
Joint Pricing and Scheduling for SLA-aware
Serverless GPU Services

Xiaoyao Huang∗, Yanan Yang∗, Yujun Wang§, and Jie Wu∗‡
∗Cloud Computing Research Institute, China Telecom, China

‡Department of Computer and Information Sciences, Temple University, USA
§China Telecom Cloud Technology Co. Ltd, China

Email: huangxy32@chinatelecom.cn, yangyn11@chinatelecom.cn, jiewu@temple.edu, wangyj3@chinatelecom.cn

Abstract—The growing demand for large-scale AI inference
drives the need for elastic and profitable GPU-as-a-Service
platforms. However, existing methods often decouple pricing and
scheduling, resulting in reactive and inefficient resource utiliza-
tion. This paper presents HOPS, a hierarchical optimization
framework that jointly integrates dynamic pricing and real-
time scheduling for SLA-aware serverless GPU services. The
upper-level Pricing and Baseline Adjustment (PBA) algorithm
adaptively learns per-tier prices and baseline GPU allocations
via stochastic gradient updates, while the lower-level Adaptive
Reconfiguration and Matching Scheduler (ARMS) manages fine-
grained job placement to minimize SLA violations and switching
overhead. The two layers form a closed feedback loop to achieve
equilibrium between economic and operational objectives. Trace-
driven experiments using real workloads show that HOPS im-
proves overall profit by 45–55%, reduces SLA violations by up to
30%, and lowers switching overhead by one order of magnitude,
while sustaining over 70% GPU utilization.

Index Terms—Serverless pricing, GPU scheduling, Stackelberg
game, bi-level optimization.

I. INTRODUCTION

The rapid growth of AI-generated content (AIGC) and
large language model (LLM) inference has driven a surge in
serverless GPU services, which provide elastic, pay-as-you-
go GPU access for workloads such as LLM inference, mul-
timodal generation, and real-time analytics [1], [2]. However,
demand is highly bursty and time-varying [3], while GPUs
are expensive and scarce, making even short periods of under-
utilization costly [4]. Meanwhile, stringent service-level agree-
ments (SLAs) impose latency and reliability requirements,
where violations can incur substantial penalties. These factors
make it challenging to jointly balance profitability, utilization,
and SLA compliance in serverless GPU platforms.

Most existing work focuses on low-level scheduling given
fixed demand. For example, MQFQ-Sticky improves fairness
and mitigates cold starts through multi-queue scheduling and
GPU memory management [5], while HAS-GPU enables fine-
grained GPU slicing to meet SLA targets under heterogeneous
workloads [6]. While effective in improving utilization and
responsiveness, these methods treat demand as exogenous and
decouple pricing from scheduling, leaving providers largely
reactive to workload surges. As a result, platforms may over-
provision and waste GPUs, or under-provision and suffer SLA
violations and revenue loss.

To address this limitation, we propose HOPS, a joint Pricing
× Scheduling framework that integrates dynamic pricing with
real-time scheduling. Pricing steers tier choices and reshapes
workload distribution, while co-optimized scheduling executes
requests efficiently under SLA constraints. By coupling the
two layers, HOPS enables the platform to proactively balance
profitability, resource utilization, and service quality under
heterogeneous and rapidly changing workloads.

The main contributions are threefold. First, we formulate
the pricing–scheduling interaction as a bi-level optimization
problem, where pricing is optimized at a longer planning
scale and scheduling operates at a fine-grained real-time
scale. Second, we design HOPS, a hierarchical algorithm that
combines stochastic optimization for pricing with adaptive
reconfiguration and matching for scalable scheduling. Finally,
trace-driven experiments on real-world traces show that HOPS
improves GPU utilization and profit while reducing SLA
violations and switching overhead compared with state-of-the-
art baselines such as MQFQ-Sticky and HAS-GPU [5], [6].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

As illustrated in Fig. 1, we consider a serverless GPU
platform that serves a set of users U . The system operates
on two coupled timescales: a window level for long-term
economic planning and a slot level for real-time resource
control. Time is divided into windows indexed by t, each
containing slots indexed by h ∈ Ht.

At the beginning of each window, the Pricing Layer an-
nounces a per-unit virtual GPU (vGPU) price pm,t and an SLA
guarantee sm for each service tier m ∈ M = {1, 2, . . . ,M}.
Users then select a tier and submit their workloads. Each
tier is initialized with a minimum number of persistent keep-
alive replicas to ensure zero cold-start latency and baseline
availability. During the window, subscribed users generate jobs
following a stochastic process; for tier m, the aggregate arrival
rate is denoted by λm,t and the average vGPU demand per
job by gm,t, yielding expected demand λm,tgm,t.

At the slot level, the Scheduling Layer assigns incoming
jobs to vGPUs and may reconfigure which function each
vGPU runs. Such reconfiguration causes switching overhead,
so the scheduler balances SLA compliance against switching
and usage costs. The vGPU pool is logically divided into

Fig. 1: The system framework.

persistent keep-alive replicas, which remain online throughout
the window, and elastic transient replicas, which can be
activated temporarily to handle bursty workloads and released
as demand subsides. At each window end, metrics (SLA vio-
lations, utilization) are aggregated and fed back to the Pricing
Layer to update pm,t+1 and baseline configurations, forming
a closed loop under dynamic, heterogeneous workloads.

B. Pricing Layer Modeling

At the start of window t, the Pricing Layer determines
the per-unit vGPU price pm,t and the number of keep-alive
replicas nmin

m,t for each tier m. The SLA guarantee sm specifies
the maximum job completion time in tier m. The baseline nmin

m,t

provides always-on capacity to eliminate startup delays.
Let Λt be the total potential arrival rate during window t.

The realized rate λm,t depends on the announced prices and
SLAs. We adopt a multinomial logit (MNL) model [7]:

λm,t = Λt ·
exp(αsm − βpm,t)∑

m′∈M exp(αsm′ − βpm′,t)
, (1)

where α and β capture user sensitivity to SLA and price,
respectively. The expected total demand of tier m over the
window is λm,tgm,t∆t.

The provider’s revenue is Rt =
∑

m∈M pm,tλm,tgm,t∆t,
and the total operational cost is

Ct = Cbase
t + Cgpu

t + Cswitch
t +

∑
m∈M

bmLm,t, (2)

where Cbase
t =

∑
m rmnmin

m,t is the cost of keep-alive replicas
with per-replica baseline cost of a tier rm, Cgpu

t is the transient
vGPU usage cost, Cswitch

t denotes the overhead when keep-
alive vGPUs change their deployed functions across slots, and
Lm,t counts SLA-violated jobs with per-job penalty bm.

The Pricing Layer maximizes the cumulative profit across
all windows

maxpt,nmin
t

Φ =
∑

t

(
Rt − Ct

)
, (3)

subject to the capacity constraint

s.t.
∑

m∈M
nmin
m,t ≤ Nt, ∀t, (4)

where Nt is the total number of available vGPUs in window t.
The quantities Cgpu

t , Cswitch
t , and Lm,t are induced by slot-level

scheduling decisions described next.

C. Scheduling Layer Modeling

The Scheduling Layer operates at the slot level. Let J be
the set of vGPUs and F the set of functions. Each arriving
job k in slot h requires function f(k) ∈ F and belongs to tier
m(k) ∈ M. We use xk,j,h for Job Assignment (job k assigned
to vGPU j in slot h), vj,f,h for Function Deployment (vGPU
j runs function f in slot h), and zj,h to indicate a function
switch on vGPU j between slots h− 1 and h.

Given pt and nmin
t , the Scheduling Layer minimizes

min
x,v,z

Cgpu
t + Cswitch

t +
∑

m∈M
bmLm,t, (5)

with Cgpu
t = cgpu ∑

h∈Ht

∑
j∈J

∑
f∈F vj,f,h and Cswitch

t =

cswitch ∑
h∈Ht

∑
j∈J zj,h. Feasibility requires that a job can

be served only by a vGPU running its required function,

xk,j,h ≤ vj,f(k),h, ∀k, j, h, (6)

each vGPU hosts at most one function per slot,∑
f∈F

vj,f,h ≤ 1, ∀j, h, (7)

switching is captured by∑
f∈F

|vj,f,h − vj,f,h−1| ≤ 2 zj,h, ∀j, h > h0, (8)

each vGPU processes at most one job per slot,∑
k
xk,j,h ≤ 1, ∀j, h, (9)

and the number of active vGPUs mapped to functions of tier
m never falls below the baseline,∑

j∈J

∑
f :m(f)=m

vj,f,h ≥ nmin
m,t , ∀m,h. (10)

Each job k has completion time Tk subject to Tk ≤ sm(k)+
δk, where δk ≥ 0 is a slack variable. The number of SLA-
violated jobs in tier m is Lm,t =

∑
k:m(k)=m I[δk > 0]. At the

beginning of each window, nmin
t initializes the persistent pool;

within the window, the scheduler adjusts vj,f,h by activating
transient replicas or switching functions on keep-alive replicas.
The realized Cgpu

t , Cswitch
t , and Lm,t are reported to the Pricing

Layer for the next window.

D. Stackelberg Formulation

The two layers form a Stackelberg game. The Pricing Layer
acts as the leader, deciding pt and nmin

t at each window
start while anticipating the Scheduling Layer’s response. The
Scheduling Layer is the follower, solving (5)–(10) given the
upper-level decisions. Let Ψ(pt,n

min
t) denote the optimal

objective value of the Scheduling Layer. The problem is

maxpt,nmin
t

Φ =
∑
t

(
Rt −Ψ(pt,n

min
t)

)
, (11)

s.t.
∑

m∈M
nmin
m,t ≤ Nt, ∀t.

This hierarchical structure captures demand shaping at the
upper level and real-time resource control at the lower level,
yielding a joint pricing-and-scheduling strategy that maximizes
profit while ensuring SLA compliance.

III. PROPOSED ALGORITHMS

In this section, we propose a hierarchical framework named
Hierarchical Optimization for Pricing and Scheduling (HOPS)
to jointly optimize the upper-level Pricing Layer and the lower-
level Scheduling Layer. The two layers operate at different
timescales: the Pricing Layer determines per-tier prices and
baseline vGPU allocations at a slower window level, while the
Scheduling Layer dynamically manages function deployment
and job allocation at a faster slot level. Directly solving
the integrated problem is intractable because the Scheduling
Layer involves combinatorial integer decisions and the Pricing
Layer contains continuous variables. To address this, HOPS
decomposes the problem into two nested loops: the lower-
level Scheduling Layer acts as a follower that computes the
optimal or approximate response to given prices and baselines,
while the upper-level Pricing Layer updates its strategy based
on aggregated feedback. This structure naturally aligns with
a Stackelberg game, where the leader iteratively adjusts its
strategy and the follower responds, enabling scalability and
convergence to equilibrium.

A. Window-Level Algorithm: Pricing and Baseline Adjustment
(PBA)

At the beginning of each window, the Pricing Layer de-
termines the per-tier price vector pt = {pm,t} and the
baseline configuration nmin

t = {nmin
m,t}, based on historical

demand and the realized costs returned by the Scheduling
Layer in the previous window. The goal is to maximize the
profit function Φt defined in (3). However, the lower-level
Scheduling Layer problem is discrete and highly non-linear,
making it impossible to obtain a closed-form gradient of Φt

with respect to (pt,n
min
t).

To overcome this challenge, we adopt a blockwise two-
point stochastic gradient estimation scheme combined with
a projected gradient update. Let ∆t = (∆p

t ,∆
n
t) be a random

perturbation vector, where each entry independently takes val-
ues in {±1} (Rademacher perturbation). Given a perturbation
magnitude c > 0, two perturbed strategies are generated:

s+ = (pt+c∆p
t , n

min
t +c∆n

t), s− = (pt−c∆p
t , n

min
t −c∆n

t).

The Scheduling Layer evaluates the profit at these two points,
denoted by Φ+ and Φ−, and the gradient is approximated as

∇̂Φt = ∆t(Φ
+ − Φ−)/2c, (12)

where the multiplication is element-wise.
The estimate in (12) is then used to update the decision

variables via a projected gradient step:

(pt+1,n
min
t+1) = Π

[
(pt,n

min
t) + ηt∇̂Φt

]
, (13)

where ηt is the step size and Π(·) is the projection operator en-
suring feasibility:

∑
m nmin

m,t ≤ Nt, nmin
m,t ∈ Z≥0, pm,t ≥

0. We implement Π blockwise: prices are projected by non-
negativity and optional upper bounds, while baselines are

Algorithm 1: Pricing and Baseline Adjustment (PBA)
Input: Initial p0, nmin

0 , step sizes {ηt}, perturbation
magnitude c, total horizon T .

1 for t = 1, 2, . . . , T do
2 Generate random perturbation vector ∆t with

Rademacher entries;
3 Compute perturbed strategies:

s+ = (pt + c∆p
t , nmin

t + c∆n
t),

s− = (pt − c∆p
t , nmin

t − c∆n
t);

4 Evaluate profits Φ+ and Φ− by invoking Scheduling
Algorithm (ARMS) under s+ and s−;

5 Approximate gradient ∇̂Φt using (12);
6 Update variables using projected step (13);
7 Pass (pt+1,n

min
t+1) to the Scheduling Layer for the next

window.

rounded to the nearest integers and then greedily adjusted to
satisfy the total vGPU capacity constraint

∑
m nmin

m,t ≤ Nt
1.

The PBA algorithm is summarized in Algorithm 1. The
updated prices and baseline decisions are passed to the
Scheduling Layer at the start of the next window, forming
a closed feedback loop between the two layers.

B. Slot-Level Algorithm: Adaptive Reconfiguration and
Matching Scheduler (ARMS)

We design ARMS to solve the lower-level scheduling prob-
lem by dynamically determining vj,f,h, zj,h, and xk,j,h in each
slot h of window t, minimizing

Cgpu
t + Cswitch

t +
∑

m
bmLm,t,

subject to (6)–(10). The MILP is intractable for large-scale
systems, so ARMS adopts a two-stage approach: (i) Stage
1: Reconfiguration to adjust active vGPUs, and (ii) Stage 2:
Matching to assign jobs.

Stage 1: Fairness-aware reconfiguration. At the start of slot
h, the required replicas for each function f are estimated as

nreq
f,h =

⌈
(Qf,h + λ̂f,h ∆h)/µf ∆h

⌉
, (14)

where Qf,h is the queue length of function f , µf is the service
rate per vGPU. A fairness score

scoref = (nreq
f,h − nactive

f,h)+ + γDf,h,

with nactive
f,h =

∑
j vj,f,h and deficit Df,h, prioritizes under-

served functions. When scaling up, ARMS selects between
switching a keep-alive vGPU or activating a transient one:

∆Cswitch(j, h) = cswitch + γQremain
j,h , ∆Cact = cgpu,

Make the decision to choose the cheaper action while preserv-
ing baseline constraints.

Stage 2: Value- and fairness-aware matching. Given vj,f,h,
jobs are scheduled by priority

πk =(pm(k),tE[gm(k),t] + κbm(k))

· (1/(max{sm(k) − th, ϵ})) · (1 + ηD̃f(k),h),
(15)

1When generating s±, any infeasible perturbed baselines are projected onto
the feasible integer simplex before evaluation, ensuring both perturbed points
can be processed by the Scheduling Layer. This keeps the two-point estimator
in (12) valid without altering the algorithm structure.

Algorithm 2: ARMS: Adaptive Reconfiguration and
Matching Scheduler

Input: pt, nmin
t , {λm,t}, Ht, J , F .

Output: Cgpu
t , Cswitch

t , {Lm,t}.
1 Initialize vj,f,h0 so that

∑
j

∑
f :m(f)=m vj,f,h0 ≥ nmin

m,t .
2 for h ∈ Ht do
3 Update Qf,h and λ̂f,h.
4 for f ∈ F in descending scoref do
5 while

∑
j vj,f,h < nreq

f,h do
6 Identify baseline-safe keep-alive set J sw

f,h.
7 if J sw

f,h ̸= ∅ and minj ∆Cswitch(j, h) < ∆Cact

then
8 Switch j⋆ = argminj ∆Cswitch(j, h).
9 else

10 Activate a transient vGPU j†.
11 Build job set Kh, sort by πk.
12 for job k in sorted order do
13 Assign to j⋆ = argminj T̂k,j,h if feasible; else

mark violation or queue.
14 Update Cgpu

t , Cswitch
t .

where the three factors respectively represent economic value,
SLA urgency, and fairness. Ties are resolved by minimum
predicted completion time

T̂k,j,h = th + (qj,h + 1)/µf(k), (16)

where qj,h is the queue length on vGPU j. Jobs with T̂k,j,h >
sm(k) are marked as SLA violations.

Stage 1 executes in O(|F||J |) time per slot, while Stage 2
operates in O(|Kh| log |Kh|). Given fixed function placements
vj,f,h, Stage 2 achieves optimal scheduling under the defined
priority scheme, whereas Stage 1 yields a bounded approxi-
mation. Together, they guarantee overall efficiency, fairness,
and SLA compliance across dynamic workloads.

C. Integrated Bi-Level Optimization Framework

The proposed HOPS framework tightly couples the window-
level PBA algorithm with the slot-level ARMS to jointly
optimize long-term economic objectives and real-time resource
control. This naturally yields a bi-level leader–follower struc-
ture: at the beginning of each window, the upper-level leader
(PBA) sets the per-tier price vector pt = {pm,t} and baseline
keep-alive vGPU allocation nmin

t = {nmin
m,t}, while during

the window, the lower-level follower (ARMS) dynamically
manages function deployment and job scheduling.

Upper level. Given the realized costs from the previous
window, PBA maximizes the cumulative profit:

maxpt,nmin
t

Φ =
∑

t

(
Rt − Ct

)
, (17)

subject to GPU capacity and feasibility:∑
m∈M

nmin
m,t ≤ Nt, nmin

m,t ∈ Z≥0, pm,t ≥ 0,

where Rt and Ct are defined in Section III-A and Ct depends
on ARMS decisions in window t, coupling the two levels.

Lower level. Given (pt,n
min
t), ARMS minimizes the real-

time operational cost:

minx,v,z Cgpu
t + Cswitch

t +
∑

m∈M
bmLm,t, (18)

s.t. (6), (7), (8), (9), (10),

where xk,j,h, vj,f,h, and zj,h are slot-level variables defined in
Section III-B. The follower determines job allocation, transient
vGPU activation, and switching of keep-alive vGPUs while
respecting baseline guarantees.

Closed-loop interaction. At the start of window t, PBA
selects (pt,n

min
t). ARMS then operates over all slots h ∈ Ht,

generating realized metrics {Cgpu
t , Cswitch

t , Lm,t} and feeding
them back to PBA, which updates its strategy using the pro-
jected stochastic update (13). Through repeated iterations, the
leader adapts prices and baseline allocations to the follower’s
approximate best responses, driving the coupled system toward
a Stackelberg-stable operating point.

D. Theoretical Analysis

We analyze the theoretical properties of HOPS, focusing on
convergence and equilibrium stability.

Definition 1 (Stackelberg Equilibrium (SE)). A strategy tuple
(p⋆,nmin,⋆, x⋆, v⋆, z⋆) constitutes a SE if:

1) (Follower optimality) For fixed (p⋆,nmin,⋆), (x⋆, v⋆, z⋆)
solves the follower’s problem in (18);

2) (Leader optimality) Given the follower’s best-response
mapping R(p,nmin), (p⋆,nmin,⋆) solves the leader’s
problem in (17).

Theorem 1 (Convergence of PBA). If the step sizes {ηt}
satisfy

∑
t ηt = ∞,

∑
t η

2
t < ∞, and the perturbation

magnitude c is bounded, then the iterates (pt,n
min
t) gen-

erated by the projected two-point update (pt+1,n
min
t+1) =

Π
[
(pt,n

min
t) + ηt∇̂Φt

]
converge almost surely to a station-

ary point of the upper-level objective Φ.

Proof. The estimator in (12) provides an unbiased stochastic
approximation of ∇Φt. Under bounded variance and Lipschitz
smoothness, the projected updates define a Robbins–Monro
process that converges a.s. to the stationary set of Φ.

Let CARMS and COPT denote the achieved and optimal
objectives of the lower-level problem (18), respectively.

Theorem 2 (Approximation Guarantee of ARMS). For a fixed
leader strategy (pt,n

min
t), the ARMS produces a solution

(xt, vt, zt) satisfying CARMS ≤ (1 + ϵ)COPT, where ϵ∈ [0, 1)
depends on workload heterogeneity and vGPU contention.

Proof. ARMS decouples the follower decision into two stages:
Stage 1 determines a feasible deployment by greedily re-
configuring vGPU allocations while explicitly trading off
activation versus switching, which bounds the reconfiguration
overhead relative to the minimum changes needed to meet
the baseline constraints. Conditioned on this deployment,
Stage 2 reduces to within-window priority-based job matching
under capacity constraints; the induced objective is monotone

with diminishing returns, and the resulting greedy/prioritized
matching achieves a (1+ ϵ)-approximation for the scheduling
subproblem. Combining the two stages yields the stated bound,
where ϵ captures the residual loss due to heterogeneous service
rates and contention across tiers/vGPUs.

Theorem 3 (Bi-Level Convergence). Consider the joint sys-
tem state Θt = (pt,n

min
t , xt, vt, zt). If the upper-level PBA

operates on a slower timescale and ARMS produces bounded-
error responses, then limt→∞ dist(Θt,Θ

⋆) = 0, where Θ⋆ is
the set of local Stackelberg equilibria.

Proof. The two-timescale update forms a stochastic approxi-
mation system. By Borkar’s multi-timescale convergence the-
orem [8], the fast variables (xt, vt, zt) track the lower-level
equilibria induced by (pt,n

min
t), while the slow variables

follow the projected ordinary differential equation (ODE)
of the upper-level Stackelberg dynamics. Consequently, the
iterates Θt converge to a neighborhood of Θ⋆ with deviation
O(ε), which vanishes as the ARMS error ε→0.

Theorems 1–3 jointly establish that HOPS converges to a
stable, near-optimal SE under stochastic dynamics, ensuring
adaptive price learning and scalable scheduling stability.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We evaluate HOPS using a trace-driven simulator of a
serverless GPU platform with N = 64 vGPUs, where each
experiment runs for T = 40 windows consisting of H = 60
slots. The job arrival process is driven by a real-world Azure
Functions trace [9], which is aggregated into per-window
arrival rates to capture the burstiness and diurnal variations of
serverless workloads, and then distributed across three service
tiers using the multinomial logit model in (1) to reflect realistic
user behaviors. Tier-specific GPU demand gm, service rate
µm, and SLA targets sm are extracted from the Alibaba GPU
cluster trace [10], which provides fine-grained information on
vGPU usage and AI job characteristics. This combination of
realistic invocation patterns (Azure trace) and authentic GPU
workload heterogeneity (Alibaba trace) enables faithful repro-
duction of a multi-tenant serverless GPU environment. All
monetary values, including prices, costs, and SLA penalties,
are normalized to allow fair comparison among algorithms.

We compare HOPS with four baselines under identical
workloads: (i) Torpor [11]: a serverless GPU system sup-
porting model swapping and latency-sensitive scheduling;
(ii) HAS-GPU [6]: a hybrid auto-scaling mechanism with
fine-grained GPU slicing for SLO guarantees; (iii) MQFQ-
Sticky [5]: integrates multi-queue fair scheduling with GPU
memory management to reduce cold starts and queuing delays;
(iv) Static Pricing + Separate Scheduling (SPSS): an ablated
version of our design with fixed prices and baseline allocations
to isolate the effect of dynamic pricing.

(a) Profit (b) SLA Violation Rate
Fig. 2: Profitability and SLA compliance with time increasing.

(a) Tier Share (b) Price (c) Replicas

Fig. 3: Convergence of Pricing and Baseline Decisions.

B. Profitability and SLA Compliance

Fig. 2 presents the cumulative profit and SLA violation
rate over time across all methods. As shown in Fig. 2(a),
HOPS achieves the highest cumulative profit, reaching nearly
6.7×105 at the end of the experiment, while the best base-
line (HAS-GPU) stays around 4.4×105, corresponding to
an improvement of roughly 45–55%. The gain stems from
HOPS’s joint pricing–scheduling mechanism, which continu-
ously adapts service prices and baseline vGPU allocations to
workload dynamics, improving utilization and reducing idle
capacity. In Fig. 2(b), HOPS maintains a low SLA violation
rate, stabilizing around 14% by the 40th window, whereas
HAS-GPU shows over 19% violations due to aggressive
scaling. MQFQ-Sticky, SPSS, and Torpor exhibit intermediate
performance. These results demonstrate that HOPS effectively
balances profitability and SLA compliance by jointly optimiz-
ing demand shaping and real-time scheduling, avoiding the
trade-off typical of decoupled strategies.

C. Convergence of Pricing and Baseline Decisions

Fig. 3 demonstrates the overall convergence behavior of the
Pricing and Baseline Adjustment (PBA) process in HOPS. As
shown in Fig. 3(a), the final tier distribution stabilizes around
21%, 35%, and 44% for Tiers 1–3, respectively, clearly indi-
cating that the system effectively differentiates user demand
across service levels. Fig. 3(b) further shows that prices of all
tiers gradually stabilize after about 20 windows, maintaining
clear separation among tiers (approximately 1.1, 1.3, and
1.5). This reflects the system’s ability to accurately learn
users’ price elasticity and SLA preferences through stochastic
updates. In Fig. 3(c), baseline replicas steadily increase before
converging, with Tiers 1–3 settling near 8, 15, and 20 replicas,
respectively. The joint stabilization of price and baseline
allocation confirms that HOPS achieves equilibrium between
economic and operational layers, validating the theoretical
Stackelberg stability discussed in Section III-D.

(a) Switching Overhead (b) GPU Utilization

Fig. 4: Switching Overhead and GPU Utilization.

D. Switching Overhead and GPU Utilization

Fig. 4 compares the switching overhead and GPU utilization
among all schemes. As shown in Fig. 4(a), HOPS achieves
the lowest switching count of 422, less than 4% of HAS-GPU
and an order of magnitude smaller than MQFQ-Sticky. This
demonstrates that adaptive reconfiguration in HOPS effectively
minimizes unnecessary function migrations by learning sta-
ble allocation patterns through feedback between the pricing
and scheduling layers. Despite this substantial reduction in
switching operations, Fig. 4(b) shows that HOPS maintains
a consistently high GPU utilization rate (around 0.70–0.72),
comparable to or slightly higher than other strong base-
lines. These results indicate that HOPS achieves efficient and
sustainable resource utilization without frequent reallocation,
balancing performance stability and operational overhead.

V. RELATED WORK

Serverless GPU scheduling. Recent efforts have exten-
sively optimized GPU allocation and cold-start mitigation
for latency-critical serverless workloads. MQFQ-Sticky [5]
enhances fairness and GPU memory reuse across queues
to reduce cold-start overhead, while HAS-GPU [6] intro-
duces hybrid auto-scaling with fine-grained GPU slicing to
satisfy SLO targets under highly heterogeneous workloads.
HarmonyBatch [12] further adopts SLO-aware micro-batching
to amortize invocation latency. Although these systems sig-
nificantly improve responsiveness and overall utilization, they
only address how to allocate resources reactively. The under-
lying demand remains largely exogenous and uncontrollable,
limiting the ability to stabilize utilization and profitability.

Pricing in cloud systems. Cloud pricing mechanisms have
been extensively explored in VM-level and spot-instance mar-
kets [13], [14], as well as in dynamic resource auctions and
game-theoretic optimization [15], [16]. These studies primarily
target long-term or coarse-grained resource leasing, assuming
relatively stable demand and fixed capacity. Such assumptions
are inadequate for second-scale elasticity and SLA-driven
GPU services, where resource prices and availability must co-
adapt in real time to stochastic workloads.

Our distinction. Unlike prior approaches, our work inte-
grates economic decision-making (pricing) with system-level
scheduling through a unified bi-level framework. By formu-
lating their interaction as a Stackelberg game, the proposed
HOPS framework transforms the provider from a passive
allocator into an active demand shaper, jointly optimizing

profitability, SLA compliance, and GPU utilization in dy-
namic, bursty serverless environments.

VI. CONCLUSION

This paper proposed HOPS, a hierarchical framework for
joint pricing and scheduling optimization in serverless GPU
services. By formulating the coordination between pricing and
scheduling as a Stackelberg game, HOPS transforms the cloud
provider from a passive allocator into an active demand shaper.
The upper-level PBA algorithm dynamically tunes prices and
baseline configurations, while the lower-level ARMS sched-
uler ensures efficient GPU utilization and SLA compliance
through adaptive reconfiguration. Experimental results on real-
world traces validate that HOPS consistently outperforms
existing approaches such as HAS-GPU and MQFQ-Sticky
in profit, SLA satisfaction, and operational efficiency. Future
work will extend HOPS to multi-cluster and heterogeneous
GPU environments, exploring online learning mechanisms to
further enhance convergence speed and robustness.

REFERENCES

[1] T. B. Brown, B. Mann et al., “Language models are few-shot learners,”
Advances in Neural Information Processing Systems, vol. 33, pp. 1877–
1901, 2020.

[2] M. Shahrad, R. Fonseca et al., “Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud provider,” in
Proceedings of the USENIX ATC, 2020, pp. 205–218.

[3] M. Carlee, W. Zhang, and A. Singh, “Dynamic gpu scheduling for
efficient large model inference in cloud platforms,” IEEE Transactions
on Cloud Computing, vol. 12, no. 3, pp. 845–858, 2024.

[4] A. Mazumdar and R. Rao, “Cloud resource pricing and demand shaping:
A game-theoretic approach,” ACM Transactions on Economics and
Computation, vol. 11, no. 2, pp. 1–22, 2023.

[5] J. Li, R. Kumar, and T. Yang, “MQFQ-sticky: Multi-queue fair schedul-
ing with gpu memory management for cold-start reduction,” in Proceed-
ings of the 52nd ISCA. ACM, 2025, pp. 110–121.

[6] H. Gu, R. Zhao, L. Sun, and W. Lin, “HAS-GPU: Hybrid auto-scaling
with fine-grained gpu slicing for slo guarantees in serverless platforms,”
in Proceedings of the IEEE ICDCS. IEEE, 2025, pp. 456–468.

[7] D. McFadden, “Conditional logit analysis of qualitative choice behav-
ior,” in Frontiers in Econometrics, P. Zarembka, Ed. New York:
Academic Press, 1974, pp. 105–142.

[8] V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point. Cambridge, UK: Cambridge University Press, 2008.

[9] Microsoft Azure, “Azure functions public dataset,” https://github.com/
Azure/AzurePublicDataset, 2019, accessed: 2025-09-19.

[10] L. Wang, X. Yu et al., “Characterizing, modeling, and benchmarking
gpu datacenter workloads at alibaba,” in Proceedings of the 19th
NSDI. USENIX Association, 2022, pp. 1–17. [Online]. Available:
https://github.com/alibaba/clusterdata

[11] X. Yu, L. Zhang, Y. Wang, and K. Chen, “Torpor: A serverless
gpu system with model swapping and latency-sensitive scheduling,” in
Proceedings of the 52nd ISCA. ACM, 2025, pp. 123–135.

[12] L. Zhang, X. Yu, and K. Chen, “Harmonybatch: Slo-aware micro-
batching for latency-efficient serverless gpu inference,” in Proceedings
of the ACM SoCC. ACM, 2024, pp. 245–258.

[13] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud
computing: A randomized auction approach,” in Proceedings of the IEEE
INFOCOM. IEEE, 2014, pp. 433–441.

[14] W. Shi, L. Zhang et al., “An online auction framework for dynamic
resource provisioning in cloud computing,” IEEE/ACM transactions on
networking, vol. 24, no. 4, pp. 2060–2073, 2015.

[15] G. Mencagli, “A game-theoretic approach for elastic distributed data
stream processing,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 11, no. 2, pp. 1–34, 2016.

[16] Z. Tang, S. Ren, and Y. Zhang, “Game-theoretic revenue optimization in
elastic cloud platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 10, pp. 2401–2413, 2022.

https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://github.com/alibaba/clusterdata

	Introduction
	System Model and Problem Formulation
	System Overview
	Pricing Layer Modeling
	Scheduling Layer Modeling
	Stackelberg Formulation

	Proposed Algorithms
	Window-Level Algorithm: Pricing and Baseline Adjustment (PBA)
	Slot-Level Algorithm: Adaptive Reconfiguration and Matching Scheduler (ARMS)
	Integrated Bi-Level Optimization Framework
	Theoretical Analysis

	PERFORMANCE EVALUATION
	Experimental Setup
	Profitability and SLA Compliance
	Convergence of Pricing and Baseline Decisions
	Switching Overhead and GPU Utilization

	Related Work
	Conclusion
	References

