Cooperative Mobile Internet Access with Opportunistic Scheduling

> Pouya Ostovari, Jie Wu, and Abdallah Khreishah

Computer & Information Sciences Temple University

> Center for Networked Computing http://www.cnc.temple.edu





0



# Agenda

- Introduction
  - Motivation
  - System setting
- Cooperative Internet access
  - Optimization
- Evaluation results
- Conclusion



#### Introduction

- Advances in technology of mobile devices
  - Smartphones and tablets
  - Video streaming
  - Video chats
  - Surfing the Internet

Ubiquitous and resilient Internet access
Accessing the Internet from everywhere



# Introduction

- Challenges in resilient and ubiquitous Internet access
  - Cellular data traffic growth
  - Changes in the channel quality
  - Low cellular channel quality
    - Might not be sufficient to meet the user's demand
- Solution: cooperative downloading
  - Using idle user resources to provide Internet access to other users, or improve their data rates



# Motivation

- Example
  - Bandwidth:10 Mb/s
  - Utility: total download rate
- No cooperation
  - C1: 4 Mb/s
  - C2: 4 Mb/s
- Cooperation
  - C1: 13 Mb/s
  - C2: 9 Mb/s
- Resilient communication in addition to increased download rate





# Challenges to Address

- How to motivate the helpers to participate?
  - 4G/LTE cost
  - Transmission drains the battery
- How to assign the helpers to the clients?
  - In order to maximize the utility
  - Fair assignment
- What is the optimal download rate?
  - The relation of the download rate and satisfaction is not linear
  - Transmission drains the battery



- A set of helpers
  - Access to the Internet through a BS
- A set of clients
  - Download from BS using 4G/LTE
  - Download from helpers using WiFi



- Each helper can serve only one client at a time
- During each time slot the channel conditions are fixed



- Transmission consumes energy
  - Energy consumption of the nodes are different
  - Cellular connections use more energy than WiFi connections



- Unreliable links
  - Delivery rate changes over time
  - Using random linear network coding to eliminate feedback messages



# Network Coding

- Random linear network coding
  - Coding: linear combinations of the packets

$$q_1 = \alpha_{1,1}p_1 + \alpha_{1,2}p_2 + \alpha_{1,3}p_3$$

$$q_2 = \alpha_{2,1}p_1 + \alpha_{2,2}p_2 + \alpha_{2,3}p_3$$

$$q_{\rm n} = \alpha_{n,1} p_1 + \alpha_{n,2} p_2 + \alpha_{n,3} p_3$$

- Decoding: Gaussian elimination
- Applications of network coding
  - Reliable transmissions
  - Throughput/capacity enhancement
    - Distributed storage systems/ Content distribution/ Layered multicast



#### Problem Statement

- Incentive mechanism
  - Motivating the helper to participate
  - Clients pay helpers based on the data transmission rate
- Utility function
  - $U(i,t) = f(x_{ji}^t p_{ji}^t + x_i^t p_i^t) e(i,t) x_{ji}^t z$
- f(.): strict concave • Law of diminishing returns f(.) f
- Objective: maximizing the aggregated utility of the clients

# **Cooperation Scheme**

- *Case 1*: without energy consumption and the credit payments
- Providing fairness
  - Without fairness, the solution is straightforward
    - Maximal bipartite matching
  - Clients with good WiFi channel conditions keep the channels
- Opportunistic scheduling

# **Opportunistic scheduling**



- Without fairness: A always transmits to B
- Sharing each time slot between *B* and *C*

• B: 
$$(8/2 + 6/2) \cdot 3 = 21$$
 Mb

- C:  $(4/2 + 2/2) \cdot 3 = 9$  Mb
- Assigning time slots 1, 3, and 5 to node *B* 
  - *B*:24 Mb
  - *C*:10 Mb



#### Fairness

- Original objective: maximizing  $\sum_{i=1}^{n} U(i,t)$
- *Idea*: instead of maximizing the total utility, we maximize  $\sum_{i=1}^{n} \alpha_i^t U(i, t)$ 
  - $\alpha_i^t$ : parameters that control the fairness
  - Give the client with the low received utility the chance to use the helpers
  - For each time slot, the relatively best clients get assistance



# Algorithm



- Calculate the utility of client *i* when it uses only the cellular connection
- Calculate the increase in client *i*'s utility in the case of using helper *j* and cellular connection
- Multiply the enhancement by  $\alpha_i^t = 1/\sum_{t'=1}^{t-1} G(i,t)$ and assign it to link from helper *j* to client *i*
- Run the Hungarian algorithm to find the maximum weighted bipartite matching of helpersclients



# **Cooperation Scheme**

- *Case 2*: considering energy consumption and the credit payments  $f_{f}(u) = 0$
- Utility function:



 $U(i,t) = f(y_i^t) - x_i^t p_i^t e_i^c - \sum_{j \in H} [x_{ji}^t p_{ji}^t e_i^w + z x_{ji}^t]$ 

• First phase: linear programming

 $\begin{aligned} \max U(i,t) &= f(y_i^t) - x_i^t p_i^t e_i^c - x_{ji}^t p_{ji}^t e_i^w - z x_{ji}^t \\ s.t \ x_{ji}^t &\leq p_j^t b_j^t / p_{ji}^t \\ x_{ji}^t &\leq b_{ji}^t \\ x_i^t &\leq b_i^t \\ y_i^t &\leq x_i^t p_i^t + x_{ji}^t p_{ji}^t \end{aligned}$ 



### Evaluations

- Simulator in Matlab environment
- Comparison
  - Proposed fair scheduling
  - No-helper
  - Unfair scheduling
  - Modified fair scheduling
- 200 runs

• 
$$f(y_i) = \log(y_i + 1)$$



# Evaluations

- Delivery rate  $\in [0.5, 1]$
- Clients: 10
- Time slots: 50





# Evaluations

- Delivery rate  $\in [0.5, 1]$
- Clients: 10
- Time slots: 50





# Conclusion

- Providing ubiquitous Internet access
- Cooperation among nodes
- Incentive mechanism to motivate helpers
- Considering the energy consumption
- Fairness
- Opportunistic scheduling
- Two-phases mechanism
  - Optimization
  - Maximum matching

# Thank you!

Questions?