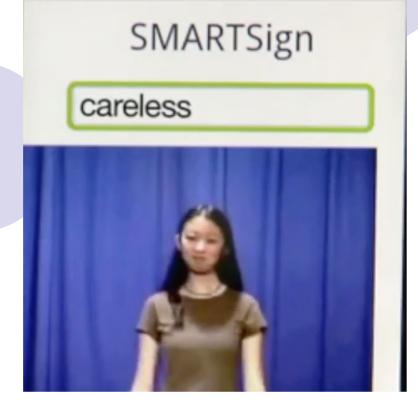
MASS 2017

• Sign language (SL) mainly uses manual communication to convey meaning.

- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.



- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.



MASS 2017

- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.

• American Language Services offers interpreters starting at \$125 per hour and a two-hour minimum is

required

MASS 2017

Problem Statement

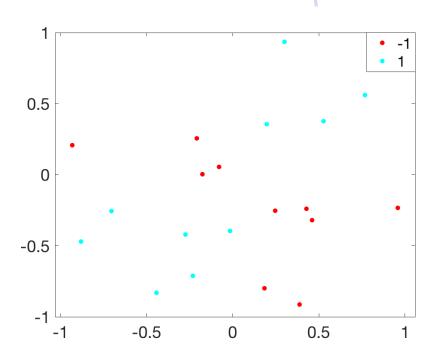
- Sign language recognition using Wi-Fi signals
 - Uses commercial Wi-Fi devices (routers and laptops) to recognize sign language.
- Strengths
 - Can work in the dark
 - Avoids breaching user privacy
 - No need to wear sensors
 - Low cost

Limitations of Existing Systems

- Limitations of existing systems: models are trained based on a large dataset
 - Large training datasets are usually hard and expensive to get in practice.
 - Many works have the potential requirement that label distributions in the training dataset and the testing dataset should be the same.
- Our approach: reduce the size of the training dataset by leveraging the knowledge in the unlabeled dataset and others' training datasets

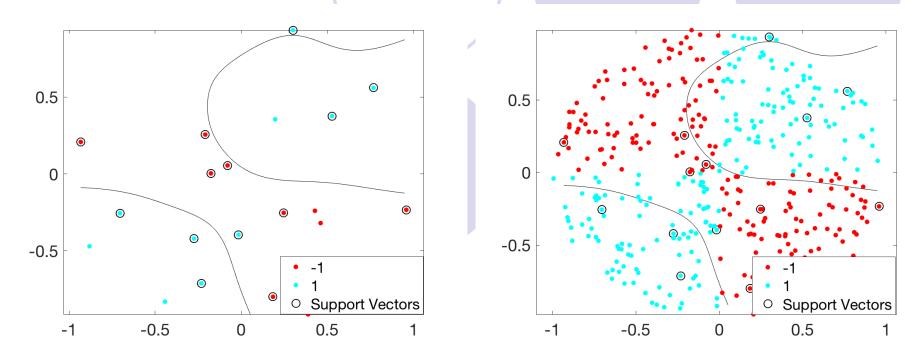
Limitations of Existing Systems

• Why are current models trained using a large dataset?



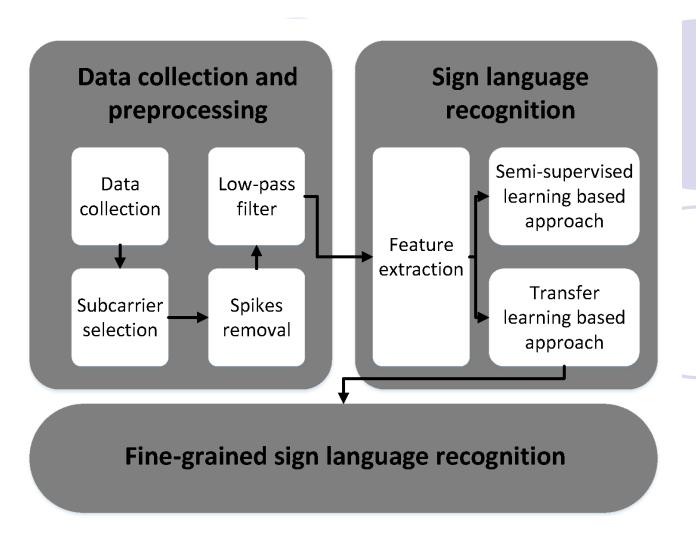
Limitations of Existing Systems

• Why are current models trained using a large dataset?



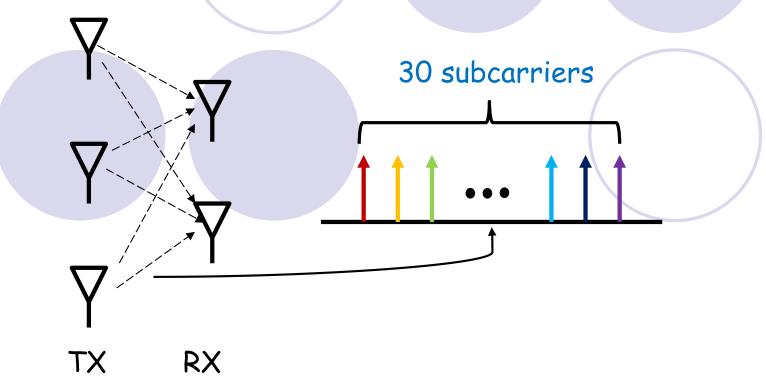
Accuracy: 79%

Sign Language Recognition Pipeline



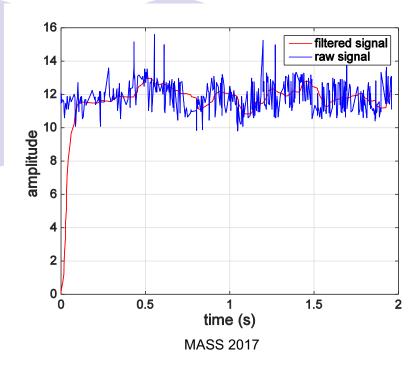
Signal Preprocessing

- Subcarrier Selection
 - Different subcarriers have different sensitivities to different human activities



Signal Preprocessing

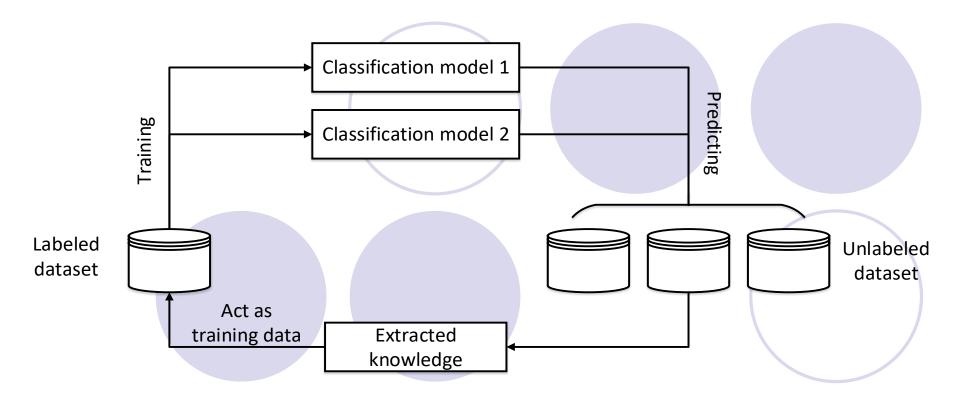
- Noise removal
 - Smoothing: removes outliers
 - Low-pass filter: removes high frequency noise
 - The average amplitude and the average median absolute deviation are chosen as the features.



Leverage knowledge in unlabeled datasets

- Labeled instances are often very time consuming and expensive to obtain.
- The new user may only be able to label some instances while most instances stay unlabeled.
- Knowledge in unlabeled instances can be used to improve the recognition's performance.
- Co-training is an efficient semi-supervised learning paradigm

Leverage knowledge in unlabeled dataset



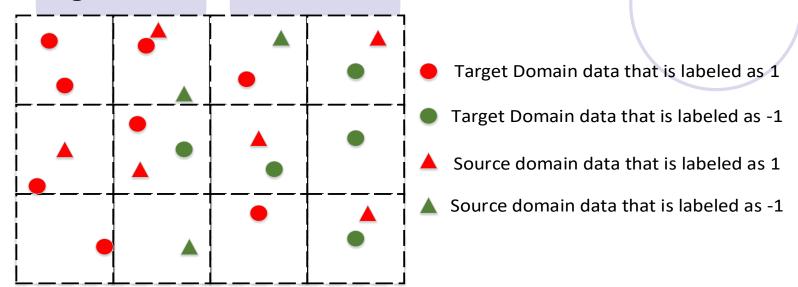
 Extracted knowledge: those unlabeled instances that are predicted as the same label by both (of two) classification models

Reuse others' training datasets

- The ability to recognize and apply knowledge obtained in previous tasks
- Why Reuse?
 - Build every model from scratch?
 - Time consuming and expensive
 - Reuse knowledge extracted from existing tasks and datasets
 - More practical
- How can we decide what data should be transferred to the new user?

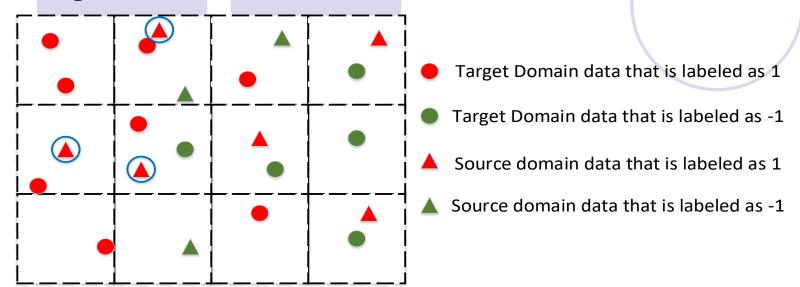
Reuse others' training dataset

- Transfer algorithm: find those useful instances from existing labeled source domain data
 - Features value discretization on each dimension with a grid size of T.
 - A source domain instance is transferred to target domain iff there is a target domain instance with the same label in the same grid.

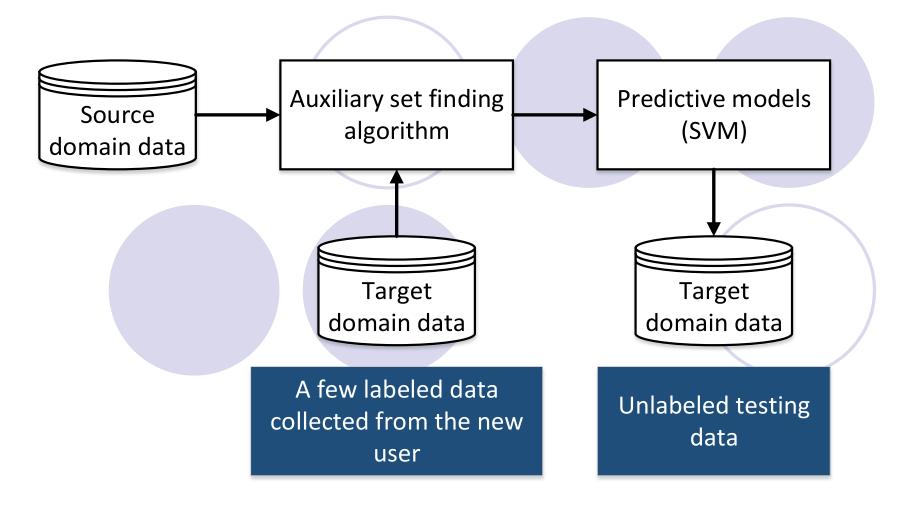


Reuse others' training dataset

- Transfer algorithm: find those useful instances from existing labeled source domain data
 - Features value discretization on each dimension with a grid size of T.
 - A source domain instance is transferred to target domain iff there is a target domain instance with the same label in the same grid

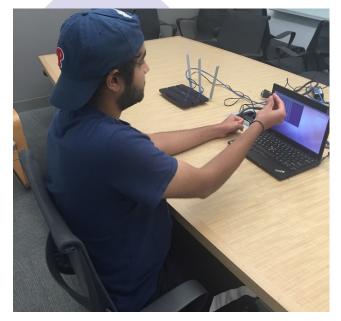


Reuse others' training dataset



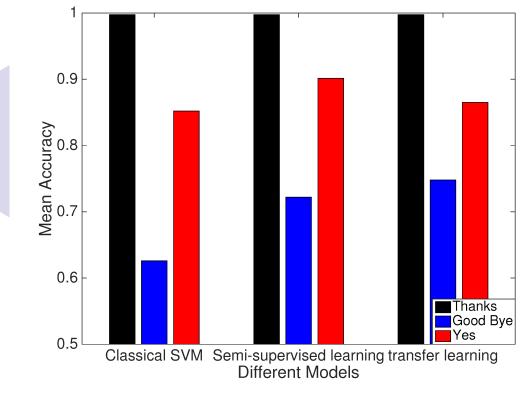
Evaluation

- Commercial hardware with no modifications
 - Transmitter: TP-Link TL-WR1043ND Wi-Fi router
 - Receiver: Lenovo X100e laptop with Intel 5300 NIC
 - Downloading a large file from an FTP server within the same local network area



MASS 2017

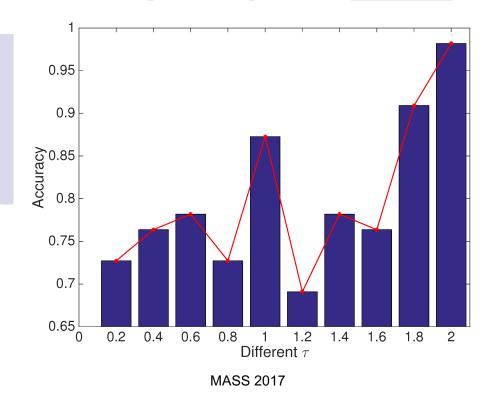
- Mean accuracies vs. different solutions
 - Two proposed solutions can achieve better accuracies with sparsely labeled training data.



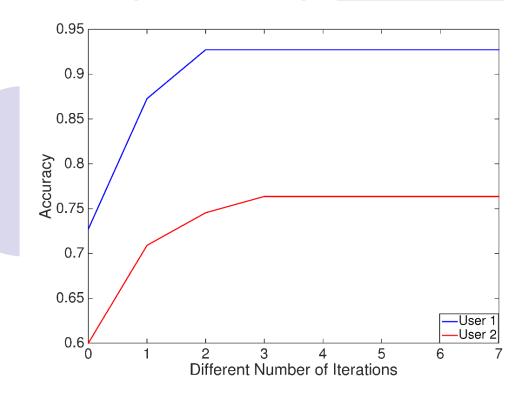
- Mean accuracies vs. different users
 - Our approaches can achieve a mean prediction accuracy of about 87% for all participants.



- Accuracies vs. different T
 - There is no linear relationship between the accuracy and T.
 - T is determined based on the distribution and density of the data.



- Accuracies vs. different iterations
 - We set the number of iterations to 5 in our system.



Conclusion

- CSI measurements contain fine-grained movement information and can be used to recognize sign language.
- Propose a sign language recognition system that can achieve a good performance with sparsely labeled data.
 - Leveraging the knowledge in an unlabeled dataset.
 - Reusing others' training datasets.
- Experimental results show that our system can achieve a mean prediction accuracy of about 87%.

Thanks! Q&A