
A Two-Stage Deanonymization Attack
against Anonymized Social Networks

Wei Peng, Student Member, IEEE, Feng Li, Member, IEEE,

Xukai Zou, Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Digital traces left by users of online social networking services, even after anonymization, are susceptible to privacy

breaches. This is exacerbated by the increasing overlap in user-bases among various services. To alert fellow researchers in both the

academia and the industry to the feasibility of such an attack, we propose an algorithm, Seed-and-Grow, to identify users from an

anonymized social graph, based solely on graph structure. The algorithm first identifies a seed subgraph, either planted by an attacker

or divulged by a collusion of a small group of users, and then grows the seed larger based on the attacker’s existing knowledge of the

users’ social relations. Our work identifies and relaxes implicit assumptions taken by previous works, eliminates arbitrary parameters,

and improves identification effectiveness and accuracy. Simulations on real-world collected data sets verify our claim.

Index Terms—Social networks, anonymity, privacy, attack, graph

Ç

1 INTRODUCTION

INTERNET-BASED social networking services are prevalent
in modern societies: a lunch-time walk across a

university campus in the United States provides enough
evidence. As Alexa’s Top 500 Global Sites statistics
(retrieved on May 2011) indicate, Facebook and Twitter,
two popular online social networking services, rank at
second and ninth place, respectively.

One characteristic of online social networking services is
their emphasis on the users and their connections, in
addition to the content as seen in traditional Internet
services. Online social networking services, while provid-
ing convenience to users, accumulate a treasure of user-
generated content and users’ social connections, which
were only available to large telecommunication service
providers and intelligence agencies a decade ago.

Online social networking data, once published, are of
great interest to a large audience: Sociologists can verify
hypotheses on social structures and human behavior
patterns; third-party application developers can produce
value-added services such as games based on users’ contact
lists; advertisers can more accurately infer a user’s demo-
graphic and preference profile and thus can issue targeted

advertisements. As the December 2010 revision of Face-
book’s Privacy Policy phrases it: “We allow advertisers to
choose the characteristics of users who will see their
advertisements and we may use any of the nonpersonally
identifiable attributes we have collected (including informa-
tion you may have decided not to show to other users, such
as your birth year or other sensitive personal information or
preferences) to select the appropriate audience for those
advertisements.”

Due to the strong correlation to users’ social identity,
privacy is a major concern in dealing with social network
data in contexts such as storage, processing, and publishing.
Privacy control, through which users can tune the visibility
of their profile, is an essential feature in any major social
networking service [1].

A common practice in publishing social network is
anonymization, i.e., removing plainly identifying labels
such as names, social security numbers, postal or e-mail
addresses, but retaining the network structure. Fig. 1
illustrates this process. The motivation behind such anon-
ymization is that, by removing the “who” information, the
utility of the social networks is maximally preserved without
compromising users’ privacy. In several high-profile cases,
anonymity has been unquestioningly interpreted as equiva-
lent to privacy [2].

Can the aforementioned “naive” anonymization techni-
que achieve privacy preservation in the context of privacy-
sensitive social network data publishing? This interesting
and important question was posed only recently [3]. A few
privacy attacks have been proposed to circumvent the
naive anonymization protection [2], [3]. Meanwhile, more
sophisticated anonymization techniques have been pro-
posed to provide better privacy protection [4], [5], [6], [7],
[8]. Nevertheless, research in this area is still in its infancy
and a lot of work, both in attacks and defenses, remains to
be done.

In this paper, we describe a two-stage identification
attack, Seed-and-Grow, against anonymized social networks.

290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

. W. Peng is with the Department of Computer and Information Science,
Indiana University-Purdue University Indianapolis, 723 W Michigan St.,
Indianapolis, IN 46202. E-mail: pengw@umail.iu.edu.

. F. Li is with the Department of Computer, Information, and Technology,
Purdue School of Engineering and Technology, Indiana University-Purdue
University Indianapolis, 799 W Michigan St., ET 301, Indianapolis, IN
46202-5160. E-mail: fengli@iupui.edu.

. X. Zou is with the Department of Computer and Information Science,
Indiana University-Purdue University Indianapolis, 723 W Michigan St.,
SL 280, Indianapolis, IN 46202. E-mail: xkzou@cs.iupui.edu.

. J. Wu is with the Department of Computer and Information Sciences,
Temple University, Room 302, 1805 N Broad St., Wachman Hall 302,
Philadelphia, PA 19122. E-mail: jiewu@temple.edu.

Manuscript received 26 Apr. 2012; revised 3 Aug. 2012; accepted 9 Aug.
2012; published online 17 Aug. 2012.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2012-04-0299.
Digital Object Identifier no. 10.1109/TC.2012.202.

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

The name suggests a metaphor for visualizing its structure
and procedure. The attacker first plants a seed into the target
social network before its release. After the anonymized data
is published, the attacker retrieves the seed and makes it
grow larger, thereby further breaching privacy.

More concretely, our contributions include

. We propose an efficient seed construction and
recovery algorithm (see Section 3.1). More specifi-
cally, we drop the assumption that the attacker has
complete control over the connection between the
seed and the rest of the graph (see Section 3.1.2); the
seed is constructed in a way which is only visible to
the attacker (see Section 3.1.2); the seed recovery
algorithm examines at most the two-hop local
neighborhood of each node, and thus is efficient
(see Section 3.1.3).

. We propose an algorithm which grows the seed
(i.e., further identifies users and hence violates their
privacy) by exploiting the overlapping user bases
among social network services. Unlike previous
works which require arbitrary parameters for prob-
ing aggressiveness, our algorithm automatically
finds a good balance between identification effec-
tiveness and accuracy (see Section 3.2).

. We demonstrate the significant improvements in
identification effectiveness and accuracy of our
algorithm over previous works with real-world
social-network data set (see Section 4).

2 BACKGROUND AND RELATED WORK

A natural mathematical model to represent a social network
is a graph. A graph G consists of a set V of vertices and a set
E � V � V of edges. Labels can be attached to both vertices
and edges to represent attributes.

In this context, privacy can be modeled as the knowledge
of existence or absence of vertices, edges, or labels. An
extension is to model privacy in terms of metrics, such as
betweenness, closeness, and centrality, which originate
from social network analysis studies [9].

The naive anonymization is to remove those labels which
can be uniquely associated with one vertex (or a small
group of vertices) from V . This is closely related to
traditional anonymization techniques employed on rela-
tional data set [10]. However, the information conveyed in
edges and its associated labels is susceptible to privacy
breaches. Backstrom et al. [3] proposed an identification
attack against anonymized graph, and coined the term
structural steganography.

Besides privacy, other dimensions in formulating priv-
acy attacks against anonymized social networks, as
identified in numerous previous works [5], [6], [8], [11],
are the published data’s utility, and the attacker’s back-
ground knowledge.

Utility of published data measures information loss and
distortion in the anonymization process. The more informa-
tion that is lost or distorted, the less useful published data
is. Existing anonymization schemes [4], [5], [6], [8], [11] are
all based on the tradeoff between the usefulness of the
published data and the strength of protection. For example,
Hay et al. [8] propose an anonymization algorithm in which
the original social graph is partitioned into groups before
publication, and “the number of nodes in each partition,
along with the density of edges that exist within and across
partitions,” are published.

Although a tradeoff between utility and privacy is
necessary, it is hard, if not impossible, to find a proper
balance overall. Besides, it is hard to prevent attackers from
proactively collecting intelligence on the social network. It
is especially relevant today as major online social network-
ing services provide APIs to facilitate third-party applica-
tion development. These programming interfaces can be
abused by a malicious party to gather information about
the network.

Background knowledge characterizes the information in the
attacker’s possession which can be used to compromise
privacy protection. It is closely related to what is perceived
as privacy in a particular context.

The attacker’s background knowledge is not restricted to
the target’s neighborhood in a single network, but may
span multiple networks and include the target’s alter egos
in all of these networks [2]. This is a realistic assumption.
Consider the status quo in the social networking service
business, in which service providers, like Facebook and
Flickr, offer complementary services. It is very likely that a
user of one service would simultaneously use another
service. As a person registers to different social networking
services, her connections in these services, which relate to
her social relationships in the real world, might reveal
valuable information which the attacker can make use of to
threaten her privacy.

The above observation inspires Seed-and-Grow, which
exploits the increasingly overlapping user-bases among
social networking services. A concrete example is helpful in
understanding this idea.

[Motivating scenario.] Bob, as an employee of a social
networking service provider F-net, acquires from his
employer a social-network data set, in which vertices
represent users and edges represent private chat sessions.
The edges are labeled with attributes such as timestamps. In
accordance with its privacy policy, F-net has removed the
user IDs from the graph before giving it to Bob.

Bob, being an inquisitive person, wants to know who these
users are. Suppose, somehow, Bob identifies four of these
users from the graph (the “seed construction” and “seed
recovery” interludes in Section 3.1 illustrate a way to do
this). By using a graph (with the user ID tagged), he
crawled a month ago from the website of another service
provider T-net (the four identified persons are also users of
T-net), and by carefully measuring structural similarity of
these graphs, he manages to identify 100 more users from
the anonymized graph (the “dissimilarity” interlude in

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 291

Fig. 1. Naive anonymization removes the ID, but retains the network
structure.

Section 3.2 illustrates a way to do this). By doing so, Bob
circumvents his employer’s attempt to protect its custo-
mers’ privacy.

We conclude this section with a brief comment on our
choice of model. We use the undirected graph model to
explain the proposed deanonymization attack on social
networks. Undirected graphs arise naturally in scenarios
where the social relation under investigation is mutual, for
example, friend requests must be confirmed on Facebook.
Directed graphs, however, are more appropriate in other
cases, such as fans following a movie star on Twitter. An
undirected graph could be seen as a special case of directed
graphs, in which the relationship is reciprocal; Mislove et al.
[12] confirmed the relationship reciprocity in a large-scale
study on the Flickr online photo-sharing service. As
explained in Section 3, the algorithms used in the proposed
deanonymization attack do not rely on the fact that the used
graphs are undirected; they work on directed graphs the
same way. The undirected graph model is only a choice for
specificity and ease of presentation.

3 SEED-AND-GROW: THE ATTACK

This section describes an attack that identifies users from an
anonymized social graph. Let an undirected graph GT ¼
fVT ; ETg represents the target social network after anon-
ymization. We assume that the attacker has an undirected
graph GB ¼ fVB;EBg which models his background knowl-
edge about the social relationships among a group of people,
i.e., VB are labeled with the identities of these people. The
motivating scenario demonstrates one way to obtain GB.

The attack concerned here is to infer the identities of the
vertices VT by considering structural similarity between the
target graph GT and the background graph GB: Nodes that
belong to the same users are assumed to have similar
connections in GT and GB. Although sporadic connections
between who would otherwise be strangers may exist in an
online social network (and, thus, affect the similarity
between GT and GB), such links can be removed by, for
example, quantifying the strength of these connections [13];
the residual network consists of the stable, strong connec-
tions that reflect the users’ real-world social relationships,
which give rise to the similarity between GT and GB.
Additionally, auxiliary knowledge about the target graph
GT (such as the source and nature of the graph) may help in
choosing a background graph GB with similar structures.

Thus, the two graphs GT and GB are syntactically (the
social connections) similar but semantically (the meaning
associated with such connections) different. By reidentify-
ing the vertices in GT with the help of GB, the attacker
associates the sensitive semantics with users on the
anonymized GT and, thus, compromise the privacy of
such users. An example of sensitive semantics is the private
chat sessions, and their associated timestamps, in the
motivating scenario.

We assume that, before the release of GT , the attacker
obtains (either by creating or stealing) a few accounts and
connects them with a few other users (the initial seeds) in GT .
The feasibility of doing this is the basis of the Sybil identity
forgery attack studied in numerous previous works [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Indeed, experiments

(see Section 4) show that our algorithm is capable of

identifying 10 times of anonymized users from as few as

five initial seeds. Besides user IDs, the attacker knows

nothing about the relationship between the initial seeds and

other users in GT . Furthermore, unlike previous works, we

do not assume that the attacker has complete control over the

connections: the attack only knows them before GT ’s release.

This is more realistic. An example is a confirmation-based

social network, in which a connection is established only if

the two parties confirm it: the attacker can decline but not

impose a connection.
In contrast to a pure structure-based vertex matching

algorithm [23], Seed-and-Grow is a two-stage algorithm.

The seed stage plants (by obtaining accounts and

establishing relationships) a small specially designed

subgraph GF ¼ fVF ;EFg � GT (GF reads as “fingerprint”)

into GT before its release. After the anonymized graph is

released, the attacker locates GF in GT . The neighboring

vertices VS of GF in GT are readily identified and serve as

the initial seeds to be grown.
The grow stage is essentially comprised of a structure-

based vertex matching, which further identifies vertices

adjacent to the initial seeds VS . This is a self-reinforcing

process, in which the seeds grow larger as more vertices

are identified.

3.1 Seed

3.1.1 Feasibility

Successful retrieval of GF from GT is guaranteed if GF

exhibits the following structural properties:

. GF is uniquely identifiable, i.e., no subgraph H � GT

exceptGF is isomorphic toGF . For example, in Fig. 2,
subgraph fv1; v2; v3g is isomorphic to subgraph
fv1; v4; v5g because there is a structure-preserving
mapping v1 7! v1, v2 7! v4, v3 7! v5 between them.
Therefore, the two subgraphs are structurally indis-
tinguishable once the vertex labels are removed.

. GF is asymmetric, i.e., GF does not have any
nontrivial automorphism. For example, in Fig. 2,
subgraph fv1; v2; . . . ; v5g has an automorphism
v1 7! v1, v2 7! v3, v3 7! v4, v4 7! v5, v5 7! v2. There-
fore, even if we could locate VF ¼ fv1; . . . ; v5g from
GT , v2; . . . ; v5 are indistinguishable once their labels
are removed.

In practice, since the structure of other nodes in the

network is unknown to the attacker before its release, the

uniquely identifiable property is not realizable. However, as

was proved by Backstrom et al. [3], with a large enough size

and randomly generated edges under the Erdös-Rényi model

[24], GF will be uniquely identifiable with high probability.

292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Fig. 2. A randomly generated graph GF may be symmetric.

Although a randomly generated graph GF is very likely
to be uniquely identifiable in GT , it may violate the
asymmetric structural property. However, because the goal
of seed is to identify the initial seed VS rather than the
fingerprint GF , the asymmetric requirement for GF can be
relaxed. For u 2 VS , let VF ðuÞ be the vertices in VF which
connect with u (jVF ðuÞj � 1 by the definition of VS). For each
pair of vertices, say u and v, in VS , as long as VF ðuÞ and
VF ðvÞ are distinguishable in GF (e.g., jVF ðuÞj 6¼ jVF ðvÞj or the
degree sequences are different; more precisely, no auto-
morphism of GF exists which maps VF ðuÞ to VF ðvÞ), and
once GF is recovered from GT , VS can be identified
uniquely. In Fig. 2, since VF ð6Þ ¼ fv2; v3g and VF ð7Þ ¼
fv4; v5g are not distinguishable, vertices v6 and v7 cannot be
identified through GF .

Based on these observations, we propose the following
method of constructing and recovering GF .

3.1.2 Construction

The construction of GF starts with a star structure. The
motivation for the star structure will become clear in
Section 3.1.3. We call the vertex at the center of the star the
head of GF and denote it by vh. vh connects and only
connects to every other vertex in GF .

The vertices in VF � fvhg are connected with some other
vertices of the initial seeds VS in GT . To ensure the
distinguishability of two seeds u and v once the fingerprint
GF is recovered, the attacker can decline those connection
requests (from other vertices in GT) which render VF ðuÞ ¼
VF ðvÞ. Note that the attacker is not assumed to have full
control over the connections: An attacker does not have to
impose a connection as long as he can decline it.

After setting up the initial star structure, the attacker
establishes other internal connections within the fingerprint
graph GF . Two principles dictate this process:

1. No automorphism of GF should map VF ðuÞ to VF ðvÞ
for two distinct initial seeds u and v.

2. The constructed GF should leave no distinctive
structural pattern for anyone besides the attacker,
but should yet be recoverable.

Principle 1 follows from the discussion in Section 3.1.1: a
pair of initial seeds u and v could be unambiguously
identified only if no automorphism of GF maps VF ðuÞ to
VF ðvÞ. Principle 2 apparently presents a dilemma: GF

should mingle with the rest of the target graph GT , yet be
distinctive. In the following discussion, we first justify this
principle, and then resolve the dilemma by reconciling the
two competing requirements.

The motivation for having GF mingle with the rest of
the target graph GT is to avoid leaving distinctive
structural patterns for defenders. Otherwise, a straightfor-
ward defense against the proposed attack would be to
locate the fingerprint graph GF by pattern-matching and
to remove it prior to the publication of GT . An implication
is that the construction of GF should be stochastic rather
than deterministic.

Yet, stochastic construction alone is not enough for GF to
blend into GT . Numerous studies [25], [26], [27], [28], [29],
[30], [31] indicate the existence of distinctive structural
properties of online social networks as opposed to arbitrary

random graphs. In particular, online social graphs consist of
a well-connected backbone linking numerous small commu-
nities [25]. Within each community, vertices show a local,
transitive, triangle-closing connection pattern [29]. The
construction of GF should reflect these properties to blend
into GT .

The cost for the attacker to set up the fingerprint graph
GF is dominated by the number and variety of connections
between VF and the initial seeds VS . To minimize the cost,
the construction of GF mimics a local community in GT [25]:
after establishing the star structure centering at the head
vertex vh, each pair of vertices in VF � fvhg connects with a
probability of t. The probability t reflects the transitivity of a
community in GT , which is the likelihood that, in the same
community, two vertices sharing a common neighbor (vh in
GF) will connect to each other. In reality, the attacker almost
always knows some auxiliary information about the target
graph GF , which may include the community transitivity
and a reasonable size for a community: The construction of
GF should be adjusted to such information for GF to blend
into GT .

After connecting pairs of nonhead vertices in VF with a
probability of the community transitivity t, the attacker
collects the internal degree DF ðvÞ, which is number of
vertices in VF that v connects to, for every v 2 VF � fvhg
into an ordered sequence SD.

Now, for every v 2 VS , v has a corresponding subse-
quence SDðvÞ of SD according to its connectivity with VF .
For example, in Fig. 2, v6 connects to v2 and v3 from GF ;
since DF ðv2Þ ¼ DF ðv3Þ ¼ 1, SDðv6Þ ¼ h1; 1i. As long as
SDðuÞ 6¼ SDðvÞ for u and v from VS , no automorphism of
GF will map VF ðuÞ to VF ðvÞ. Therefore, the attacker
guarantees unambiguous recovery of VS by ensuring that
the randomly connected GF satisfies this condition. If not,
the attacker will simply redo the random connection among
VF � fvhg until it does (which it eventually will, since we
assume that VF ðuÞ 6¼ VF ðvÞ for any pair u and v from VS).
Algorithm 1 summarizes this procedure.

[Seed construction.] Bob had created seven accounts vh and
v1; . . . ; v6, i.e., VF . He first connected vh with v1; . . . ; v6. After
a while, he noticed that users v7 to v10 are connected with
v1; . . . ; v6, i.e., VS ¼ fv7; . . . ; v10g.

Then, he randomly connected v1; . . . ; v6 with the community
transitivity t and got the resulting graph GF , as shown in
Fig. 3. The ordered internal degree sequence SD ¼
h2; 2; 2; 3; 3; 4i.

Bob found out that SDðv7Þ ¼ h2i, SDðv8Þ ¼ h2; 2i, SDðv9Þ ¼
h3; 3; 4i, and SDðv10Þ ¼ h2; 3i. Since they are mutually
distinct, Bob was sure that he could identify v7 to v10 once
VF was recovered from the published anonymized graph.

The degree of head vertex vh, the ordered internal
degree sequence SD and the subsequences chosen for VS
are the secrets held by the attacker. These secrets are jointly
used to recover GF from GT and thereafter to identify VS
(see Section 3.1.3). The astronomical combinations of these
secrets ensure the high probability that GF is unambigu-
ously recovered from the anonymized target graph GT . We
present a numerical explanation in Section 4.2. Without
knowing the secrets, the attacker could not identify GF , due
to its stochastic construction for blending into GT . There-
fore, GF is visible only to the attacker, who holds the
secrets to GF .

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 293

Algorithm 1. Seed construction.

1: Create VF ¼ fvh; v1; v2; . . .g.
2: Given connectivity between VF and VS .
3: Connect vh with v for all v 2 VF � fvhg.
4: loop

5: for all pairs va 6¼ vb in VF � fvhg do

6: Connect va and vb with a probability of the

community transitivity t.

7: end for

8: for all u 2 VS do

9: Find SDðuÞ.
10: end for

11: if SDðuÞ are mutually distinct for all u 2 VS then

12: return

13: end if

14: end loop

3.1.3 Recovery

Once GF has been successfully planted and GT is released,
the recovery of GF from GT consists of a systematic check
of the attacker’s secrets. The first step is to find a
candidate u for the head vertex vh in GT by degree
comparison. Then, the ordered internal degree sequence of
the candidate fingerprint graph (i.e., u’s one-hop neigh-
borhood) and the subsequences of the candidate initial
seed (i.e., u’s two-hop neighborhood minus its one-hop
neighborhood) are checked against the corresponding
secrets. If the candidate fingerprint graph passes these
secret checks, it is identified with GF , and its neighbors
are identified with VS by subsequence secret comparison.
Algorithm 2 has the details.

[Seed recovery.] After the anonymized publication of the
target graph GT (with the fingerprint graph GF planted in
it), Bob started to check the vertices in GT against the secrets
of GF he held. He did this by examining all of the vertices in
GT for one with degree 6. After he had reached a candidate
head vc with degree 6, he isolated it along with its immediate
neighbors as the candidate fingerprint graph (the red
vertices in Fig. 3). He found that the ordered internal degree
sequence h2; 2; 2; 3; 3; 4i matched that of VF . He then isolated
vc’s two-hop neighborhood, removed those included in the
one-hop neighborhood, and checked ordered internal
degree subsequences of the remaining ones against the
secrets. He found that they matched the secrets again.

Bob was now convinced that he had found GF . By matching
the ordered internal degree subsequences of Vc, he identified
v7, v8, v9, and v10. For example, for a two-hop neighbor
u 2 Vc, which connected to three one-hop neighbors with
internal degrees 3, 3, and 4, he identified u with v9.

The motivation for incorporating the head vertex
technique in the seed construction stage becomes clear from
the example. The only connections vh has are internal ones.
Therefore, once a candidate head vertex u is found, the
candidate fingerprint can be readily determined by isolating
u’s one-hop neighborhood. No probing or backtracking is
needed for finding GF as in previous works [2], [3].

Algorithm 2. Seed recovery.
1: for all u 2 GT do

2: if degðuÞ ¼ jVF j � 1 then

3: U exact one-hop neighborhood of u

4: for all v 2 U do

5: dðvÞ number of v’s neighbors in U [fug
6: end for

7: sðuÞ sortðdðvÞ j v 2 UÞ
8: if sðuÞ ¼ SD then

9: V exact two-hop neighborhood of u

10: for all w 2 V do

11: UðwÞ w’s neighbors in U

12: sðwÞ sortðdðvÞ j v 2 UðwÞÞ
13: end for

14: if hsðwÞ j w 2 V i ¼ hSDðvÞ j v 2 VSi then

15: {w 2 V is identified with v 2 VS if

sðwÞ ¼ SDðvÞ}
16: end if

17: end if

18: end if

19: end for

The efficiency of the algorithm is evident by observing
that, in Algorithm 2, the nesting depth of the loops is 3 (two
of them are in a vertex’s neighborhood) and no recursion is
involved. Because the two-hop neighborhood of uv (e.g.,
VF [VS) is controlled by the attacker (as secrets), if the
maximal degree in GT is N , the complexity of the recovery
algorithm is OðN2jVT jÞ.

3.2 Grow

The initial seeds VS provide a firm ground for further
identification in the anonymized graph GT . Background
knowledge GB comes into play at this stage.

We have a partial mapping between GT and GB, i.e., the
initial seeds VS in GT map to corresponding vertices in GB.
Two examples of partial graph mappings are the Twitter and
Flickr data set [2] and the Netflix and IMDB data set [32]. The
straightforward idea of testing all possible mappings for the
rest of the vertices has an exponential complexity, which is
unacceptable even for a medium-sized network. Besides, the
overlapping between GT and GB may be partial, so a full
mapping is neither possible nor necessarily desirable.
Therefore, the grow algorithm adopts a progressive and
self-reinforcing strategy, starting with the initial seeds and
extending the mapping to other vertices for each round.

Fig. 4 shows a small example. v7 to v10 have already been
identified in the seed stage (see Fig. 3). The task is to
identify other vertices in the target graph GT .

3.2.1 Dissimilarity

At the core of the grow algorithm is a family of related
metrics, collectively known as the dissimilarity between a

294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Fig. 3. The task of the seed stage is to identify the initial seed by
recovering the fingerprint graph GF .

pair of vertices from the target and the background graph,
respectively. To enhance the identification accuracy and to
reduce the computation complexity and the false-positive
rate, we introduce a greedy heuristic with revisiting into
the algorithm.

It is natural to start with those vertices in GT which
connect to the initial seed VS because they are more close to
the certain information, i.e., the already identified vertices
VS . For these vertices, their neighboring vertices can be
divided into two groups. Namely, for such a vertex u, its
neighborhood in GT is composed of N T

mðuÞ (mapped
neighbors) and N T

u ðuÞ (unmapped neighbors). For instance,
in Fig. 4, N T

mðu�1Þ ¼ fu7; u8; u9g and N T
u ðu�1Þ ¼ fu�4g.

For the background graph GB, we can make similar
definitions. Suppose the seed VS � VT maps to V �S � VB. For a
V �S ’s neighboring vertex v, let N B

mðvÞ be v’s neighbors in V �S ,
and letN B

u ðvÞbe the other (i.e., unmapped) neighbors. Hence,
in Fig. 4, N B

mðv12Þ ¼ fv9; v10g and N B
u ðv12Þ ¼ fv11; v16g.

We identify the mapped vertices in VS and V �S so
that N T

mðu�1Þ � N
B
mðv12Þ ¼ fu7; u8g ¼ fv7; v8g in Fig. 4.

Our design of the grow algorithm underwent multiple
iterations of design-simulation-redesign. The eventual form
is deceivingly simple to the point of ad hockery, which
apparently makes only partial use of the available informa-
tion. To appreciate the nuances and illuminate insights, we
first present a design, which apparently makes fuller use of
the available information, but paradoxically is inferior in
identification accuracy than the eventual simple design. We
show the simulation results confirming this in Section 4.3.4.

The complex design. Having categorized vertices in GT

into mapped and unmapped parts, we define the following
dissimilarity metrics for a pair of unmapped vertices u 2 VT
and v 2 VB, which are connected to the (current and
potentially grown) seed VS and its image V �S respectively:

�ðu; vÞ ¼ ��mðu; vÞ þ ð1� �Þ�uðu; vÞ; ð1Þ

in which

�mðu; vÞ ¼
��N T

mðuÞ � N
B
mðvÞ

��þ ��N B
mðvÞ � N

T
mðuÞ

����N T
mðuÞ

��þ ��N B
mðvÞ

�� ; ð2Þ

�uðu; vÞ ¼
����N T

u ðuÞ
��� ��N B

u ðvÞ
����

max
���N T

u ðuÞ
��; ��N B

u ðvÞ
��� ; ð3Þ

and1

� ¼ 1

2
1þ

jN T
mðuÞj

jN T
mðuÞjþjN

T
u ðuÞj
þ jN B

mðvÞj
jN B

mðvÞjþjN
B
u ðvÞj

2

0
B@

1
CA: ð4Þ

j � j is the number of set elements, i.e., the set cardinality.
The design follows from the following intuitions:

. The overall dissimilarity (�ðu; vÞ) of u and v is a
weighted (�) average of dissimilarity for its mapped
(�mðu; vÞ) and unmapped (�uðu; vÞ) neighborhood.
Also, �ðu; vÞ should be symmetric (i.e., �ðu; vÞ ¼
�ðv; uÞ). This is because, if we exchange the target
and background graphs, the dissimilarity between a
specific pair of vertices should be the same.

. �mðu; vÞ measures how different u and v’s mapped
neighborhoods are. By its definition in (2), 0 �
�mðu; vÞ � 1. More precisely, when their mapped
neighborhoods are the same (i.e., N T

mðuÞ ¼
N B

mðvÞ), �mðu; vÞ ¼ 0, which means u and v match
perfectly in regard to their mapped neighborhoods.
Otherwise, when N T

mðuÞ \ N
B
mðvÞ ¼ ;, �mðu; vÞ ¼ 1.

. The key difference between the mapped and un-
mapped neighborhoods is that the unmapped neigh-
borhoods do not have labels. For instance, in Fig. 4,
we do not know if the vertices in N T

u ðv�2Þ ¼ fv�3; . . . ;
v�7g and N B

u ðv11Þ ¼ fv12; . . . ; v16g match. Neverthe-
less, we can compare them by degree. As defined in
(3), 0 � �uðu; vÞ � 1. More precisely, �uðu; vÞ ¼ 0 if u
and v have the same number of unmapped
neighbors; �uðu; vÞ ¼ 1 when one has no unmapped
neighbors while the other has.

. The mapped neighborhood provides more certain
information than the unmapped neighborhood.
Hence, the weight for the mapped neighborhood �
should be greater. As defined in (4), 1

2 � � � 1. More
precisely, when mapped neighborhoods dominate in
both GT and GB, �! 1. On the other hand, if
unmapped neighborhoods dominate, �! 1

2 (The
choice of u and v ensures the nonemptiness of
mapped neighborhoods).

Table 1 shows a numerical example of the dissimilarity

metric for the unmapped vertices in Fig. 4. For example,

�mðv�1; v11Þ ¼ 0;�uðv�1; v11Þ ¼ 0:80; � 	 0:78. Hence, �ðv�1;
v11Þ ¼ 0:78� 0þ ð1� 0:78Þ � 0:80 	 0:18.

The simple design. At first, we expected that the design

presented above, which synthesized information from both

mapped and unmapped neighbors, would be accurate in

identifying anonymized vertices in GT ; however, simulation

results show otherwise (see Section 4.3.4). A closer exam-

ination indicates two reasons:

. Unmapped neighborhoods are too uncertain to be
used in computing dissimilarity, especially through

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 295

Fig. 4. The task of the grow stage is to identify the unmapped vertices
starting from the seed.

TABLE 1
The Dissimilarity, as Defined by (1)-(4),

of the Unmapped Pairs in Fig. 4

1. We make a provision for �uðu; vÞ ¼ 0 if jN T
u ðuÞj ¼ jN

B
u ðvÞj ¼ 0, i.e.,

they both have no unmapped neighborhoods. There is no need for a similar
provision for �mðu; vÞ because its denominator, jN T

mðuÞj þ jN
B
mðvÞj, is not

zero by the definition: u and v both have at least one mapped neighbor.

degree as in (3). Two, otherwise, unrelated vertices
may have unmapped neighborhoods with similar
degrees and vice versa. Even the biased weight in
(4) could not mitigate the negative impact on
performance.

. The “single dissimilarity metric” design in (1)
conceals a piece of information which is useful for
mapping vertices of GT and GB in some ambiguous
scenarios. Namely, a pair of vertices from GT and
GB, respectively, is a good match only if they are
mutually the best match for one another. There
could be multiple best matches for one direction; a
mutual best match is a stronger indication for a
correct identification.

Based on these insights, we present our improved, yet

simple design. For a pair of nodes, u 2 VT and v 2 VB, we

define the following pair of dissimilarity metrics:

�T ðu; vÞ ¼
��N T

mðuÞ � N
B
mðvÞ

����N T
mðuÞ

�� ; ð5Þ

and

�Bðu; vÞ ¼
��N B

mðvÞ � N
T
mðuÞ

����N B
mðvÞ

�� ; ð6Þ

For example, �T ðu�1; v12Þ ¼ jfu7; u8gj=jfu7; u8; u9gj ¼ 2=3 	
0:667, and �Bðu�1; v12Þ ¼ jfv10gj=jfv9; v10gj ¼ 1=2 ¼ 0:5.

�T ðu; vÞ and �Bðu; vÞ together measure how different u

and v’s mapped neighborhoods are. By its definition in (5)

and (6), both �T ðu; vÞ and �Bðu; vÞ are in the range of

½0; 1
. More precisely, when their mapped neighborhoods

are the same (N T
mðuÞ ¼ N

B
mðvÞ), we have �T ðu; vÞ ¼

�Bðu; vÞ ¼ 0, which means that u and v match perfectly

in regard to their mapped neighborhoods. Otherwise,

when N T
mðuÞ \ N

B
mðvÞ ¼ ;, �T ðu; vÞ ¼ �Bðu; vÞ ¼ 1. The

reason to have two asymmetric metrics (in regard to the

target and background graphs) instead of a symmetric

one is that we want to choose those mappings which are

the mutually best choices for the graphs. Again, a concrete

example helps.

[Dissimilarity.] Bob applied the dissimilarity metrics defined
in (5) and (6) to Fig. 4 and got the results shown in Table 2.

Bob first identified the tuples in Table 2 which has the
smallest �T and �B in both its row and column. In this
case, these tuples are ðu�1; v11Þ and ðu�3; v12Þ. Since they
are from different rows and columns, they do not conflict
with each other. So Bob decided to map u�1 to v11 and
u�3 to v12.

He then added v�1 $ v11 and v�3 $ v12 to the seed and
moved on to the next iteration of identification.

3.2.2 Greedy Heuristic

Bob’s story suggests a way of using the dissimilarity metrics
defined in (5) and (6) to iteratively grow the seed.

Since smaller dissimilarity implies better match, we
identify those tuples in the table like Table 2 which has
smallest �T and �B in both its row and column; these
tuples are the mutually best matches between the target
graph and the background graph. We then add the
mappings corresponding to these tuples to the seed and
move on to the next iteration.

We gloss over a subtlety in the above description: if there
are conflicts in choice, i.e., there are multiple tuples satisfying
the above criterion in a row or a column, which one shall we
choose? Rather than randomly selecting a tuple, we select
the tuple that stands out and add the corresponding match to
the seed. If there is still a tie, these tuples are reckoned as
indistinguishable under the dissimilarity metrics. To reduce
incorrect identifications, we refrain from adding the map-
ping to the seed in these scenarios.

This boils down to the question of how to quantify the
concept of “a tuple standing out among its peers.” We
define an eccentricity metric for this purpose in our
algorithm. Let X be a group of numbers (the same number
can occur multiple times). The eccentricity of a number x 2
X is defined as

EXðxÞ ¼
�XðxÞ

�ðXÞ#XðxÞ ; if �ðXÞ 6¼ 0;

0; if �ðXÞ ¼ 0;

(
ð7Þ

in which �XðxÞ is the absolute difference between x and its
closest different value in X; #XðxÞ is the multitude of x in X,
i.e., the number of elements equal to x in X; �ðXÞ is the
standard deviation of X. The larger EXðxÞ is, the more x
stands out among X.

Therefore, if there are conflicts in a row, these tuples have
the same �T and �B. For each such tuple, we collect the �T

and �B in the same column into XT and XB, respectively, and
compute EXT

ð�T Þ and EXB
ð�BÞ. If there is a unique tuple

with the largest EXT
ð�T Þ and EXB

ð�BÞ, we pick it and add
the corresponding mapping to the seed; otherwise, no
mapping is added to the seed.

3.2.3 Revisiting

The dissimilarity metric and the greedy search algorithm
for optimal combination are heuristic in nature. At an early
stage with only a few seeds, there might be quite a few
mapping candidates for a particular vertex in the back-
ground graph; we are very likely to pick a wrong mapping
no matter which strategy is used in resolving the ambiguity.
If left uncorrected, the incorrect mappings will propagate
through the grow process and lead to large-scale mismatch.

We address this problem by providing a way to
reexamine previous mapping decisions, given new evi-
dences in the grow algorithm; we call this revisiting. More
concretely, for each iteration, we consider all vertices which
have at least one seed neighbor, i.e., those pairs of vertices
on which the dissimilarity metrics in (5) and (6) are well
defined.

We expect that the revisiting technique will increase
the accuracy of the algorithm. The greedy heuristic with
revisiting is summarized in Algorithm 3.

296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

TABLE 2
The Dissimilarity, as Defined by (5) and

(6), of the Unmapped Pairs in Fig. 4

Each tuple consists of a ð�T ;�BÞ pair.

Algorithm 3. Grow.
1: Given the initial seeds VS .

2: C ¼ ;
3: loop

4: CT fu 2 VT j u connects to VSg
5: CB fv 2 VB j v connects to VSg
6: if ðCT ;CBÞ 2 C then

7: return VS
8: end for

9: C C [fðCT ;CBÞg
10: for all ðu; vÞ 2 ðCT ;CBÞ do

11: Compute �T ðu; vÞ and �Bðu; vÞ.
12: end for

13: S fðu; vÞ j �T ðu; vÞ and �Bðu; vÞ are

smallest among conflictsg
14: for all ðu; vÞ 2 S do

15: if ðu; vÞ has no conflict in S or ðu; vÞ has the
uniquely largest eccentricity among conflicts in S

then

16: VS VS [fðu; vÞg
17: end if

18: end for

19: end loop

4 EXPERIMENTS

We conducted a comparative study on the performance of
the Seed-and-Grow algorithm by simulation on real-world
social network data set.

4.1 Setup

We used two data set collected from different real-world
social networks in our study.

The Livejournal data set, which was collected from the
friend relationship of the online journal service, LiveJournal,
on December 9-11, 2006 [26], consists of 5.2 million vertices
and 72 million links. The links are directed. As previously
discussed at the end of Section 2, we conducted the
experiments with the more difficult setting of an undirected
graph. We retained an undirected link between two vertices
if there was a directed link in either direction.

The other data set, emailWeek,2 consists of 200 vertices
and 1,676 links. This data set, by its nature, is undirected.

Using data set collected from different underlying social
networks helped to reduce bias induced by the idiosyncrasy
of a particular network in performance measurements.

The performance of the grow algorithm was measured
by its ability to identify the anonymous vertices in the target
graph. We derived the target and background graphs from
each data set and used their shared vertices as the ground
truth to measure against.

More precisely, we derived the graphs with the follow-
ing procedure. First, we chose a connected subgraph with
N\ vertices from the data set, which served as a shared
portion of the background and target graphs. We then
picked other two sets of vertices (different from the
previous N\ vertices) with NB �N\ and NT �N\ vertices,

respectively, and combined with shared portion graph to
obtain the background graph (with NB vertices) and the
target graph (with NT vertices). After this, NS (NS < N\ and
not necessarily connected) vertices were chosen from the
shared portion to serve as the initial seed. Finally, random
edges were added to the target graph to simulate the
difference between the target and background graphs.

The motivation for adopting such a procedure was to
simulate a more realistic scenario. The attacker had a
(connected) background graph with NB vertices and an
anonymous target graph with NT vertices. Apart from the
NS initial seed, the overlap of these two graphs (with
N\ vertices) might well be partial. The desirable behavior of
an identification algorithm was to stop as soon as the vertices
in the shared portion had been identified. Since the back-
ground graph was an unperturbed graph the attacker
obtained from elsewhere, we opted to perturb the target
graph to simulate the difference between these two graphs.
We perturbed by addition rather than deletion of edges to
avoid fragmenting the target graph into disconnected pieces,
which would create a false impression of early stopping in
simulation.

4.2 Seed

The Seed construction (see Algorithm 1) and recovery (see
Algorithm 2) algorithms ensure that, once the fingerprint
graph GF is successfully recovered, the initial seed VS can
be unambiguously identified. Therefore, the seed construc-
tion depends on GF being uniquely recovered from the
released target graph.

We randomly generated a number of modest-sized
fingerprint graphs with 10 to 20 vertices and planted them
into the Livejournal data set with Algorithm 1. We were
able to uniquely recover them from the resulted graph with
Algorithm 2 without exception.

To explain this result, we made the following estimation
on the number of essentially different (i.e., with different
ordered internal degree sequence SD) constructions pro-
duced by Algorithm 1.

For a fingerprint graphGF with n vertices, there are n� 1

vertices beside the head node vh. There are ðn� 1Þðn� 2Þ=2

pairs among the n� 1 vertices; the edge between each pair
of vertices can be either present or absent. Therefore, there
are 2ðn�1Þðn�2Þ=2 different fingerprint graphs.

However, some of them are considered the same by
Algorithm 1. For example, the ordered internal degree
sequence SD ¼ h2; 2; 2; 3; 3; 4i in Fig. 3. There are 3, 2, and
1 vertices with an internal degree of 2, 3, and 4, respectively;
hence, there are 6

3

� �
3
2

� �
1
1

� �
different fingerprint graphs with

the same ordered internal degrees sequence.
For any ordered internal degree sequence SD, there are at

most n�1
1

� �
n�2

1

� �
� � � 2

1

� �
1
1

� �
¼ ðn� 1Þ! fingerprint graphs with

n vertices. The ordered internal degree sequence divides all
fingerprint graphs into equivalent classes. Therefore, the
number of essentially different constructions produced by
Algorithm 1 is

2ðn�1Þðn�2Þ=2

ðn� 1Þ! :

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 297

2. http://www.infovis-wiki.net/index.php/Social_Network_
Generation.

Table 3 shows this estimate for a few different
fingerprint graph sizes. From this, we can understand the
reason for the high probability for successful fingerprint
graph recovery, even in a large graph like Livejournal

with 5:2� 106 vertices: there are so many ways to construct
essentially different fingerprint graphs.

4.3 Grow

We compared our grow algorithm with the one proposed by
Narayanan and Shmatikov [2]. There is a mandatory
threshold parameter, which controls the probing aggres-
siveness, in their algorithm. Lacking a quantitative guideline
to choose this parameter, we experimented with different
values and found that, with an increasing threshold, more
nodes were identified but the accuracy decreased accord-
ingly. Therefore, we used two different thresholds, which
established a performance envelope for the Narayanan
algorithm. The result was two variants of the algorithm: an
aggressive one (with a threshold of 0.0001) and a con-
servative one (with a threshold of 1). The difference lay in
the tolerance to the ambiguities in matching: the aggressive
one might declare a mapping in a case where the
conservative one would deem too ambiguous.

We perceive such an arbitrary parameter, lacking a
quantitative guideline, as a major drawback of the
Narayanan algorithm: a user of the algorithm must decide

on the parameter without knowing how much accuracy is
sacrificed for better effectiveness (the number of identified
nodes). In contrast, our grow algorithm has no such
parameter and, as demonstrated by the experiments, finds
a good balance between effectiveness and accuracy.

To account for the bias on the performance measure-
ment of a particular graph setting, for each target/back-
ground graph pair, we ran multiple simulations with
different initial seeds and took the average as the
performance measurement. We focused our simulations
on graphs with hundreds of vertices, which are big enough
to make the identification nontrivial. More precisely, we
chose ðNC ¼ 400þNS;NT ¼ 600þNS;NB ¼ 600þNSÞ for
Livejournal and ðNC ¼ 100þNS;NT ¼ 125þNS;NB ¼
125þNSÞ for emailWeek. In other words, the ideal result
is to correctly identify 400þNS nodes for Livejournal

and 100þNS nodes for emailWeek where NS is the size of
initial seed.

4.3.1 Initial Seed Size

Recent literature on interaction-based social graphs (e.g.,
the social graph in the motivating scenario) singles out the
attacker’s interaction budget as the major limitation to
attack effectiveness [33]. The limitation translates to 1) the
initial seed size and 2) the number of links between the
fingerprint graph and the initial seed. Our seed algorithm
resolves the latter issue by guaranteeing unambiguous
identification of the initial seed, regardless of link numbers.
As shown below, our grow algorithm resolves the former
issue by working well with a small initial seed.

Fig. 5 shows the grow performance with different initial
seed sizes. To simulate the more realistic case that the
target and background graphs are from different sources,

298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

TABLE 3
The Estimate of Essentially Different Constructions for a

Fingerprint Graph GF with n Vertices Produced by Algorithm 1

Fig. 5. Grow performance with different initial seed sizes. An edge perturbation of 0.5 percent is introduced to simulate a more realistic
scenario: (a)-(c) are from Livejournal; and (d)-(f) are from emailWeek.

and therefore might differ even among the same group of
vertices, we introduced an edge perturbation of 0.5 percent,
i.e., we added 0.5 percent of the all of the edges in the
target graph.

We note a few points for Fig. 5.

. More nodes are correctly identified with increasing
initial seed size for both Seed-and-Grow and
Narayanan.

. Seed-and-Grow is better than (or at least comparable
to) the aggressive Narayanan in terms of number of
correct identifications, and is superior when com-
paring with conservative Narayanan. For example,
in Livejournal, conservative Narayanan stops
almost immediately (the correct identification statis-
tics shown in Fig. 5 includes the initial seed). In
contrast, even for very small initial seed of five
nodes, Seed-and-Grow correctly identifies averagely
61 nodes for Livejournal and 75 nodes for
emailWeek, while only incorrectly identifying
1 node on average.

. Though aggressive Narayanan correctly identifies
more nodes as seed size grows, the number of
incorrect identification grows accordingly. This is
particularly evident in Livejournal. In contrast,
the incorrect identification number for Seed-and-
Grow remains constant in emailWeek and grows
very slowly in Livejournal; in either case, the
number of correct identifications is considerably
higher for Seed-and-Grow than for aggressive
Narayanan.

An ideal grow algorithm should be both effective and
accurate. Effectiveness is measured by the number of
correct identifications; accuracy is measured by the ratio
of incorrect identifications over that of correct identifica-
tions (the lower the ratio, the higher the accuracy). Fig. 5

shows Seed-and-Grow was: 1) comparable to aggressive
Narayanan in terms of effectiveness, while better in terms of
accuracy; and 2) comparable to conservative Narayanan in
terms of accuracy, while better in terms of effectiveness.

Fig. 6 shows, on a larger scale, the comparison in Figs. 5
and 7 in a slightly different form. The previous observations
on algorithm performance, though less stark, still hold for
the larger seeds. Since the seed size translates to attacker’s
cost, Seed-and-Grow, which is both effective and accurate
for a small seed, is desirable.

It is arguable that, with a “proper” threshold, Narayanan
will show the same, or even superior performance, than
Seed-and-Grow. However, lacking any quantitative guide-
line, such a proper threshold is hard, if not impossible, to
find for the vast array of graphs the identification algorithm
applies to. Even if one can find such a threshold, it is
unclear that its performance will be superior to that of Seed-
and-Grow. In contrast, Seed-and-Grow has no such arbi-
trary parameter. The point is that Seed-and-Grow finds a
sensible balance between effectiveness and accuracy with-
out prior knowledge as in Narayanan.

4.3.2 Edge Perturbation

The impact of edge perturbations on the grow performance
is shown in Fig. 7. The initial seed size was 15.

Correct identifications decreased with a larger edge
perturbation percentage for all algorithms. Incorrect identi-
fications increased with edge perturbation for aggressive
Narayanan, while remaining at a constant level for Seed-
and-Grow and conservative Narayanan.

Seed-and-Grow was more effective than conservative
Narayanan in all settings. Although aggressive Narayanan
was more effective than Seed-and-Grow for larger pertur-
bation percentage, it came with a much higher cost in
accuracy; for Livejournal, aggressive Narayanan made

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 299

Fig. 6. Grow performance with different initial seed sizes on a larger scale than Fig. 5. An edge perturbation of 0.5 percent is introduced to simulate a
more realistic scenario: (a) and (b) are from Livejournal; and (c) and (d) are from emailWeek.

more incorrect identifications than correct ones. In contrast,

the number of incorrect identifications for Seed-and-Grow

remain almost constant with different perturbation percen-

tages. Fig. 8 shows the results on a larger scale: Seed-and-

Grow was able to grow the seed larger (unlike conservative

Narayanan) while maintaining a relatively high accuracy

(unlike aggressive Narayanan).

4.3.3 Revisiting

To verify our expectation for the revisiting heuristic to
improve performance, we compared the Seed-and-Grow
algorithm with and without the revisiting heuristic. The
results on the Livejournal are shown in Fig. 9; the results
on emailWeek are similar but omitted due to the space
constraint.

300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Fig. 8. Grow performance with different edge perturbation percentage on a larger scale than Fig. 7. The initial seed size is 15 for both data set:
(a) and (b) are from Livejournal; and (c) and (d) are from emailWeek.

Fig. 7. Grow performance with different edge perturbation percentage. The initial seed size is 15 for both data set. (a)-(c) are from Livejournal;
and (d)-(f) are from emailWeek.

The results indicate that the revisiting heuristic im-
proves (i.e., reduces) the incorrect identification ratio by 2
to 3 percent without sacrificing the number of correct
identifications. This confirms our conjecture that it is
worthwhile to revisit previous mappings.

A high accuracy (i.e., a high percentage of correct
identifications) is desirable, even at a reasonable cost of
effectiveness (fewer nodes identified). This is because,
lacking the knowledge about whether or not an identifica-
tion is correct, accuracy corresponds to the user’s con-
fidence in the identification result. For example, in Fig. 7c,
even though aggressive Narayanan correctly identified

166 nodes on average, while Seed-and-Grow only correctly
identified 74 nodes on average, the former incorrectly
identified 90 nodes on average, while the latter
only incorrectly identified 15 nodes on average. Without
knowing which nodes were correctly identified, a user had
less than 65 percent confidence in the results of aggressive
Narayanan, while having more than 80 percent confidence
in the results of Seed-and-Grow.

On reflection, we attribute the relatively high accuracy of
Seed-and-Grow to the conservative design in our grow
algorithm (see Algorithm 3). More specifically, we add a
mapping to the seed (i.e., grow the seed) if and only if 1) it is

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 301

Fig. 10. Grow performance comparison of Seed-and-Grow with different dissimilarity designs (simp.: simple yet accurate; comp.: complex yet
inaccurate) for the Livejournal data set. The edge perturbation for (a) and (b) is 0.5 percent. The initial seed size is 15 for (c) and (d).

Fig. 9. Grow performance comparison of Seed-and-Grow with (sng w r) and without (sng w/o r) revisiting heuristic on the Livejournal data set.
The edge perturbation for (a) and (b) is 0.5 percent. The initial seed size is 15 for (c) and (d).

the mutually best choice for the pair of nodes under the
dissimilarity metric and 2) it stands out among alternative
choices in the sense that it has no tie under the eccentricity
metric. Besides, the algorithm further improves accuracy by
revisiting earlier mappings in light of new mappings.

4.3.4 Dissimilarity

In Section 3.2.1, we mentioned that the simple dissimilarity
metrics defined by (5) and (6) were the result of evolving
from an earlier, more complex, and apparently more
comprehensive design specified by (1)-(4). Our decision to
adopt the simple design was based on the simulation
results shown in Fig. 10: Although the simple design is less
effective than the complex one in terms of number of
correct identifications, the former is much more accurate
than the latter. For the same reason as in Section 4.3.3, the
higher accuracy of the simple design is desirable. Therefore,
the simple design was adopted in the Seed-and-Grow
algorithm, as discussed in Section 3.2.1.

5 SUMMARY

We propose an algorithm, Seed-and-Grow, to identify users
from an anonymized social graph. Our algorithm exploits
the increasing overlapping user-bases among services and
is based solely on social graph structure. The algorithm first
identifies a seed subgraph, either planted by an attacker or
divulged by collusion of a small group of users, and then
grows the seed larger based on the attacker’s existing
knowledge of the users’ social relations. We identify and
relax implicit assumptions for unambiguous seed identifi-
cation taken by previous works, eliminate arbitrary para-
meters in grow algorithm, and demonstrate the superior
performance over previous works in terms of identification
effectiveness and accuracy by simulations on real-world-
collected social-network data set.

REFERENCES

[1] B. Krishnamurthy and C.E. Wills, “Characterizing Privacy in
Online Social Networks,” Proc. First Workshop Online Social
Networks (WOSN), 2008.

[2] A. Narayanan and V. Shmatikov, “De-Anonymizing Social Net-
works,” Proc. IEEE 30th Symp. Security and Privacy, 2009.

[3] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore Art Thou
r3579x?: Anonymized Social Networks, Hidden Patterns, and
Structural Steganography,” Proc. ACM 16th Int’l Conf. World Wide
Web (WWW), 2007.

[4] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava,
“Anonymizing Social Networks,” technical report, Univ. Massa-
chusetts, Amherst, 2007.

[5] E. Zheleva and L. Getoor, “Preserving the Privacy of Sensitive
Relationships in Graph Data,” Proc. First ACM SIGKDD Int’l Conf.
Privacy, Security, and Trust in KDD, 2007.

[6] A. Korolova, R. Motwani, S. Nabar, and Y. Xu, “Link Privacy in
Social Networks,” Proc. 17th ACM Conf. Information and Knowledge
Management (CIKM), 2008.

[7] B. Zhou and J. Pei, “Preserving Privacy in Social Networks against
Neighborhood Attacks,” Proc. Int’l Conf. Data Eng. (ICDE), 2008.

[8] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis, “Resisting
Structural Re-Identification in Anonymized Social Networks,”
VLDB Endowment, vol. 1, no. 1, pp. 102-114, 2008.

[9] J. Scott, Social Network Analysis: A Handbook. SAGE Publications,
2000.

[10] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Incognito: Efficient
Full-Domain K-Anonymity,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (ICMD), 2005.

[11] B. Zhou, J. Pei, and W. Luk, “A Brief Survey on Anonymization
Techniques for Privacy Preserving Publishing of Social Network
Data,” ACM SIGKDD Explorations Newsletter, vol. 10, no. 2, pp. 12-
22, 2008.

[12] A. Mislove, H. Koppula, K. Gummadi, P. Druschel, and B.
Bhattacharjee, “Growth of the Flickr Social Network,” Proc. First
Workshop Online Social Networks (WOSN), 2008.

[13] R. Xiang, J. Neville, and M. Rogati, “Modeling Relationship
Strength in Online Social Networks,” Proc. ACM 19th Int’l Conf.
World Wide Web (WWW), 2010.

[14] J. Douceur, “The Sybil Attack,” Proc. First Int’l Workshop Peer-to-
Peer Systems, vol. 2429, pp. 251-260, 2002.

[15] N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-Resilient Online
Content Voting,” Proc. Sixth USENIX Symp. Networked Systems
Design and Implementation (NSDI), 2009.

[16] S. Park, B. Aslam, D. Turgut, and C. Zou, “Defense Against Sybil
Attack in Vehicular Ad Hoc Network Based on Roadside Unit
Support,” Proc. IEEE Military Comm. Conf. (MILCOM), 2009.

[17] C. Lesniewski-Laas and M. Kaashoek, “Whanau: A Sybil-Proof
Distributed Hash Table,” Proc. Seventh USENIX Symp. Networked
Systems Design and Implementation (NSDI), 2010.

[18] C. Chen, X. Wang, W. Han, and B. Zang, “A Robust Detection of
the Sybil Attack in Urban Vanets,” Proc. IEEE 29th Int’l Conf.
Distributed Computing Systems Workshops (ICDCS), 2009.

[19] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, “Sybilguard:
Defending against Sybil Attacks via Social Networks,” ACM
SIGCOMM Computer Comm. Rev., vol. 36, no. 4, pp. 267-278, 2006.

[20] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A Near-
Optimal Social Network Defense against Sybil Attacks,” Proc.
IEEE Symp. Security and Privacy, 2008.

[21] B. Viswanath, A. Post, K. Gummadi, and A. Mislove, “An
Analysis of Social Network-Based Sybil Defenses,” ACM SIG-
COMM Computer Comm. Rev., vol. 40, no. 4, pp. 363-374, 2010.

[22] W. Wei, F. Xu, C. Tan, and Q. Li, “SybilDefender: Defend against
Sybil Attacks in Large Social Networks,” Proc. IEEE INFOCOM,
2012.

[23] S. Sorlin and C. Solnon, “Reactive Tabu Search for Measuring
Graph Similarity,” Proc. Fifth IAPR Int’l Conf. Graph-Based
Representations in Pattern Recognition, vol. 3434, pp. 172-182, 2005.

[24] P. Erdös and A. Rényi, “On Random Graphs,” Publicationes
Mathematicae, vol. 6, no. 26, pp. 290-297, 1959.

[25] R. Kumar, J. Novak, and A. Tomkins, “Structure and Evolution of
Online Social Networks,” Proc. 12th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, 2006.

[26] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B.
Bhattacharjee, “Measurement and Analysis of Online Social
Networks,” Proc. Seventh ACM SIGCOMM Conf. Internet Measure-
ment (IMC), 2007.

[27] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Statistical
Properties of Community Structure in Large Social and Informa-
tion Networks,” Proc. 17th Int’l Conf. World Wide Web (WWW),
2008.

[28] M. Porter, J. Onnela, and P. Mucha, “Communities in Networks,”
Notices of the AMS, vol. 56, no. 9, pp. 1082-1097, 2009.

[29] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Micro-
scopic Evolution of Social Networks,” Proc. 14th ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining, 2008.

[30] A. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[31] D. Soares, C. Tsallis, A. Mariz, and L. Silva, “Preferential
Attachment Growth Model and Nonextensive Statistical Me-
chanics,” Europhysics Letters, vol. 70, p. 70, 2005.

[32] A. Narayanan and V. Shmatikov, “Robust De-Anonymization of
Large Sparse Data Set,” Proc. IEEE Symp. Security and Privacy,
2008.

[33] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User
Interactions in Social Networks and Their Implications,” Proc.
Fourth ACM European Conf. Computer Systems (EuroSys), 2009.

302 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Wei Peng is working toward the PhD degree
with the Department of Computer and Informa-
tion Science, Indiana University-Purdue Univer-
sity Indianapolis. His coadvisors are Dr Feng Li
and Dr Xukai Zou. He has worked on problems
on delay-tolerant networks, security, privacy,
and social networks. His research vision is to
explore human factors in computing and net-
working and, in turn, make them more human
friendly. He is a student member of the IEEE.

Feng Li received the PhD degree in computer
science from Florida Atlantic University in
August 2009. His PhD advisor is Dr Jie Wu.
He joined the Department of Computer, Informa-
tion, and Leadership Technology at Indiana
University-Purdue University Indianapolis as an
assistant professor in August 2009. His research
interests include the areas of wireless networks
and mobile computing, security, and trust
management. He has published more than 30

papers in conferences and journals. He is a member of the IEEE.

Xukai Zou received the PhD degree in compu-
ter science from the University of Nebraska-
Lincoln. He is a faculty member with the
Department of Computer and Information
Sciences at Indiana University-Purdue Univer-
sity Indianapolis. His current research interests
include applied cryptography, network security,
and communication networks. His research has
been supported by the US National Science
Foundation, the Department of Veterans Affairs

and Industry such as Cisco. He is a member of the IEEE.

Jie Wu is the chair and the professor in the
Department of Computer and Information
Sciences at Temple University. Prior to joining
Temple University, he was a program director at
the US National Science Foundation. His re-
search interests include wireless networks,
mobile computing, routing protocols, fault-toler-
ant computing, and interconnection networks.
His publications include more than 550 papers in
scholarly journals and conference proceedings.

Additionally, he has served on several editorial boards, including the
IEEE Transactions on Computers and Journal of Parallel and Distributed
Computing. He was general cochair for IEEE MASS 2006, IEEE
IPDPS2008, and DCOSS 2009 and is the program cochair for IEEE
INFOCOMM 2011. He served as an IEEE Computer Society distin-
guished visitor. Currently, he is the chair for the IEEE Technical
Committee on Distributed Processing, an ACM distinguished speaker.
He is the recipient of 2011 China Computer Federation Overseas
Outstanding Achievement Award. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PENG ET AL.: A TWO-STAGE DEANONYMIZATION ATTACK AGAINST ANONYMIZED SOCIAL NETWORKS 303

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

