
QoS-Aware Service Selection in Geographically
Distributed Clouds

Xin Li∗, Jie Wu†, and Sanglu Lu∗
∗State Key Laboratory for Novel Software Technology, Nanjing University
†Department of Computer and Information Sciences, Temple University

lixin@dislab.nju.edu.cn, jiewu@temple.edu, sanglu@nju.edu.cn

Abstract—As more and more services are offered in clouds,
it is possible to meet the diverse demands of users via service
composition. Selecting the optimal set of services, in terms of QoS,
is the crucial issue when many functionally equivalent services are
available. In this paper, we investigate the service selection prob-
lem under the service replica limitation constraint. The objective
is to select the optimal service set which brings out the minimal
response time. We estimate the communication latency with the
network coordinate system. Based on the estimated latencies and
service composition paradigm, our selection algorithms find the
services which will result in low latency under various replica
limitation constraints. We evaluate our approaches via extensive
simulations, the experimental results of which show that our
algorithms work efficiently.

Index Terms—QoS-aware, service selection, cloud, replica con-
straint, network latency, shortest path.

I. INTRODUCTION

End users pay more and more attention to the services and
applications in today’s cyber-physical environment. Service
can be widely accessible as a result of the development and
evolution of key technologies, like utility computing, and
mobile and wireless communication. With the advent of Cloud
Computing and Software as a Service (SaaS), more and more
services will be offered in clouds all over the world. At the
same time, user demands are becoming more and more diverse
and personalized; the computation context is also becoming
complex. For example, users prefer to enjoy the realtime
interactive services via smart mobile phones, especially multi-
media services. However, single service is always insufficient
to satisfy the user, because of its functional simplicity. Service
composition is an effective way to overcome the limitation of
single service.

Figure 1 shows an example of service composition with
3 basic simple services. To provide the composite service,
the primary task for the service provider is to select concrete
service instance(s) for each abstract task Fi. Because of the
plenitude of services, there may be many functional equivalent
service instances in the clouds with various QoS attributes
(e.g. executing time, access latency). As shown in Fig. 1, we
should select one or more concrete service instances for each
abstract task Fi from the functional equivalent instances set
{F j

i } (1 ≤ j ≤ θ).
In this paper, we investigate the service selection problem

with the goal of minimizing the response time for the user.
For example, in Fig. 1, F 2

1 , F 1
2 , and F 3

3 are selected to realize

F1 F2 F3

F2
1

F2
2

F2
3

F3
1

F3
2

F3
3

F1
1

F1
2

F1
3

lat
enc
y

latency

Fig. 1. An example of service composition with 3 basic simple services

the composite service, which indicates that the path (red line),
induced by F 2

1 , F 1
2 , and F 3

3 , brings the least communication
latency for the user.

We aim to select a service set to provide services with the
best QoS for wide-area users in the long run. As more service
instances are selected for each abstract service task, users can
get better QoS. However, in the scenario of cloud computing,
it is cost consuming to hire too many service instances. Hence,
due to the cost constraint, there exists a quantitative limi-
tation when selecting the service instances. The quantitative
limitation and the diversity of service instances make it a
challengeable problem to select the optimal services instance
set, which guarantees the best QoS.

We take the response time, the most concerning QoS
attribute for the end-user, as the metric to judge the quality of
the selected service instance set. We aim to propose effective
algorithms to select the optimal service set. The algorithms
act as guidance for the service providers. To calculate the
response time for the users, we establish the following settings.
First, we let both user and service instance have a location,
which is represented by a 2-dimensional coordinate system.
User location implies where the service request starts from.
Service instance location indicates where the service request is
handled. There exists communication latency between any two
locations. Second, we estimate the communication latency via
the general network coordinate system, which is also adopted
in related literature [1].

Having the location and latency model, we formulate the
service selection problem, with a service instance quantitative
limitation constraint. The problem is proved to be NP-hard.
Then, we discuss both the simple case and general case of
the service selection problem. The simple case implies there

F1 F2 F3

F4

F5

Fλ

Fig. 2. An example of functional graph

is only one service instance for each abstract task, while there
could be multiple service instances for each abstract task in
the general case; however, there is a quantitative limitation
for the total number of service instances. We propose two
algorithms for the two cases respectively. For the simple case,
the algorithm selects the service instance step by step in a
greedy manner. For the general case, the algorithm simulates
a vote procedure for the users, and selects the service instances
which can satisfy a majority of users.

II. PRELIMINARIES

A. Service Composition

Usually, a service composition task works based on a
functional graph, which defines the logic execution sequence
of service components and the possible composition patterns.
Functional graph is defined as:

Definition 1 (Functional Graph). A functional graph is defined
as FG =< F,E, λ >, where F is the set of functional
components represented by function name F , and E is the
set of functional edges between these components. λ is the
number of components.

There are two kinds of executing patterns in this paper,
sequence pattern and conditional pattern; there is no loop
pattern and parallel pattern. For example, in Fig. 2, F1 and
F2 run in sequence pattern; after that, either F3, F4, or F5

is selected to run (conditional pattern). No loop pattern or
parallel pattern is considered.

Due to the conditional pattern, there may be many com-
position routes, which means a completed path from initial
component to the terminal component. There may be many
paths with different initial components and terminal compo-
nents for the functional graph. To simplify the presentation,
we let the paths of the functional graph share the same initial
component and terminal component. Actually, it is easy to add
a virtual source component acting as an initial component if
there are many initial components. This is also true of adding
a virtual destination component for terminal component. For
the functional graph FG =< F,E, λ >, we let F1 be the
initial component, and Fλ be the terminal component.

In Fig. 2, there are λ = 6 service components and 4
composition routes. In this paper, we name the possible
composition route functional path and use K to represent the
number of functional paths. We will also represent functional
graph as FG =< F,E, λ,K >.

For each functional component, there can be many func-
tional equivalent instances provided by clouds, with various

TABLE I
NOTATION CONTRADISTINCTION

Abstract Level Concrete Level
functional component service instance

Fi, 0 ≤ i ≤ λ F j
i , j = 1, 2, ..., θ(i)

functional path data flow
Pk, 1 ≤ k ≤ K ωk

functional edge network link
Eij Lij

locations and QoS parameters. We use F j
i (j = 1, 2, ..., θ(i))

to represent the instances of functional component Fi. Fur-
thermore, the key research issue in this paper is how to select
the service instances for the functional components; it is also
an instantiation procedure for the functional graph.

To distinguish the notations of functional level (abstract
level) and instance level (concrete level), Table I gives the
notations of the two levels and their symbols.

To connect the notations of abstract level and concrete level,
we introduce the selection function π, which determines which
concrete service instance should be selected for the abstract
functional component. For example, π(F1) = F 2

1 indicates
that the concrete service instance F 2

1 is selected for the abstract
functional component F1. In reverse, we can define π

′
as the

inverse function of π, so π
′
(F 2

1) = F1.
In a similar manner, the selection function π can be ex-

tended to functional edge and functional path. For example,
π(Eij) = Lπ(i)π(j) represents that the functional edge Lij

is mapped to the concrete link between instance π(i) and
π(j); and π

′
(ωk) = Pk shows that the data flow ωk is the

instantiation from functional path Pk.
For each user, one functional path will be selected to provide

service for her. It can be user-specified or context-aware: for
example, according to the user’s device capability, she can
get videos with various image definitions, which is provided
by different functional paths. Generally, we use ℘(Pk)(k =
1, 2, ...,K) to refer to the probability of the kth functional
path being selected to provide service.

B. Network Model

Response time is determined by two parts: service execution
time and network communication latency. Execution time is
given by the QoS attributes of service instance.Network Coor-
dinate System (NCS) is widely used to estimate the network
latency. Latency varies a lot depending on the user’s location
[9]. We estimate the communication latency between any two
locations via NCS. The adopted NCS in this paper is based on
the Euclidean distance model with two coordinates. Formally,
the communication latency between any two locations is
represented as:

c(l1, l2) = α+ β ∗ dist(l1, l2) (1)

where dist(l1, l2) is the Euclidean distance between the two
locations l1 and l2, α and β are two factors.

C. Data Flow

For a selected concrete path, also known as data flow ω in
this paper, the delay is comprised of two parts, communication

latency and execution time. So we must consider the two
factors jointly when we select the service instances. The total
delay of a data flow can be formalized as:

D(ω) =

λ∑
i=1

T (Fω
i) ∗ Z(i,π′(ω))

+
∑

1≤i,j≤λ

c(Fω
i , Fω

j) ∗ Z(i, j,π′(ω))

where Fω
i is the service instance in the flow ω of functional

component Fi, and T (Fω
i) is the processing time of the ser-

vice instance. c(Fω
i , Fω

j) indicates the communication latency
between the two service instances Fω

i and Fω
j . Z(i, k) is a

function to determine if the functional component Fi is in the
functional path Pk; it can be represented as:

Z(i, k) =

 1, if functional path Pk contains
the functional component Fi;

0, otherwise.

Similarly, Z(i, j, k) is a function to determine whether the
functional edge Eij belongs in the functional path or not,
shown as following:

Z(i, j, k) =

 1, if functional path Pk contains
the functional edge Eij ;

0, otherwise.

If multiple functional equivalent service instances are se-
lected, let N(Fi) serve as the number of selected instances of
functional component Fi. Hence, there should be more than
one flow for each functional path, actually the number of flows
(J) is defined as:

Jk =
λ∏

i=1

N(Fi)
Z(i,k)

We use ωj
k(1 ≤ j ≤ Jk) to represent the flows of path Pk.

For the user, the service response time is mainly determined
by the data flow to which the user is assigned. However, the
total response time varies based on the user location. Actually,
given user u and the assigned flow ω, the response time can
be formalized as:

R(u, ω) = D(ω) + c(u, Fω
1) + c(Fω

λ , u)

III. PROBLEM FORMALIZATION

For some user u, without loss of generality, let function path
Pk be selected to do service for her. There may be multiple
data flows that can meet her demands, due to the existence
of multiple functional equivalent service instances. The flow
resulting in minimal response time should be selected. We use
ωopt
k to represent the optimal flow, which means that:

R(u, ωopt
k) ≤ R(u, ωj

k)(1 ≤ j ≤ Jk)

Also, we let R(u, k) = R(u, ωopt
k), which represents the

expected response time for user u on the functional path Pk.
As mentioned above, there may be multiple functional paths

meeting the user demands with various quality levels. Based

on the probability distribution of functional paths, the expected
response time for user u can be represented as:

R(u) =

K∑
k=1

℘(Pk) ∗R(u, k)

Based on the above definitions, we define the quality of the
selected service instance set (S) as:

Q(S) = 1

µ

µ∑
u=1

R(u)

where µ is the number of users. Obviously, lower Q(S)
indicates better quality.

A. Problem Definition

Given functional graph FG with λ functional components
and K functional paths, let the user set be U(|U | = µ).
Selecting no more than γ(γ ≥ λ) service instances from

the instance set I , I =
λ∪

i=1

Ii and Ii is the instance set of

the functional component Fi. At least one instance should be
selected for each functional component. The objective is to
achieve the best total quality. It can be formalized as:

min.
1

µ

µ∑
u=1

R(u)

s.t.
λ∑

i=1

N(Fi) ≤ γ

1 ≤ N(Fi) ≤ |Ii|,∀1 ≤ i ≤ λ

B. Hardness

It is easy to prove that the service selection problem is NP-
hard. For the simple case, there is only one instance for each
component, i.e. γ = λ. It has been proven to be NP-hard
[8]. For the general case, it can be easily reduced from the
k-median problem, which is a well-known NP-hard problem
[5].

IV. ALGORITHMS

A. Simple Case

At first, let us look into the simple case: only one instance
is selected for each functional component, i.e. γ = λ, and
N(Fi) = 1.

The problem will be easy if there is only one path in
the functional graph; it could be reduced from the shortest
path problem. In this section, we borrow the ideas from the
shortest path problem, and propose a heuristic algorithm; the
framework is shown in Algorithm 1.

The algorithm works in a greedy manner. Because the
functional paths share the common initial component and
final component, we select the service instance of component
F1 and Fλ first. The function facilityLoc(U, Ij) returns
the service instance for Fj , i.e., the one with minimal total
communication latency from the users is returned.

Algorithm 1 Selection Algorithm
Input: the user set U , service instance set I , functional graph

FG =< F,E, λ,K >
Output: service instance set S, where |S| = λ,∀r, t ∈

S,π
′
(r) ̸= π

′
(t).

1: S ← ∅
2: π(F1) = facilityLoc(U, I1)
3: π(Fλ) = facilityLoc(U, Iλ)
4: for k = 1; k ≤ K; k = k + 1 do
5: S = S ∪ shortestPath(k,π(F1),π(Fλ))
6: S = combine(S)
7: return S

When the source and destination are determined, the al-
gorithm invokes a shortest path algorithm for each function-
al path, which contains different service components. The
algorithm shortestPath(k,π(F1),π(Fλ)) returns a service
instance set, the elements of which are the concrete instances
of the components of functional path Pk, with one instance for
each component. The data flow derived from the set has the
shortest communication latency. We use the Dijkstra algorithm
in our implementation.

We set an attribute score for each service instance, and the
initial value is 0.0. When some service instance s is selected
by the algorithm shortestPath(k,π(F1),π(Fλ)), its score
is added by ℘(Pk), the probability of functional path Pk. This
implies that the service instance is wanted by this functional
path.

After all of the functional paths have been handled, there
may be multiple service instances that are selected for each
service component. We need to select one instance for each
service component. The function combine(S) determines the
final selected service instance set. The one with highest score
is selected for each service instance subset of Fi.

B. General Case

For the general case, it is not suitable to determine some
source or destination, because there may be multiple service
instances for the initial component and terminal component.
The fixed source and destination will result in worse quality
than multiple sources and destinations.

We adopt the voting idea in this algorithm, and the frame-
work of our Voting algorithm is shown in Algorithm 2. For
each user, there is a service instance set, which best satisfies
the user. We consider this as a procedure of voting, the
user votes for the service instances. Algorithm 3 shows the
procedure. For the given user u and function path Pk, the
algorithm shortestPath(I, u, k) returns the service instance
set, which provides the shortest response time for u on Pk.
Then the score of each element in the returned service instance
set is added by the probability of Pk. Voting is a time-
consuming process, the complexity is O(µK|I|2), which also
determines the complexity of our algorithm.

After the voting procedure, the service instances are sorted
in descending score order for each subset Ii (algorithm

Algorithm 2 Voting Algorithm
Input: the user set U , service instance set I , functional graph

FG =< F,E, λ,K >, instance number limitation γ
Output: service instance set S, where λ ≤ |S| ≤ γ,N(Fi) ≥

1.
1: for u = 1;u ≤ µ;u = u+ 1 do
2: for k = 1; k ≤ K; k = k + 1 do
3: voting(u, k)
4: for i = 1; i ≤ λ; i = i+ 1 do
5: Ii ← rank(Ii)
6: S = S ∪ Ii.element(0)
7: I ← rank(I − S)
8: S = S ∪ I.top(γ − λ)
9: return S

Algorithm 3 voting(u,k)
Input: service instance set I , user u, and functional path Pk.
Output: service instance set S

1: S ← shortestPath(I, u, k)
2: for ∀s ∈ S do
3: s.score← s.score+ ℘(Pk)

rank()). Then, the one with the highest score in each subset is
selected as the final service instance. So, λ service instances
can be selected. We select another γ − λ service instances
from the remaining instances, which are again sorted in
descending score order, globally. The voting procedure reflects
the user expectation for the service instance, the selected
service instances with high scores will meet most of the user
demands.

V. EVALUATION

A. Simulation Setup

We implement a simple random algorithm to select the
service instance randomly. It shows the expected value of a
randomly chosen solution, and provides a baseline that more
sophisticated algorithms should be able to easily outperform.
GA-based algorithm is proposed in [1, 2], we will not imple-
ment it, because it is time consuming, especially when the
number of users is large in our work.

In our simulations, the parameters for computing the com-
munication latency are set as: α = 1, β = 50. The candidate
instance number for each functional component is the same
in our experiments, i.e. ∀0 ≤ i, j < λ, θ(i) = θ(j), and the
execution time for each service instance is a random integer
value from 20 to 40. The user locations and service instance
locations are generated randomly within the two-dimensional
coordinate space [0, 1]× [0, 1]. We will investigate the impact
of the number of users µ, number of components λ, and
instance number of each component θ to the performance of
our approaches.

B. Experimental Results - Simple Case

For the simple case, Fig. 3 shows the result for a given
functional graph with λ = 8 functional components and

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Users (µ)

R
at

io

λ=6, θ=2

λ=6, θ=3

λ=6, θ=5

λ=6, θ=10

λ=6, θ=15

λ=6, θ=20

λ=6, θ=30

λ=6, θ=50

Fig. 3. Impact of µ

K = 5 functional paths. The vertical axis shows the ratio
of response time from our proposed algorithm to the time
of random algorithm. In the group of experiments, the x-
coordinate is the user number µ, and we plot the results under
various instance numbers θ. From the figures, we learn that:

1) The response time reduction is about 20% when the
service instance number is 5. There is even a 10%
reduction when there are only two instances for each
component, and there is more reduction as the number
of instances (θ) increases. This shows the efficiency of
our approach for selecting the proper service instances.

2) The performance of our approach is especially good when
its number of users (µ) is small. Particularly, we get the
lowest value when µ = 1, it looks like, to select an
optimal path for the only user. As the number of users
increases, the value of the ratio increases as well, because
there is no one instance set that is optimal for all of the
users. The selected instance set is a tradeoff result with
the optimal expected response time for all of the users.

3) The performance tends to be stable when the density of
users exceeds some threshold. We analyze the results step
by step, and find that the performance stagnates beyond
100. This is because the user distribution tends to be
regular when the density of users beyond the threshold.
Hence, increasing µ exerts little influence; our approach
makes a similar tradeoff.

C. Experimental Results - General Case

Figure 4 shows the results for the general case. The x-
coordinate is the value of an additional number of service
instances, compared to the simple case.

The red line exhibits the ratio of the result from our voting
algorithm to the result of random algorithm. We know that,
when γ = |I|, i.e., all of the service instances are selected,
the two algorithms have the same performance, and the ratio
should be 1.0. Hence, as the value of γ − λ increases, the
random algorithm has more of a chance to select the optimal
service instance with higher score in the voting algorithm. So,
the performance random algorithm is tending to our voting
algorithm, as γ − λ rises.

The black line illustrates the ratio of the result when γ > λ
to the result when γ = λ. Both of the two results are given by
our voting algorithm, which shows the impact of γ. As γ − λ
increases, our voting algorithm provides a service instance set
with better quality. When γ − λ comes to some threshold,

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

γ − λ

R
a
ti

o

(γ > λ)/(γ = λ)

Voting/Random

Fig. 4. Impact of γ (λ = 6,K = 4, θ = 10)

the ratio tends to be steady, because the service instances
with high score have yet to be selected; the newly selected
instances contribute little to the total quality of the selected
service instance set.

There is a cross point of red line and black line when γ−λ is
about 20. It implies that our voting algorithm performs as well
as the random algorithm when the random algorithm selects
20 extra service instances. It is a significant cost saving.

VI. CONCLUSION

In this paper, we address the service selection problem in the
cloud environment: we aim to deploy persistent service for the
wide-area users over the long-run. The objective is to optimize
the quality of selected service instance set. We investigate both
the simple case and general case of the selection problem,
and propose a shortest-path based voting algorithm to solve
the selection problem. The basic idea is to select the service
instances that the users expect most, i.e., the most expected
instances can offer the shortest service response time.

ACKNOWLEDGMENTS
This work is supported in part by the National Ba-

sic Research Program of China (973) under Grant No.
2009CB320705; the National Natural Science Foundation of
China under Grant No. 61202113 and No. 61021062; US NSF
grants ECCS 1231461, ECCS 1128209, CNS 1138963, CNS
1065444, and CCF 1028167.

REFERENCES

[1] A. Klein, F. Ishikawa, and S. Honiden. Towards Network-aware Service
Composition in the Cloud. WWW, 2012.

[2] Z. Ye, X. Zhou, and A. Bouguettaya. Genetic Algorithm Based QoS-
Aware Service Compositions in Cloud Computing. DASFAA, 2011.

[3] F. Dabek, R. Cox, M.F. Kaashoek, and R. Morris. Vivaldi: a Decentral-
ized Network Coordinate System. SIGCOMM, 2004.

[4] Z. Qian, M. Guo, S. Zhang, and S. Lu. Service-oriented multimedia
delivery in pervasive space. WCNC, 2009.

[5] Z. Drezner, and H.W. Hamacher. Facility Location: Applications and
Theory. Springer, 2004.

[6] S. Kannan, A. Gavrilovska, and K. Schwan. Cloud4Home-Enhancing
Data services with Home Clouds. ICDCS, 2011.

[7] M. Alrifai, T. Risse, and W. Nejdl. A Hybrid Approach for Efficient
Web Service Composition with End-to-End QoS Constraints. ACM
Transactions on the Web, 6(2):7, 2012.

[8] D. Pisinger. Algorithms for Knapsack Problem. PhD thesis, University
of Copenhagen, Department of Computer Science, 1995.

[9] Z. Zheng, Y. Zhang, and M.R. Lyu. Distributed QoS Evaluation for
Real-World Web Services. ICWS, 2010.

[10] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng.
Quality Driven Web Services Composition. WWW, 2003.

