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Abstract—Today’s smartphones are also fundamentally trans-
forming the traditional understanding of “crowdsourcing” to
an emerging type of participatory, task-oriented applications.
It aims to support the so-called “Citizen Science efforts” for
knowledge discovery, to understand the human behavior and
measure/evaluate their opinions. To facilitate the above scenarios,
in this paper, we propose a novel efficient network management
framework for participatory crowdsourcing. Specifically, we first
formulate the optimization problem and propose a closed-form,
optimal solution to meet the quality-of-information (QoI) require-
ments of the task, while minimizing the energy consumption
variance among participants. We then largely extend the tradi-
tional framework of Gur Game for distributed decision-maki ng
to recommend different levels of information contribution for
each participant, by merging multiple automaton chains into a
single chain with multiple steady states. By modeling the user
bidding behaviors, we propose a few incentive-based participant
selection schemes to maximize the platform’s benefits and meet
participants’ expectations. We extensively evaluate the proposed
schemes under the MIT Social Evolution data set, where both
QoI requirements of the request and credit saving are successfully
achieved, with a satisfactory level of energy consumption fairness
among participants.

Index Terms—Participatory crowdsourcing, Quality-of-
information, Energy efficiency, Gur Game

I. I NTRODUCTION

Recent years have been witnessing the emergence of af-
fordable, wireless and easily programmable mobile devices
such as smartphones and tablets, with embedded sensors like
accelerometer, gyroscope, GPS, camera and microphones [1].
These integrated rich media and location tracking features
are enabling a variety of new applications and bringing forth
the “participatory sensing” model [2], [3], [4] ever possible.
It tasks the deployed smart devices to form interactive and
participatory sensor networks to enable public and professional
users to gather, analyze and share local knowledge. It is
fundamentally transforming the traditional understanding of
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Fig. 1. The considered participatory crowdsourcing system, where a network
platform recruits smartphone users to provide sensing services and pays them
incentives as the reward for future participation. The light blue boxes and the
algorithms are proposed in this paper.

“crowdsourcing” [5], [6] to the sensory data collection in
a participatory, task-oriented way. Notable examples are to
support the “Citizen Science efforts” for knowledge discovery
[7], a mechanism for scientific community to gather data
from the public in a distributed way to understand the human
behavior and measure/evaluate their opinions.

Traditional methods like self-reported surveys and experi-
ence sampling often suffer from the subjectivity and memory
effects, and the frustration associated with real-time, laborious
discussion of multiple opinions, lack of consensus, and the
feeling of “wasting time” [8]. In our case, the required
information can be achieved via a participatory crowdsourcing
platform on the smart device to provide quick and instan-
taneous information gathering among the collocated group
of people, presenting a tempting alternative. As shown in
Fig. 1, the participatory crowdsourcing system consists of
a sensing network platform, which includes an information
center and a credit center and resides in the cloud, and
many registered smartphone users, who are connected with
the platform via the existing cellular network infrastructure
and provide sensing services to the platform. The platform
propagates questionnaire request to the recruited smartphone
users. Upon receiving the query, they decide whether and
how to respond distributedly, and send the replies back to
the platform, where data processing may occur before a
result is finally obtained. The users who supplied data would
receive some form of credit from the platform as a reward for
supporting the efficacy of the application. This is essentially
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different from the online social networks, where users may
not be associated with similar background information, and
the questionnaire is not specifically designed for a small, co-
located community to understand a particular aspect like their
health condition.

Supporting applications such as the one above requires
addressing the following challenge:how to manage the par-
ticipants distributedly to achieve the quality-of-information
(QoI) required by the questionnaire request, while providing
satisfactory benefits to the network platform and participants?
QoI relates to the ability to judge whether information isfit-
for-use for a particular purpose [9], [10]. For the purpose of
this paper, we assume that QoI is characterized by a set of
attributes that quantize the amount of information required by
the request. Since smart devices are not dedicated sensing de-
vices and have essential demands for energy resources, suchas
voice calls, how to balance the information contribution with
their energy reserve is an open issue, and more importantly,
to design a distributed algorithm without centralized control
to meet the mobility requirement of participants. In addition,
users participating in such crowdsourcing environment also
expose themselves to potential privacy threats. Therefore, users
might not be willing to use their resources and participate
unless they receive something in return. This brings forth the
important issue of incentive-based techniques, acting as the
driving force to motivate user participation, provide sufficient
and continuous influx of user contributions and guarantee good
QoI. These challenges and general approach serve as the basis
for our work.

Building upon and significantly extending our previous
work [11], we propose a novel efficient network management
framework for participatory crowdsourcing. The contribution
of this paper is five-fold: First, considering the QoI require-
ments of the questionnaire request and the residual energy state
of all participants, we formulate an optimization problem to
achieve the highest degree of energy consumption fairness,
and subsequently propose a closed-form solution with low
computational comlexity , which has not been considered in
[11]. Second, we propose a distributed, QoI-aware participa-
tory crowdsourcing framework embedded in each smart device
that recommends the amount of information contribution in
aware of its energy consumption. Here, we extensively extend
[11] by merging multiple automaton chains into one single
chain with multiple steady states, to represent different amount
of contributed information. To meet the requirements of both
QoI and energy fairness, we propose a two-step decision
making process. Third, we explicitly design an incentive-
based participant selection mechanism to motivate users’
participation, while maximizing the benefit of the network
platform by minimizing the total paid credits to participants.
In [11], the goal is to minimize the necessary adaptation
of the pricing scheme. Then, we provide thorough analysis
on the proposed user selection and credit allocation method,
given different presumed user bidding behaviors. Finally,we
conduct extensive simulations on a real social data set, largely
enriching and deepening the exploration of framework perfor-
mance. Extensive results confirm that the proposed scheme
successfully achieves the QoI requirement while providing

TABLE I
SUMMARY OF IMPORTANT SYMBOLS

Symbol Definition (Section where the symbol is first used)
N the set of participants of sizeN (III-A)
L the number of QoI attributes (III-A)
ur(l) required value of thel-th QoI attribute (III-A)
umin(l) lower bound forur(l) (III-A)
umax(l) upper bound forur(l) (III-A)
ua
i (l) the amount of information contribution by useri for

the l-th QoI attribute (III-A)
Ei initial energy reserve of useri (III-A)
Ēi remaining energy of useri upon receiving request (III-A)
ξi total energy consumption ratio of useri (III-A)
γ normalization factor forξi (III-A)
fl(·) information fusion algorithm for thel-th QoI attr. (III-A)
ua(l) collective contribution of all users forl-th QoI attr. (III-A)
pi answering probability of useri for “average” option (IV-B)
ui the actual number of answers reported by useri (IV-B)
{ui}∗ optimal number of answers users should return (V)
S set of steady states (V-B)
T set of transitional states (V-B)
σj set of transitional states subordinate to steady statej (V-B)
Si(k) current state of automaton useri resides ink-th step (V-B)
β the number of subordinate states of each steady state (V-B)
K the maximum iteration step (V-B)
I(k) QoI index atk-th iteration step (V-C)
η scaling factor for QoI index (V-C)
Ri(k) reward prob. useri receives atk-th iteration step (V-D)
Pi(k) penalty prob. useri receives atk-th iteration step (V-D)
α scaling factor forRi(k) (V-D)
ς the range for satisfactory QoI in Q-step (V-E)
ǫ the adjustment threshold in V-step (V-E)
ϕ total paid credits to participants (VI)
δ QoI margin for user selection (VI)
bi bidding price of useri (VI)
κ adaptation ratio for bidding(VI)
χ bid change step size (VI)

a satisfactory level of energy consumption fairness among
participants, with negligible computational complexity.On
the other hand, the total paid credits are effectively reduced
with the proposed auction-based approach, which guaranteea
certain level of benefit for the network platform.

The rest of the paper is organized as follows. Section II
highlights the related research activities. Section III presents
a formal model of our system and shows the system flow.
Section IV describes the MIT Social Evolution data set with
our treatment for participatory crowdsourcing, and the system
pertinent solutions based on the extended Gur Game structure
is presented in Section V. Section VI presents the incentive-
based participant selection mechanism. Extensive resultsare
given in Section VII. Section VIII discussed a few practical
issues related to our framework. Finally, a conclusion is drawn
in Section IX.

A summary of important symbols used in this paper is listed
in Table I.

II. RELATED WORK

Plenty of participatory sensing applications across different
areas have been proposed. EasyTracker [12] is designed for
transit tracking, mapping, and arrival time prediction by de-
ploying smartphone GPS unit on each vehicle. The CenceMe
project [13] investigates the use of phone sensors to classify
events in people’s lives, and selectively share the presence
using online social networks such as Twitter and Facebook.
The “Micro-Blog” [14] allows smartphone-equipped users to
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generate and share multimedia through social participation.
In [15], “Hapori” is proposed as a context driven local
search framework built on the community behaviors and
user similarity modeling. [1] proposes “EmotionSense”, a
mobile sensing platform for social psychology studies based
on mobile phones, including the ability of sensing individual
emotions as well as activities, verbal and proximity interac-
tions among members of social groups. “CoMon” is proposed
in [16] as a cooperative ambience monitoring platform to
monitor the environment by user cooperations. It leveragesthe
encounter history to measure the social relationships among
users and estimates the potential cooperation duration for
candidate cooperators. [17] discusses the feasibility of “Citizen
Mapping”, by using the crowdsourced GIS data to evaluate
the environmental justice and equality. [18] addresses the
noise pollution monitoring based on data collected by GPS
sensors and microphones in smartphones. In [6], the authors
investigate a crowd-voting case study, where a web-based t-
shirt company “Threadless” selects the products it sells by
having users provide designs and vote on the ones they like.
[8] discusses the applicability of building a distributed voting
application based on mobile ad hoc networks, allowing users
to efficiently express preferences in a timely manner.

Regarding the energy-aware sensor networks management,
[19] is the first work to use the mathematical paradigm of
the Gur Game [20], [21], [22] to dynamically adjust the
optimal number of sensors to operate through a few steps of
iteration. Later, it is extended in [23], where an energy-aware
algorithm is developed, and the periodic sleeping mechanism
is introduced. [24] uses a Gur Game formulation to maximize
the number of regions covered by sensors.

As for the design of incentive mechanism for participatory
sensing/crowdsourcing, [25] proposes a reverse auction-based
dynamic pricing incentive mechanism with virtual credit, to
minimize the total incentive cost. In [26], the authors design
an incentive mechanism for the user-centric model, using
auction-based approach to guarantee user participation. The
authors in [27] consider the double roles of a user in par-
ticipatory sensing, and propose a demand-based approach to
maximize fairness and social welfare. In comparison, we aim
to maximize the platform’s benefits, given the presumed user
behaviors. Our approach is also integrated with the framework
of Gur Game for distributed decision-making, thus not only
maximizing the benefits from economical perspectives, but
also meeting the QoI requirements of sensing tasks.

III. SYSTEM MODEL

In this section, we first present a formal model for de-
scribing the participatory crowdsourcing application, and then
introduce the system flow.

A. Assumptions and Notations

We consider the application of opinion/preference gathering,
where the local network consists ofN volunteer contributors
(or participants) of a set denoted byN , {i|i = 1, 2, . . . , N}.
The questionnaire query is associated with a set ofL QoI at-
tributes, whereur = {ur(l)|l = 1, 2, . . . , L} with superscript

“r” denote the “required” value. Without loss of generality,
we assume that every element inur is countable and can be
quantized by a metric with upper and/or lower bound, denoted
as umin(l), umax(l), ∀l. For instance,ur(1), ur(2), ur(3) can
represent the required number of answers sufficiently largefor
statistical analysis, the required image resolution and duration
for a contributed video, respectively. Then, the request is
propagated through the existing network infrastructure and de-
livered to the participants. For example, in the cellular network
settings the BS collects the feedback from all participants,
working under the standardized communication protocol, like
GSM/3G/LTE.

We denoteua
i (l) ∈ [umin(l), umax(l)], ∀l = 1, 2, . . . , L as the

amount of information contributed by useri corresponding to
thel-th QoI attribute. Superscript “a” represents the “attained”
value of the attribute. An example is the actual number of
answers reported by thei-th participant among multiple times
of questionnaire deliveries. Furthermore, we assume that all
participants’ smart devices have enough energy reserve to
complete one request, and for each useri, its initial energy
reserve of the smart device is denoted asEi, and the remaining
energy upon receiving the request is denoted asĒi, ∀i ∈ N .
We further introduce a scaling factorγ to normalize the
amount of information contribution, to denote the proportional
amount of energy consumption due to information contri-
bution. Then, after the task, the total percentage of energy
consumption for useri is computed as:

ξi = 1−
Ēi

Ei
+

L
∑

l=1

(

ua
i (l)

γ

)

, (1)

whereξi ∈ [0, 1], ∀i ∈ N . The first part of (1),1 − Ēi/Ei,
defines the energy consumption percentage before receiving
the crowdsourcing request. The second part of (1) indicates
the consumed energy percentage when responding the crowd-
sourcing request, which is proportional to the information
contribution towards the totalL QoI attributes.

Finally, we use the mappingfl, ∀l to denote a set of
information fusion algorithms like the one reported in [28]
corresponding to the required QoIur(l). It aggregates multiple
information sources obtained from all participants to a single
view of the event,

ua(l) = fl(u
a
i (l)), ∀i ∈ N , l = 1, 2, . . . , L. (2)

We call a specific QoI requirement is satisfied, if and only if,
ua(l) ≥ ur(l), ∀l = 1, 2, . . . , L.

If the property is considered to be the same among all
users, a straightforward example isfl ,

∑

i to collect answers
reported from all participants:

ua(l) =
N
∑

i=1

ua
i (l). (3)

If we consider the different properties of each user, examples
of fl can be:

ua(l) =

N
∑

i=1

piu
a
i (l). (4)

ua(l) = max{ua
i (l)}, ∀i ∈ N . (5)
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Particularly in (4), parameterpi, ∀i ∈ N exactly describes the
property of each user, connecting the contributed information
with its recognized value. At the same time, it also indicates
the QoI difference among users. On the basis of (4), if we
consider the decreasing marginal returns in the amount of
information, another example can be:

ua(l) = ϑ
∑

N
i=1

piu
a
i (l)/̟ ·

N
∑

i=1

piu
a
i (l), (6)

whereϑ ∈ (0, 1] is the decay coefficient, and̟ is the scaling
factor.

As our proposal is based on the mathematical paradigm
of Gur Game, our solution is transparent to any specific
form of function used in the QoI model, whether or not it
is discontinuous, multimodal, or concave, etc. In this paper,
we adopt the fusion functions in (4) and (6), and verify the
adaptability of our solution in the Section VII.

B. System Flow

Gur Game [20], [21] was proposed to use in distribute
systems who wish a collection of agents to cooperate on a
task. Each agent is associated with a finite state automaton
that independently guides the agent’s action, while taking
into account the collective feedback that eventually captures
the composite effect of all agents’ actions. Compare to our
considered participatory crowdsourcing scenarios, the partic-
ipant’s smart device in this case acts as the “agent”, where
the associated automaton can be easily deployed through a
piece of software in the mobile OS. The “task” translates
exactly to our focused social studies crowdsourced from a
co-located group of participants; and the “composite effect
of all agents’ actions” is then the result of the participants’
action upon returning answers to the querier. Therefore, we
believe that the fundamentals of Gur Game serve as the ideal
engine algorithmically due to its robustness, simplicity and
decentralized features. To make it particularly suitable for
crowdsourcing, in this paper we largely extend the existing
Gur Game and use it as part of the overall system flow shown
in Fig. 1.

The system flow consists of two stages. The first stage
relates to the interaction between the information center of
the network platform and the Gur Game engine programmed
in user’s smart device. The inputs are the user’s smart device
residual energy levels and multiple QoI requirements of the
request. At each iteration step of the Gur Game, the smart
device sends its preliminary action (as a result of our proposed
Gur Game algorithm) back to the platform. The latter then
calculates the pay-off value based on the received collective
pieces of information from all participants, and propagates it
back to Gur Game engine of each user. Based on this feedback,
the automaton changes its current state and generates the new
action, i.e., the level of information contribution. Therefore,
the Gur Game engine uses the trial-and-error method to
produce the best result at each step and iteratively achieves
the overall optimum to fulfill the QoI requirements in aware
of energy efficiency.

Sept. 5, 2008
June 29, 2009

a 3-day time periodphone usages

questionnaire request

91 time periods

time
lunch dinner lunch lunch dinnerdinner

Fig. 2. The illustration of quantizing the entire duration into 91 time periods
and when considered participatory crowdsourcing request arrives.

The second stage relates to the interaction between the credit
center of the network platform and the bidding module of
user’s smart device. After the first stage, the platform obtains
each user’s preliminary action. Then, the users send their bids
to the platform, which represent their expected paid credits for
unit amount of information contribution. The network platform
selects the users who can meet the QoI requirements of the
request and help reduce total paid credits as the active users
for questionnaire answering, receives their final information
contribution determined by the Gur Game engine in the first
stage, and pay their credits according to the previous bids.We
next describe a detailed implementation and solution of this
framework.

IV. A C ASE STUDY

This section first provides an overview of the used Social
Evolution data set gathered by MIT Media Lab [29], and
then illustrates how we use it to motivate our participatory
crowdsoucing application. The data set is generated by an
application on 80 undergraduates’ smart devices, who move
around the campus. It collects the phone usages and student
locations from October 2008 to June 2009. The phone usage
data consist of 3.15 million records of Bluetooth scans, 3.63
million scans of WLAN access-points, 61,100 call records, and
47,700 logged SMS events. Also, students provide offline, self-
report answers related to their health habits, diet and exercise,
weight changes, and political opinions during the presidential
election campaign. In our simulation, we use the phone usage
data, and the self-report answers on the health condition to
motivate and form the participatory crowdsourcing processas
described below.

A. Phone Usage Data

We extract the phone usage records from September 5, 2008
to June 29, 2009, in a total of 273 consecutive days. The
data include 49,906 voice call records with the calling time,
duration, caller and callee information, 33,148 SMS events
including the sending time, sender and receiver information.
Then, to facilitate our simulation, we quantize the entire 273
days into 91 independent time periods each of which involves
a 3-day usages, as shown in Fig. 2. We assume that phone
usages between two consecutive periods do not interrelate with
each other, and since the phone battery status is not provided
in the data set we simply assume that at the beginning of any
time period the device is fully charged. As a result, we have
91 time periods, each of which is associated a set of phone
usages, and this is used to evaluate how different phone data
impact on the proposed algorithm. Besides, we also make the
following two assumptions:
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• a fully charged phone battery can afford a 5-day standby
time, a 6-hour talking time, or 10,000 SMS events;

• for simplicity, apart from voice call, SMS, and standby,
we neglect all other situations for phone energy consump-
tion.

Therefore, we can compute the phone’s remaining energyĒi,
∀i ∈ N for each time period.

B. Considered Participatory Crowdcourcing Scenario

From the data set, students report their health condition
periodically, including the weight, height, the amount of salad
per week and fruit per day, the number of aerobic exercises
per week, the amount of smoking, and most importantly, how
they evaluate their health condition among: “very unhealthy”,
“unhealthy”, “below average”, “average”, “healthy”, and “very
healthy”. In the survey, each student is requested to report6
times in total, however in practice the received number of
returned questionnaire diverse individually. From 382 total
collected records, we observe that 6 answers are reported as
“very unhealthy”, 50 as “unhealthy”, 88 as “below average”,
148 as “average”, 82 as “healthy”, and 8 as “very healthy”.
Without loss of generality, we assume that the above number of
collected answers are just about sufficient for further statistical
analysis, and serves as the basis of our simulation.

Since these results are obtained at offline, in our simula-
tion, we are particularly interested inevaluating the student
health condition by collecting answers for a specific item
as above (e.g., “average”) from the targeted participatory
crowdsourcing platform. The answers are simply one of the
above options, and can be delivered by an SMS. Therefore,
the amount of energy consumption in reporting the answer
can be computed by (1). Then, QoI requirement is considered
as the minimum required number of answers collected from
participantswhich is sufficient for statistical analysis. That is,
for “average” option, we haveur = 148 and we drop the index
l = 1 as only one QoI requirement is considered. Furthermore,
from the reports 47 students voted this option, and they are
considered as the participants of setN . Also, the probability
of each student to rate the “average” option (among other
options) is different; and thus, for useri ∈ N , we compute
an “answering probability”, denoted aspi, ∀i, as a fraction of
answers towards the considered “average” option. Finally,to
be consistent with the actual reports, we set the upper and
lower bound of the number of answers each participant is
allowed to report asumax = 6 andumin = 0. This corresponds
to the delivery ofumax = 6 questionnaires to all students, and
aims to the collection of student’s health condition two times
a day, based on their diet habit for lunch and dinner, as shown
in Fig. 2.

V. PROBLEM FORMULATION AND OPTIMAL SOLUTION

Let ua
i = ui, ∀i ∈ N , whereui denotes the actual number

of answers reported by useri, i.e., an output from the Gur
Game engine, and0 ≤ ui ≤ umax, ui ∈ Z, ∀i ∈ N . Then,
our goal is to find optimal number of answers participants are
recommended to return, denoted as{ui}

∗. For the information
quality model, here we use the fusion function in (4). In our

case study, the “answering probability”pi is calculated from
the data set. While in actual crowdsourcing systems, it can
be determined by studying the history of user contribution
behaviours. Given the answering probabilitypi and the total
energy consumption ratioξi (from both phone usages and
participatory crowdsourcing),∀i ∈ N , each participant aims
to return an “optimal” number of answers to total delivered
umax = 6 questionnaires that collectively form the vector
{ui}∗. By “optimal”, we mean that{ui}∗ should not only
achieve the required QoI, but also offer a satisfactory level
of energy consumption fairness, in terms of minimizing the
variance of energy consumption ratio for all participants,
denoted asV . Towards this end, we formulate the optimization
problem as:

minimize:
{ui}

V =
1

N

N
∑

i=1

(

ξi −
1

N

N
∑

i=1

ξi

)2

subject to:
N
∑

i=1

piui = ur,

0 ≤ ui ≤ umax, ui ∈ Z, ∀i ∈ N , (7)

The first constraint is to guarantee the received number of
answers are not smaller than the required value with satisfac-
tory QoI; and the second constraint is due to the number of
delivered questionnaires is maximallyumax. The optimization
problem in (7) is a non-linear integer programming problem
and it is NP-hard.

Theorem 5.1:The closed-form solution of optimization
problem in (7) can be mathematically obtained by trying
combinations of three categories of the{ui} values.

Proof: Without loss of generality, we consider a general-
ized version of Theorem 5.1, whereui ∈ R. Combining (1)
and (7), we have:

NV =

N
∑

i=1

(

1−
Ēi

Ei
−

1

N

N
∑

i=1

(

1−
Ēi

Ei

)

+
piui

γ
−

N
∑

i=1

piui

Nγ

)2

.

Let qi = 1− Ēi

Ei
− 1

N

∑N
i=1

(

1− Ēi

Ei

)

. Then,

NV =

N
∑

i=1

(

qi +
piui

γ
−

N
∑

i=1

piui

Nγ

)2

=
N − 1

Nγ2
(

N
∑

i=1

piui)
2

+

N
∑

i=1

q2i −
2

γ2

∑

i6=j

piuipjuj +
2

γ

N
∑

i=1

qipiui.

Given ur, in order to satisfy the constraint, we have
∑N

i=1 piui = ur. Therefore, the first two items can be treated
as constants. Hence, minimizingV is equivalent to:

maximize:
{ui}

2

γ2

∑

i6=j

piuipjuj −
2

γ

N
∑

i=1

qipiui,

subject to:
N
∑

i=1

piui = ur, 0 ≤ ui ≤ umax, ∀i ∈ N . (8)
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According to the Kuhn-Tucker condition [30], the Lagrangian
is:

F =
2

γ2

∑

i6=j

piuipjuj −
2

γ

N
∑

i=1

qipiui + λ(ur −
N
∑

i=1

piui)

+

N
∑

i=1

µi(umax− ui) +

N
∑

i=1

ωiui,

So we need:

∂F

∂ui
= 0, λ(ur −

N
∑

i=1

piui) = 0, µi(umax− ui) = 0, ωiui = 0,

where

λ ≥ 0, µi ≥ 0, ωi ≥ 0, 0 ≤ ui ≤ umax, ∀i ∈ N . (9)

Then, we break the analysis into 18 cases based on the
complementarity conditions ofλ, µ andω values. Checking
them one by one according to the constraints in (9), finally
there remains three cases which can be classified as three
categories of{ui} values:

• Category 1: λ 6= 0, µi = 0, ωi = 0 ⇒ ui ∈ (0, umax),
• Category 2: λ 6= 0, µi = 0, ωi 6= 0 ⇒ ui = 0,
• Category 3: λ 6= 0, µi 6= 0, ωi = 0 ⇒ ui = umax.

Then, we divide the setN into three subsets,N1 = {i | ui ∈
(0, umax), i ∈ N}, N2 = {i | ui = 0, i ∈ N}, N3 = {i | ui =
umax, i ∈ N}, whereN1∪N2∪N3 = N . Therefore, by trying
total3N combinations of categories of{ui} values, we can get
the desired{ui}

∗ which achieves the minimum variance of
energy consumption ratio. Next, we derive the corresponding
equations for trying combinations.

For a given situation ofN1, N2, N3, we have:

u
r =

∑

i∈N1

piui+
∑

i∈N2

piui+
∑

i∈N3

piui =
∑

i∈N1

piui+
∑

i∈N3

piumax,

(10)
From ∂F

∂ui
= 0, we get:

2

γ2
pi(u

r − piui)−
2

γ
qipi − λpi − µi + ωi = 0, (11)

Category 1: For i ∈ N1, becauseµi = 0, ωi = 0, from
(11) we get the sum as:

∑

i∈N1

(

2

γ2
(ur − piui)−

2

γ
qi − λ

)

= 0. (12)

Then, from (10) and (12), we get:

λ =
2|N1|ur − 2ur + 2umax

∑

i∈N3
pi − 2γ

∑

i∈N1
qi

|N1|γ2
.

(13)
Putting (13) back to (12), we have:

ui =
ur + γ

∑

i∈N1
qi − umax

∑

i∈N3
pi

|N1|pi
−

γqi
pi

, ∀i ∈ N1.

(14)
Category 2: For i ∈ N2, becauseµi = 0, ωi 6= 0, ui = 0,

from (11), we get:

ωi =
2

γ
qipi + λpi −

2

γ2
urpi. (15)

Category 3: For i ∈ N3, becauseµi 6= 0, ωi = 0, ui =
umax, from (11), we get:

µi =
2

γ2
urpi −

2

γ2
umaxp

2
i −

2

γ
qipi − λpi. (16)

Then, we check if the inequalities in (9) are satisfied. If
satisfied, we record the{ui} values and its corresponding
varianceV . Therefore, the optimal{ui}∗ and minimumV are
obtained by trying possible combinations of setsN1,N2,N3.

It is worth noting that the optimization problem in (7)
can also be solved by the popular optimization toolbox like
YAMLIP [31]. It offers a near-optimal solution with tunable
absolute error margin. Comparing with it, our proposal in
Theorem 5.1 is of low computational complexity, by just com-
puting a few mathematical equations. In contrast, YAMLIP
alike toolboxes consist of tens of thousand lines of codes and
usually cannot be implemented in resource-constrained smart
devices.

A. The Gur Game

Gur Game was first used to power on a desired number of
sensors in WSNs [19], where each sensor is associated with
a finite discrete-time automation. The automaton is a single
nearest-neighbor Markov chain of memory size2M . Starting
From the left-most state, the states are numbered from−M to
−1, then followed by1 to M until the right-most state. The
negative numbered states represent the “idle” action, while
positive numbered states represent the “active” action. Each
sensor makes state transition decisions distributedly according
to the pre-defined pay-off structure, which consists of a pay-
off function with bounded value[0, 1]. Based on the new states
of sensors, the pay-off value is updated after each iteration.
Note that the reward function reaches its peak when desired
number of sensors stay at “active” decision states. The states
of different sensors gradually converge after a few steps of
iterations.

It is clear that the original Gur Game only offers two
candidate decisions for each participating sensor: idle orac-
tive. However, in our considered participatory crowdsroucing
application each user may answer the questionnaire request
multiple times from 0 to umax. Thus, we need to extend
the original Gur Game to a new form, by merging multiple
automaton chains into a single chain with multiple steady
states, where each state represents a participating action, i.e.,
the number of answers in our case.

B. Extended Gur Game Structure

Without loss of generality, letK denote the maximum
number of iterations every Gur Game automaton allows to run
before recommending the action, which impacts the speed of
system convergence and will be evaluated in the next section.
Our proposed Gur Game structure consists of two kinds of
states: the steady statesS = {j|j = 0, 1, . . . , umax} and the
transitional statesT =

⋃umax

j=0 σj , whereσj denotes a set of
transitional states that are subordinate to statej ∈ S. By
referring to “subordinate”, we mean that the actionui(k) (i.e.,
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Fig. 3. An example of the extended Gur Game structure whenumax =
2, β = 2. Each steady state has at most 2 subordinate transitional states.
The arrow shows the direction of state transition under the reward or penalty
probability.

the number of answers to the query) behind the statej andσj

in the k-th step of iteration are exactly the same, or:

ui(k) = j, if Si(k) ∈ j ∪ σj , ∀i, j, k, (17)

whereSi(k) represents the current state of the automaton user
i resides in thek-th step. Among these subordinate states, we
use the superscript “+” to represent the one to the right-hand
side, and “−” for the one to the left-hand side. Formally, we
have:

σj =



























{

01+, 0
2
+, . . . , 0

β
2

+

}

, if j = 0,
{

u
β
2

max,-, u
β
2
−1

max,-, . . . , u1
max,-

}

, if j = umax,
{

j
β
2

− , j
β
2
−1

− , . . . , j1−, j
1
+, j

2
+, . . . , j

β
2

+

}

, otherwise,

whereβ is introduced as a non-negative even number. That is,

• state0 has β
2 transitional states on its right;

• stateumax has β
2 transitional states on its left;

• other steady states haveβ subordinate states, whereβ2 of
them to its left, andβ2 states to its right.

Therefore, the total number of transitional states is:
umax
∑

j=0

|σj | = (umax+ 1− 2)β + 2×
β

2
= βumax. (18)

Fig. 3 shows an example of our proposed Gur Game structure,
whereumax = 2, i.e., j = 0, 1, 2 andβ = 2, i.e., each steady
state has two transitional states on both sides.

C. QoI index

To describe the level of satisfaction of a QoI attribute after
receiving the feedback from participants, we define the “QoI
index” for each stepk as:

I(k) , tanh
(

η ln
ua(k)

ur

)

, (19)

where ua(k) =
∑N

i=1 u
a
i (k) =

∑

i piui(k), and η denotes
a scaling factor that determines the “range” of the values for
the ratio of the attained and required QoI. The selection of the
functionsln(·) andtanh(·) is rather arbitrary, but results in the
intuitively appealing and desirable behavior for satisfaction. If
ua(k) is far more thanur, I(k) will be infinitely close to1.
If ua(k) is far less thanur, I(k) will be infinitely close to
−1. The condition ofI < 0 indicates that attained QoI is still
insufficient, while I > 0 for over-satisfaction. Actually, the

QoI index defined in (19) behaves symmetrically around the
origin, rising from−1 to 1, with the value0 signifying the
case where the QoI expectations are exactly satisfied, namely
ua(k) = ur. In this way, the QoI index quantitatively describes
the level of satisfaction of a QoI attribute, given the attained
and required QoI.

D. Energy-Aware Pay-off Structure

Let Ri(k) andPi(k), wherek = {1, 2, . . . ,K}, denote the
reward and penalty useri receives at thek-th step of iteration,
respectively. Then, the current state of the automaton will
transit probabilistically according to the received, collective
pay-off value from all participants. From Fig. 3, under the
reward, we observe that the steady states will stay unchanged,
while their governed transitional states shift to themselves. On
the contrary, the penalty will drive the opposite directionof
state shifting. In a summary, it is interesting to see that the
reward motivates the automaton to shift to/stay at the steady
states, while the penalty causes the automaton to leave from
the steady states and swing among the transitional states.

The basic goal for pay-off structure design in Gur Game
is, when the attained QoI is largely satisfied, the reward
probabilityR should be higher enough to keep the automaton
state stable. However, if the attained QoI is not sufficient
or excessive, the penalty probabilityP should be higher
to stimulate state transition, gradually converging to desired
states. Since the recommended action of each user is different,
so is the number of received answersua(k), and the QoI index
I(k). Thus, we introduce a novel reward structure for thek-
th iteration useri receives. It considers both the attained QoI
index I(k − 1) in the previous step, and its corresponding
actionj, as:

Rj
i (k) = g

(

I(k − 1), j
)

, ∀i, j, k. (20)

Functiong: R2 → [0, 1] denotes the mapping from two inputs
to the reward probability. Then, the corresponding penalty
structure is simply as:

P j
i (k) = 1−Rj

i (k), ∀i, j, k. (21)

An example ofRj
i (k) and will be used in our evaluation is:

Rj
i (k) =

{

e−ρjI(k−1)2 , if I(k − 1) ∈ [0, 1),

e−τjI(k−1)2 , otherwise.
(22)

Note that (22) exactly implements the basic goal for pay-
off structure design. Fig. 4 shows this implementation, where
parameters are set asumax = 2, η = 2. First, from the
discussion in Section V-C, we can see that both insufficient
and superfluous information contribution will lead to a lower
reward probability. Second, to shape the state transition more
precisely, we consider the difference of individual action
by introducing parameterρ and τ . In this example, we set
ρ0 = τ2 = 2α, ρ1 = τ1 = 5α, ρ2 = τ0 = 8α. In other words,
at any iteration step, we assign different reward functionsto
different actions (i.e., the number of answers denoted byj),
even though they receive the same achieved QoI index. That
is, when I < 0, higher j is assigned a higher reward than
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Fig. 4. An example of the reward probability for differentj andα.

the states with smallerj; and whenI > 0, the situation
is opposite. This is because that when the attained QoI is
insufficient (or: I < 0), it is more preferable to have the
participant’s automaton to shift to the right-hand side states
(associated with biggerj) with a higher reward. Therefore,
compared with users with smaller recommendedj, users with
biggerj should be assigned higher reward to keep it stay at the
current states, rather than shifting to the left. However, when
the attained QoI is over-satisfied, it is reasonable to motivate
users associated with higherj to shift to the left (thus lower
reward). Collectively, the effects of (22) is to recommend user
actions to achieve the exact required QoI (orI = 0), and the
participants in the Gur Game can collaboratively achieve the
highest reward probability through limited steps of iterations.
Furthermore, parameterα adjusts the breadth of the reward
function. Higherα makes the shape of reward function more
concentrated, as shown in Fig. 4 whereα changes from4 to
8 of the samej = 1.

E. Two-Step Decision-Making Process

Given the pay-off structure, we next show the proposed
iterative and distributed decision-making process for each user
i. Recall that the goal of our participatory crowdsourcing
framework is to find an optimal vector{ui}

∗ as the number of
answers participants are recommended to respond, which also
achieves a satisfactory level of energy consumption fairness
among all participants. To solve this, we propose atwo-step
Gur Game operation. QoI step (or Q-step) aids to regulate the
collectively achieved QoI within a small range just above the
required value, i.e.,[ur, (1+ ς)ur], whereς ∈ [0, 1]. Then, the
variance step (or V-step) minimizes the variance of the total
energy consumption ratio to provide the maximum extent of
fairness. Note that our proposed solution is purely distributed,
and thus the following descriptions apply for every useri.

Q-step:At thek-th iteration, ifua(k−1)−ur < 0 or ua(k−
1)−ur > ςur, the automaton transits its state probabilistically
according to the received pay-off value.

V-step: Denote the left/right adjacent state ofSi(k) as
L(Si(k))/R(Si(k)). At thek-th iteration, if the V-step criterion
0 ≤ ua(k − 1) − ur ≤ ςur satisfies, the automaton transits
its current state either to its left or right-hand side, according
to the comparison between its own energy consumption ratio

Algorithm 1 Gur Game-based Response Recommendation
1: setui(0) = umax, Si(0) = umax,∀i ∈ N , andI(0) = 1.
2: for all k = 1, 2, 3, . . .K do
3: computeua(k − 1) in (2);
4: if ua(k − 1) − ur < 0 or ua(k − 1)− ur > ςur then
5: computeI(k − 1) in (19);
6: for all useri ∈ N , do
7: computeRj

i (k) andP j
i (k) in (20) and (21);

8: generate a random numberseed∈ [0, 1];
9: if seed ≤ R

j
i (k) then

10: transit state by the reward behavior;
11: else
12: transit state by the penalty behavior;
13: end if
14: end for
15: else
16: transit state by (23);
17: end if
18: end for
19: find the final solution{ui}

∗ by (24) or (25).

and the average value among all participants. Letξ̄(k − 1) =
1
N

∑N
i=1 ξi(k− 1) denote this average value, andǫ ∈ [0, 1] as

an adjustment threshold. Specifically, we have










Si(k) → L(Si(k − 1)), if ξi(k−1)−ξ̄(k−1)

ξ̄(k−1)
> ǫ,

Si(k) → R(Si(k − 1)), if ξi(k−1)−ξ̄(k−1)

ξ̄(k−1)
< −ǫ,

Si(k) → Si(k − 1), others.

(23)

From (23), we observe that ifξi exceeds the average to a
certain extent, the automaton state shifts to the left, yielding
an action of decreasing number of answers, and vice versa.
For completeness, ifSi(k) = 0 or Si(k) = umax, we cannot
shift it to the left or to right. In this situation, we simply keep
the current state unchanged.

It is worth noting that in practice the V-step and Q-step
alternate, through the trial-and-error based on the obtained
QoI. The k-th iteration is associated with a vector{ui(k)}
that corresponds to a recommendation of returned answers,
achieved QoI and variance ofξi. When theK-th iteration
completes, we seek for a suboptimal solution from all these
iteration steps, based on the following criterion:

1) if ∀k = 1, 2, . . . ,K, there exits at least oneua(k) ∈
[ur, (1 + ς)ur], then we find the iteration stepk∗ that
achieves the minimum variance ofξi, ∀i:

k∗ = argmink V (k) , if ua(k) ∈ [ur, (1 + ς)ur], (24)

and the final solution is given by{ui}∗ = {ui(k
∗)}.

2) otherwise, we select the iteration stepk∗ to achieve the
QoI with minimum increment to(1 + ς)ur:

k∗ = argmink
(

ua(k)− ur
)

, ∀ua(k) ∈ (ur,∞), (25)

and the final solution is given by{ui}∗ = {ui(k
∗)}.

The solution is given by computational complexityO(K).
The pseudo-code in Algorithm 1 illustrates the proposed

two-step Gur Game control. It is worth noting that the our
proposed approach is fully distributed. Users neither needto
forecast their own energy-consumption states nor exchange
any information with other participants. Instead, they use
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the way of trial-and-error to produce the best result at each
step and iteratively achieve the overall suboptimum, whichis
confirmed in the simulation section.

VI. I NCENTIVE-BASED PARTICIPANT SELECTION

One problem of using participatory crowdsourcing for infor-
mation gathering and retrieval is how to effectively motivate
the users’ participation. In reverse auctions based approaches
[25], users first bid for selling their sensory data, and then
the service provider selects predefined number of users with
lowest bids. The selected users receive their bidding prices as
a reward. Since the bid is decided by participants, it simplifies
the pricing decision from the platform’s point of view and
users join the competition between others as if they are playing
a game. Similar to [25], we utilize reverse auction as the
main framework of our incentive-base participant selection
mechanism, but we explicitly consider the changing bid of
a user during a few consecutive crowdsourcing tasks, by
modeling the user bidding behavior.

Let bi, ∀i ∈ N denote the bid of useri, representing the
expected paid credits for unit amount of information contri-
bution. After the previous interaction between the network
platform and user’s smart device, the platform is notified
the preliminary action of each user, namely, the information
contribution determined by the Gur Game engine. Next, users
send their bids to the platform. A primitive way is to recruit
all N users and reward them all as their wish, and we use
this approach as a “benchmark”. Intuitively, users behave
aggressively to gain credits as much as possible, and this
primarily drives the need of investigating enhancements to
minimize the total paid credits from the network platform. This
section deals with the following problem:from the network
platform’s perspective, given the presumed user behaviors,
how to minimize the total paid credits to participants, and
achieve the QoI requirements of the questionnaire request
simultaneously?

We propose a heuristic user selection and credit allocation
algorithm to tackle this challenge. First, we relax the required
QoI in (7) asũr = (1 + δ)ur, whereδ is a tunable margin
to let the Gur Game engine distributely provide superfluous
information contribution for the request, andδ > 0. Then,
according to the received user bidbi, ∀i ∈ N , the platform
“removes” the participants in a descending order ofbi until
the collective contributioñua approachesur with minimum
increment. That is, we reject users with high bidding prices.
We use the setM with size M to denote the remaining
participants who are finally selected to contribute information
and receive rewarding credits. The pseudo-code in Algorithm
2 illustrates this process.

Let ϕ andϕ̃ denote the total paid credits by the benchmark
and proposed approach. We have

ϕ =

N
∑

i=1

bipiui, (26)

and

ϕ̃ =

M
∑

i=1

bipiũi, (27)

Algorithm 2 User Selection and Credit Allocation
1: setM = N , ũr = (1 + δ)ur, replace theur in Algorithm 1

with ũr;
2: run Algorithm 1, get{ũi}

∗, ũa =
∑N

i=1
piũi, ∀i ∈ N ;

3: sort users according to their bids,b1 ≤ b2 ≤ · · · ≤ bN ;
4: for all i = N,N − 1, N − 2, . . . , 1 do
5: if ũa − piũi ≥ ur then
6: ũa = ũa − piũi;
7: M = M− {i};
8: else
9: break;

10: end if
11: end for
12: use{ũi | ∀i ∈ M}∗ as the selection result;
13: allocate creditbi to useri, ∀i ∈ M.

where

N
∑

i=1

piui = ur,

N
∑

i=1

piũi = ũr = (1 + δ)ur,

b1 ≤ b2 ≤ · · · ≤ bM ≤ bM+1 · · · ≤ bN .

(28)

Theorem 6.1:Compared with the benchmark, the unneces-
sary and sufficient condition for credits saving by our proposed
approach is given by

θ <

∑M
i=1 pi(bM+1 − bi)(ũi − ui)

bM+1ur
, (29)

whereθ =
∑M

i=1 piũi/u
r − 1 is a judging parameter.

Proof: From Algorithm 2, it is clear to see that
∑M

i=1 piũi ≥ ur. Then, we introduce a non-negative parameter
θ where

∑M
i=1 piũi = (1 + θ)ur. Subtracting (27) from (26)

and given (28), we have:

ϕ− ϕ̃ = −b1θu
r +

M
∑

i=2

pi(bi − b1)(ui − ũi)

+

N
∑

i=M+1

(bi − b1)piui

≥ −b1θu
r +

M
∑

i=2

pi(bi − b1)(ui − ũi)

+ (bM+1 − b1)

N
∑

i=M+1

piui.

(30)

By removing the users with higher bid, we reduce the
collective contribution towardsur. Note that

∑N
i=1 piui =

∑M
i=1 piũi−θur. Hence,

∑N
i=M+1 piui =

∑M
i=1 pi(ũi−ui)−

θur. Putting this back to (30), finally we obtain:

ϕ− ϕ̃ ≥
M
∑

i=1

pi(bM+1 − bi)(ũi − ui)− θbM+1u
r. (31)

Therefore, if (29) is satisfied, thenϕ− ϕ̃ > 0. This completes
the proof.

Next, we give a thorough analysis on Theorem 6.1. Since
we introduce a marginδ to produce superfluous preliminary
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information contribution, we havẽui ≥ ui, ∀i ∈ N ,1 and
consequently,

∑N
i=1 bipiũi >

∑N
i=1 bipiui. Clearly, when a

participant is removed, the total credits are decreased, until
the algorithm ends by finding the minimum QoI increment
upon ur, and this closeness is characterized by parameterθ
in (29). If we exactly reduce the provided QoI to the required
value ur, i.e., θ = 0, since

∑M
i=1(bM+1 − bi)pi(ũi − ui) is

positive2, we haveϕ − ϕ̃ > 0. However in most cases, since
the final produced QoI is not exactlyur, whether or not we
achieve in saving credits depend on the judging parameterθ
in Theorem 6.1.

Moreover, we explicitly consider different user behavior on
credit acquisition. For each questionnaire request, the platform
executes a round of reverse auction to select users. For users
who win the current auction, they may increase their bidding
prices for future tasks to maximize their expected profits; while
for losers, they may decrease their expectations and lower
their future bids accordingly. Therefore, we model the user’s
behavior as:

1) adaptive bidding with proportional change:

bi =

{

(1 + κ)bi, i ∈ M,
(1 − κ)bi, i /∈ M,

(32)

whereκ denotes the ratio to signify the bidding change
in consecutive crowdsourcing tasks, andκ > 0.

2) adaptive bidding with fixed change:

bi =

{

bi + χ, i ∈ M,
bi − χ, i /∈ M,

(33)

whereχ is the step size for bid change, andχ > 0.

It is worth noting that if the participants’ bids are close
enough, the right-hand side of (29) would be relatively low,
making it difficult to satisfy (29); while if the variance of their
bids is large enough, the the right-hand side of (29) would be
relatively higher, having more opportunity to achieve credit
saving. We will confirm this analysis in Section VII-C.

VII. PERFORMANCEEVALUATION

A. Setup

We compare our proposed Gur Game based approach with
the “min-answers” method that achieves the required QoI
while minimizing the total number of answers, irrespective
the energy consumption of different users, as:

minimize:
{ui}

N
∑

i=1

ui,

subject to: ua ≥ ur,

0 ≤ ui ≤ umax, ui ∈ Z, ∀i ∈ N , (34)

and the solution is given by [31]. In addition, since our
proposed Gur Game based approach is a heuristic algorithm

1It is worth noting that both{ui}∗ and {ũi}∗, ∀i ∈ N are obtained by
solving the optimization (7) with the objective of minimizing the correspond-
ing varianceV . The difference is that{ũi}∗ achieves the QoI of(1+ δ)ur ,
which is larger than{ui}∗ with the QoI ofur. Consequently, it is obvious
to concludeũi ≥ ui, ∀i ∈ N .

2From (28), we havebM+1 ≥ bi, ∀i ∈ {1, 2, . . . ,M} and hence,∑M
i=1

(bM+1 − bi)pi(ũi − ui) > 0.

TABLE II
SIMULATION PARAMETERS

Parameter Description

N = 47 total number of participants
ur = 148 required QoI
γ = 30 normalization factor forξi
K = 500 maximum iteration step
umax = 6 maximum allowed number of answers per user
β = 2 no. of subordinate states of each steady state
ς = 0.015 the range for satisfactory QoI in Q-step
ǫ = 0.05 the adjustment threshold in V-step
η = 2 scaling factor for QoI index
α = 8 scaling factor for reward function
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Fig. 5. Achieved rewardvs. iteration steps.

and offers a suboptimum for (7), we also compare with the
centralized, optimal solution given by Theorem 5.1.

Our simulation is based on the treatment and systematic
assumptions described in Section IV, and we restate them as
follows. We focus on the collection of a sufficient number of
answers to the questionnaire of the student’s health condition,
on rating as “average”. From the data, we observe 47 students
eventually participate. We simulate the request every three
days, during which we assume the questionnaire is delivered
6 times to the students. In total we have 91 time periods.
On receiving the request, the smart device of each participant
runs our proposed Gur Game automaton iteratively to make
the recommendation on the number of returned answers. Then,
the QoI index and reward probability are computed as (19) and
(22), respectively. That is, sinceumax = 6, we have 7 steady
states in each automaton, and they are associated with reward
function parametersρj = α(j+2), τj = α(umax+2−j). Other
parameter settings are given in Table II. It should be pointed
out that the Gur Game automaton can start at random initial
state. For simplicity, we set the initial stateSi(0) = umax,
and thus, the achieved QoI is expected to decrease from time-
being.
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B. Convergence and System Performance

Without loss of generality, we first pick the 40-th time
period and show the system convergence in term of the change
of received reward probability, achieved QoI, the varianceof
ξi, ∀i and total energy consumption in Fig. 5, Fig. 6, Fig. 7
and Fig. 8 respectively. When Gur Game begins, since we
set the number of answers each user reports as the maximal,
the achieved QoI far exceeds the required value, thus making
the achieved reward very small. Gradually, the automaton of
each user transits its state probabilistically according to the
new pay-off value, and it successfully lowers the achieved QoI
close enough to the required one. It is worth noting that the
downhill (uphill) of the achieved QoI (see Fig. 6) corresponds
to the uphill (downhill) of the reward probability (see Fig.5).
After only 200 steps, the reward is very close to 1, leading to
the system convergence with negligible computational com-
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Fig. 8. Normalized total energy consumptionvs. iteration steps.

pelxity.

The effect of our proposed two-step adjustment approach
is clear when the achieved QoI falls in the range ofua ∈
[148, 150], i.e., the automaton finishes the Q-step and now
enters the V-step for finer adjustment. In the V-step, each
user’s automaton state is shifted slightly either to the right
or left-hand side of the current state which may cause the
recommended action (the number of returned answers) to
change slightly as well. However, as long as the collective
total number of answers remains satisfactory (the criterion
of Q-step), the energy consumption fairness can be gradually
achieved in a distributed manner. This is confirmed in Fig. 7 as
the tiny gap of the variance ofξi, ∀i between our solution and
the optimum. Moreover, we observe that the “min-answers”
method cannot guarantee a satisfactory level of energy con-
sumption fairness.

Compared with exhaustive search, our approach success-
fully lowers the computational complexity from(umax+ 1)N

to just a few hundred steps of iterations. Note that for Gur
Game, how long it takes to reach the optimal system state
depends on a number of system parameters, like the population
sizeN and the reward function. The larger number of users,
smaller reward changing step, longer the iteration would take.
The proposed Gur Game-based framework consumes very lim-
ited additional bandwidth and energy during convergence.As
shown in Fig. 1, the piece of information exchanged between
the base station and smart devices only includes the properties
of that information and the pay-off value, but not the actual
multimedia data. Practically, in our case study we need only
the meta data like task ID (32bits), the user ID (32bits) and
the number of answers (32bits), but not the questionnaire
itself (thus in total 96bits). To further verify this, we vary the
number of users, downscale the required QoI proportionally
and show the required iteration steps for convergence, and
total amount of exchanged information (including overhead),
as shown in Fig. 9. It is not surprising to see that our
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approach achieves linear performance when time progresses,
since every round of iteration is independent. With the increase
of N , although more steps are required, the advantage of
Gur Game still cannot be neglected, since exhaustive search
cannot be applied whenN is large. Furthermore, compared
with traditional mathematical optimization solving techniques,
Gur Game has its flexibility and universality when the problem
changes, since it is transparent to the specific form of the
objective function. We can also observe that whenN = 40 (as
a reasonable crowd of users), total aggregated informationfor
the considered application is only 62KB, which will not cause
bandwidth overuse. Therefore, we can safely conclude that
although Gur Game needs feedback collection during many
iteration steps, the piece of information exchanged per step is
relatively small and can be easily piggybacked in the existing
signaling payload (such as the regular paging/registration
process in cellular networks). To this end, the feature of
low bandwidth utilization and signaling overhead makes our
approach a suitable solution for crowdsourcing network.

Fig. 8 compares the total energy consumption among three
methods, where the value after 200 steps denotes the total
energy consumption of the proposed approach. It is obvious
that “min-answers” method spends less energy, while the op-
timal solution (in minimizing the variance) and our proposed
approach consume a bit more. Combining this result with
Fig. 7, we observe that the energy saving of the “min-answers”
is at the expense of sacrificing the user fairness, since it
neglects the residual energy state of different users. However,
both the optimal solution and our proposed approach aim to
guarantee a satisfactory level of fairness in user participation,
and thus they well balance the information contribution with
user device’s energy reserve. From QoI perspectives, what it
matters is whether the collocated participatory crowdsourcing
network can sustain the future tasks without early dying nodes.
Therefore, in our study we consider the user participation
fairness as the objective function.

Next, we explore the system behavior under different Gur
Game automaton settings, and investigate the stability of our
proposed approach. Recall thatβ determines the number of
transitional states in the Gur Game structure, andα influ-
ences the shape of reward function, and these two parame-
ters together impact on the speed of system convergence as
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evaluated next. We perform 100 Monte-Carlo runs on the
40-th time period. Fig. 10 demonstrates the achieved QoI
with 90% confidence interval, varyingα, β and keeping the
other parameters as basic settings. Whenα = 8, β = 2,
90% confidence interval of the achieved QoI is within range
[148.10, 149.67], as the best performance among all tested
combinations. To illustrate the effect ofα, β, we zoom in one
result from the total of 100 repeats. By varyingβ in Fig. 11,
we see that if no transitional states are employed, i.e.,β = 0,
the QoI does not converge even with the maximum iteration
step. This is because without the “buffering” effect of the
transitional states, the state of Gur Game automaton changes
fiercely and recklessly in the V-step, where even a minor state
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Fig. 13. Cumulative fraction of (a) the achieved QoI, (b) relative difference
of cv for ξi, for total 91 time periods.

change of each user’s automaton from the current one to the
adjacent state (representing different number of answers)can
significantly cause the achieved QoI to change dramatically,
and in the worst case the automaton has to go back to the
Q-step due to the small reward value. Therefore, the system
is very difficult to stay stable, nor converge. This effect is
confirmed whenβ = 4, β = 6, where the achieved QoI is still
out of the adjustment range of V-step even after the maximum
iteration step. Towards this end, we may conclude thatβ = 2,
or two transitional states associated with each steady state is
the optimal configuration.

Fig. 12 show the effect ofα when β = 2 to illustrate
the impact of the breadth of reward function on system
convergence. Apparently, the wider the reward function (e.g.,
α = 4 compared toα = 8), the slower the change of reward
with respect to the same level of QoI index change (see Fig. 4),
and thus the slower the speed of system convergence. In other
words, given the same received QoI index, the concentrated
reward function represents more stringent requirement forQoI
satisfaction (lower reward value compared with what the wider
function produces), and as a result, the trend to the desiredQoI
(I = 0) is more signified and eventually reflected by the faster
system convergence.

We perform Monte-Carlo runs on total 91 time periods and
compute the relative coefficient of variationcv for the total
energy consumption ratio among all participants. Furthermore,
we compute, to what extent the obtainedcv (by proposed
Gur Game approach) approaches the optimality, shown as its
relative difference in Fig. 13, together with the achieved QoI.
In Fig. 13 we observe that the achieved QoI of all tests is
above the required value with a small interval, and among
90% tests the relative difference ofcv is lower than 25%.
These results indicate a well-acceptable performance of our
proposed approach.

Finally, to show the adaptability of our solution towards
different information quality models, we use the information
fusion function in (6) which captures decreasing marginal
returns in the amount of information, and show its system
convergence in Fig. 14 and Fig. 15. The parameter isϑ =
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Fig. 14. Achieved QoIvs. iteration steps, with fusion function in (6).

0.98, ̟ = 100. Clearly, the evolving trend of achieved QoI
is the same with Fig. 6, where it successfully approaches
the required QoI after a few iteration steps. Fig. 15 shows
that the energy consumption fairness can also be gradually
achieved. This is because in Gur Game, no matter how a user
voted, the user independently transits its state accordingto
the reward/penalty probability calculated from the collective
behavior of all users (the total information contribution in our
case). After enough trails, the automata will reach the desired
states, where the reward function reaches its peak, and this
property holds no matter what characteristics the functionhas
[21]. In fact, the individual automata know neither the reward
function nor the information fusion function. Moreover, ifthe
fusion function changes, the automata can adapt themselves
automatically to the new function. So, the framework of Gur
Game allows our system to react dynamically to the variations
in real situations.

C. Proposed Incentive-based Participant Selection Scheme

Based on parameter settings in Table II, we conduct a series
of simulations to investigate the performance of proposed user
selection and credit allocation approach in Section VI. We
assume that the platform holds an upper bound for bidding
price asbi ∈ [0, 30], ∀i ∈ N , and we will show its effect in
limiting the aggressive behaviors of the participants during the
bidding process.

Without loss of generality, we perform 100 runs for both the
proposed “fixed bidding” (i.e., all participants do not change
the bid for a series of tasks) and benchmark approaches on the
40-th time period. For each run, we randomly generate initial
bids for all participants, following the uniform distribution
over [0,30]. Fig. 16 shows the achieved average credit saving,
where we observe that proposed approach successfully reduces
the total paid credits, and this gain becomes larger with higher
δ. This is because higherδ (i.e., higher QoI requirement)
drives the participants to contribute more and thus providing
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simulating the 40-th time period.

a higher degree of flexibility for the platform to choose the
most “appropriate” participants with not only higher bids and
smaller amount of contributed information to be removed from
the user selection phase. This in turn rejects greedy users.

We next demonstrate the adaptive bidding process in Fig. 17
from time domain over 91 time periods (i.e., participants
change their bid based on the previous auction result). We
set δ = 0.5 and compare the proposed approach with
benchmark under three different settings, namely: (a) adaptive
bidding with proportional change (referred as “proportional”),
(b) adaptive bidding with fixed change (referred as “fixed”),
and (c) fixed bidding. For fixed bidding, we also randomly
initialize the bidding prices of all participants, and keepthem
constant during 91 time periods. For setting (a), we set a
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relatively large adaptation ratioκ = 0.4; for setting (b), we
set a small step sizeχ = 2, to demonstrate its impact on
credit saving, as condition (29) explains. Apparently, we see
two adaptive approaches dramatically lower the amount of
paid credits compared with the benchmark, consistent with
Fig. 16. Although initial bids are different, participantstend
to progressively and aggressively raise their bids (see user 6 in
Fig. 18 as an example) and thus decreasing their differences
over time. This interesting observation shows their aggressive
behaviors which eventually make them non-selective, and the
impact can be more severe for the change with smaller step
size χ = 2. Sometimes it even fails to satisfy condition
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(29), thus potentially losing the benefit of credit saving. As
confirmed in Fig. 17, two lines are interleaving for “adaptive
bidding (fixed)”. Furthermore, although all users are aggres-
sively raising their bids, the upper bound of bidding price
successfully limits this greediness, as shown in Fig. 17. This
implies a practical system parameter setting to control the
revenue by the platform. For “adaptive bidding (proportional)”
scheme, it is interesting to observe that after the initially rapid
growth, total paid credits fluctuate. This can be explained when
zooming into randomly picked-up two users; see Fig. 18. Due
to the characteristic ofproportional change, if a user keeps
losing-winning auctions successively, the bid itself is actually
decreasing; only a series of consecutive wins can increase the
bid. Hence, the collective effect of all participants similar to
Fig. 18 eventually produces the shape in Fig. 17.

Fig. 19 confirms the results of Fig. 17 from another an-
gle. Here we focus on “adaptive bidding (proportional)” by
changingδ andκ. Varying δ = [0.1, 0.5] and settingκ = 0.4,
we observe that whenδ is small, the average amount of
credit saving is also small; for some cases, the proposed
approach even has more paid credits than the benchmark, thus
confirming the conditional saving feature by Theorem 6.1.
Next, we fixδ = 0.5 and vary differentκ to show the impact of
different user behaviors. Clearly, our approach performs better
in a more dynamic bidding environment, where the relatively
higher adaptation ratioκ amplifies the user differentiations,
thus increasing the benefits of user selection.

Finally, we explore the distribution of user bids over 91 time
periods by simulating the “adaptive bidding (proportional)”
algorithm. We show the cumulative fraction of bidding prices
for 6 voting options, i.e., in our simulation, we setui =
{1, 2, . . . , 6}. Therefore, for differentδ, we obtain 6 curves
each, as shown in Fig. 20. Whenδ = 0.1, the bidding prices
are quite concentrated in a small range of [22, 25]. Again, this
is due to the user’saggressivebehavior to constantly raise bids
after a successful auction. Contrarily, whenδ = 0.4, greedy
users with high bidding prices can be effectively rejected by
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the platform, resulting in a much wider and lower range of
bidding prices as shown in the figure.

VIII. D ISCUSSIONS

In this section, we discuss some practical issues of the
proposed Gur Game-based approach.

A. Distributed Characteristics of the Gur Game

For a fully distributed control system, one aims to let
users perform a cooperative task without outside control.
Strictly speaking, the Gur Game-based approach is not a fully
distributed control approach, since the contributed information
needs to be collected by a central server (which is the base
station in the considered cellular networks); however it con-
cerns more about optimizations. In Gur Game, the automaton
of each user independently transits its state, taking into account
the feedback that captures the collective actions of all users.
By introducing the base station as the coordinator, there isno
need to exchange information between users. Moreover, the
base station acts not as a commander, but more like a globally
observable quantity [22].

From a practical point of view, this feature of our Gur
Game-based approach exactly fits for the scenario of existing
cellular networks, since there exists the natural and essen-
tial role of a referee/coodinator, namely the wireless service
provider with its infrastructure. First, direct interactions be-
tween users and the base station can well carry the iterative
steps of Gur Game. As shown in Fig. 1, the network platform
guides each user to reach the desired state gradually. Second,
in a real-world deployment, technologies in mobile multi-hop
relay networks can also be applied, e.g., multi-hop relaying
with IEEE 802.16j [32] can improve coverage and capacity
issues of the crowdsourcing system.



0018-9545 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2367029, IEEE Transactions on Vehicular Technology

16

B. Fully Charged Device Battery

In Section IV-A, when modeling the case study from the
data set, we assume that user devices are fully charged at the
beginning of any of the total 91 independent time periods.
This assumption is only for the ease of calculating the phone
remaining energy level, since its battery status information is
not provided in the data set. With this assumption and the
regular phone usage such voice call, SMS, and standby, which
are computable from the data set, we can deduce their energy
state when receiving the crowdsourcing request. It is worth
noting that given the user’s initial energy state, our goal is to
balance their consumed energy during crowdsourcing process.
Absolutely, we can set random energy value for each user
device at the beginning of each time periods, and it has no
impact on our proposed optimization strategy.

C. Truthfulness of the Bidding Process

In Section VI, reverse auction is used as the main framework
of our incentive-base participant selection mechanism. Inthis
paper, our goal is to maximize the benefit of the network
platform when offering fair returns to participants. Based
on bidding information, we focus on how to select proper
participants to minimize the total paid credits and achievethe
required QoI levels. However, truthfulness is a critical property
of any auction scheme. In truthful bidding, no buyer can
improve its utility by submitting a bid different from its true
valuation, no matter how others submit [33]. If this property is
not guaranteed, the auction could be vulnerable to malicious
manipulation and produce very poor outcomes. For the truthful
bidding implementation, well-known truthful auction schemes
like Vickrey-Clarke-Groves (VCG) scheme [34], [35], [36]
and McAfee double auction [37] can be integrated with our
existing scheme. Take VCG auction for example. For a set
of auctioned itemM = {t1, t2, ..., tm} and a set of bidders
N = {b1, b2, ..., bn}, let V M

N be the social value of auction
for a given bidding combination. In VCG auction, the bidder
bi who wins the itemtj needs to pay the social cost of his
winning that is incurred by the rest of the bidders, namely
V M
N\{bi}

− V
M\{tj}
N\{bi}

. It is proved that under this scheme, to
achieve the maximization of net utility, a bidder should use
his true valuations for the auctioned items. This method can
be merge into our existing participant selection scheme, since
given the bidding information of all users, by Algorithm 2,
the credit processing unit of network platform can check the
impact of each user’s participation on the welfare of rest users,
and hence calculate the social cost of each user’s winning.

IX. CONCLUSION

In this paper, we propose a novel QoI-aware, energy-
efficient participatory crowdsourcing framework, poweredby
the distributed decision-making process of Gur Game. Our
solution fully considers the QoI requirements of the request
while providing a satisfactory level of total energy consump-
tion fairness among all participants, and most importantly,
in a distributed manner. Specifically, we largely extend the
traditional framework of Gur Game by merging multiple
automaton chains into a single chain with multiple steady

states, representing different amount of information contri-
bution per user. We propose a two-step decision making
algorithm to meet the requirements of both QoI (Q-step)
and energy fairness (V-step). We also propose an incentive-
based participant selection scheme to maximize the platform’s
benefits and provide satisfactory credits to the participants.
Extensive experimental results on the MIT Social Evolution
data set show that the proposed scheme successfully fulfillsthe
QoI requirements of the request, while providing a satisfactory
level of energy consumption fairness among participants and
achieving the credit saving, with negligible computational
complexity.
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