
1

Scalable Video Streaming with Helper Nodes using
Random Linear Network Coding
Pouya Ostovari∗, Jie Wu∗, Abdallah Khreishah†, and Ness B. Shroff‡

∗Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122
†Department of Electrical & Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102

‡Department of Electrical & Computer Engineering, Ohio State University, Columbus, OH 43210

Abstract—Video streaming generates a substantial fraction of
the traffic on the Internet. The demands of video streaming also
increase the workload on the video server, which in turn leads to
substantial slowdowns. In order to resolve the slowdown problem,
and to provide a scalable and robust infrastructure to support
on-demand streaming, helper-assisted video-on-demand (VoD)
systems have been introduced. In this architecture, helper nodes,
which are micro-servers with limited storage and bandwidth
resources, download and store the user-requested videos from a
central server to decrease the load on the central server. Multi-
layer videos, in which a video is divided into different layers,
can also be used to improve the scalability of the system. In
this paper, we study the problem of utilizing the helper nodes to
minimize the pressure on the central servers. We formulate the
problem as a linear programming using joint inter- and intra-
layer network coding. Our solution can also be implemented in a
distributed manner. We show how our method can be extended
to the case of wireless live streaming, in which a set of videos is
broadcast. Moreover, we extend the proposed method to the case
of unreliable connections. We carefully study the convergence
and the gain of our distributed approach.

Index Terms—Video-on-demand (VoD), streaming, multi-layer
video, intra-layer coding, inter-layer coding.

I. INTRODUCTION

Recent studies have shown that multimedia streaming pro-
duces a significant portion of the traffic on the Internet. For
example, 20-30% of the web traffic on the Internet is from
YouTube and Netflix [1], [2]. Thousands of hours of video
are uploaded on YouTube every day, and millions of hours of
movies are available on Netflix, Hulu, and iTunes sites.

In order to provide a scalable and robust infrastructure
that will support large and diverse on-demand streaming,
the concept of helpers has been introduced, and the design
of helper-assisted video-on-demand (VoD) systems has been
explored [3]–[7]. Helpers are micro-servers with limited stor-
age and bandwidth resources, which can download and store
requested videos to be able to serve user requests on demand.
The helpers work in conjunction with a central server, which
provides users with video files that cannot be obtained from
their neighboring helpers (Figure 1). It is clear that the central
server will be able to serve more users, as long as we can
provide more portions of the requested videos through the
helpers.

In addition to the use of helpers, we can benefit from
multi-layer videos [8]–[11] to provide a higher degree of
scalable VoD systems. In multi-layer video, which is also

Users

Helpers

Central

Server

Fig. 1. The system architecture.

(a) Original (b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layers 1 & 2 (f) Layers 2 & 3

Fig. 2. Multi-layer video with 3 layers.

called multi-resolution codes (MRC) or scalable video coding
(SVC) [12], [13], videos are typically divided into a base layer
and enhancement layers [14], [15]. The base layer (layer 1)
is required to watch the video, but the enhancement layers
augment the quality of the video streaming. Accessing more
layers provides higher video quality, but the i-th enhancement
layer is not useful unless the user has access to all of the
enhancement layers with a smaller index. Figure 2(a) shows
an original image, and Figures 2(b)-(d) show the constructed
layers from this image. Layer 1 is the most important layer,
which is required by all the users. Layers 2 and 3 cannot be
used without all of the layers with smaller indices, as depicted
in Figures 2(c) and (d). Figure 2(f) shows that adding layers
2 and 3 together without layer 1 is useless, as well. Adding
layer 2 to layer 1 increases the quality of the image, as shown
in Figure 2(e).

In order to optimally use the resources, we need a mech-
anism to distribute the packets of the videos on the helpers,
since, due to storage limitations, the helpers might not be able

2

1 layer

2 layers Central

Server

Central

Server

+

+

+

+

Central

Server

(a) (b) (c)

Layer 1

No multi-layer

coding

Layer 2

Intra-layer

coding

(d)

Fig. 3. The advantage of using NC, (a) No multi-layer NC, (b) Intra-layer NC, (c) Inter- & intra-layer NC, (d) Coding schemes.

to store a full copy of the video. Network coding (NC) [16]–
[19] helps to simplify the content distribution problem, and
solves it in an efficient way [20]. Consider packets p1, ..., pn.
In linear NC, each coded packet is in the form of

∑n
i=1 ai×pi,

where ai is a coefficient. In this scheme, if a user has
access to any n linearly independent coded packets, it can
use Gaussian elimination to decode the coded packets and
retrieve the original packets. In [21], it is shown that when
the coefficients are selected randomly, there is a very high
probability that the packets will be linearly independent. As
a result of this scheme, which is called random linear NC,
the coded packets contribute the same amount of data to the
users, which simplifies the distribution of the packets. Linear
NC can be classified into intra- or inter-layer NC, depending
on whether the coding is performed between the packets from
the same layer or different layers, respectively.

Consider Figure 3, in which the users request a two-layer
video, each of which consists of 2 packets; thus, the video
contains 4 packets. The capacity of the helpers is equal to
2 packets. Assume that users u1 and u6 request layer 1,
and that the other users need both layers. If we were to
use the method in [4], the whole video would need to be
downloaded for playing, as the method does not support multi-
layer coding; thus, the video is considered to be 4 packets, p1-
p4. Figure 3(a) shows an optimal video placement option based
on the proposed method in [4], in which random linear coded
packets of p1-p4 are stored on the helpers (the no multi-layer
NC is depicted in Figure 3(d)). In this case, users u2-u5 have
access to 4 coded packets over p1-p4; thus, they can decode
the coded packets using just the helpers. However, users u1

and u6 need to download 2 more packets from the server to
decode the coded packets.

Figure 3(b) shows an optimal placement using intra-layer
NC. The coding structure is shown in Figure 3(d). In this case,
only user u2 needs to download 2 packets from the server, so
the load on the server is less than that of in Figure 3(a). Inter-
layer NC can be used in conjunction with intra-layer NC to
increase the efficiency of the content placement on the helpers.
In Figure 3(c), we benefit from inter-layer NC. Users u2-u5

have access to 4 linearly coded packets over layers l1 and l2,
so the server does not need to upload any layer. Moreover,
users u1 and u6 have access to 2 linearly coded packets over
layer l1, which is sufficient for decoding the first layer.

Motivated by the intuition drawn from the example, in this
work, we answer the following questions: how should the
packets of videos be distributed over helpers? How should the
helpers allocate their bandwidth to the users to minimize the
load on the central server? And, lastly, how should we design a

coding scheme for content placement? While answering these
questions, we make the following contributions:

• We study video streaming using helpers in the case of
multi-layer multi-videos, and characterize the optimal
solution using linear programming (LP).

• The problem of inter-layer NC is in general an NP-
complete problem [9], [14]. However, in our problem, the
optimal solution in the case of using triangular inter-layer
NC can be calculated in polynomial time. We also present
a distributed approach to optimally utilize the helpers,
which adapts to the changes in the requested videos and
the joining or departure of the nodes (helpers and users).

• We empirically show the cases under which combining
inter- with intra-layer coding provide benefits (reduced
server load) over intra-layer coding.

• In contrast with the work in [4], we extend our solutions
to consider the reliability of the links.

The remainder of this paper is organized as follows: We
review the related works in section II. In Section III, we
introduce the settings. We formulate the problem for the case
of wireless or wired VoD in Section IV, and we extend our
proposed method to the case of networks with unreliable links
in Section V. We study the wireless live streaming application
in Section VI. In Section VII our distributed solution is
proposed. We evaluate our methods through simulations in
Section VIII. Section IX concludes the paper.

II. RELATED WORK

Peer-to-peer (P2P) streaming has been studied in [22]–[24].
The authors in [22] study rate allocation problem in P2P VoD
streaming. They propose a distributed rate allocation algo-
rithm, which can reduce the unfriendly traffic to the Internet
service providers (ISP), such as inter-ISP traffic, without much
increase on the server load. In [23], distributed bandwidth
allocation in live P2P streaming is studied. The challenges
and the design issues of a large-scale P2P-VoD system are
studied in [24]. The authors argue that less synchrony in
the video contents shared by the users in VoD streaming
makes the problem of reducing server load and maintaining
streaming performance hard. In order to resolve this problem,
each peer needs to contribute a small amount of storage. The
paper proposes content replication, content discovery, and peer
scheduling schemes.

The role of helpers in video streaming has been studied
in several works. In [6], the authors study the live streaming
of a single video in a helper-assisted P2P system. In their
proposed method, each helpers downloads one coded packet of

3

Layer 1

Time

(a) (b)Intra-layer coding

Layer 2

Triangular Inter-layer coding (c)

Layer 3

Segment 1 Segment 2

Segment 1 Segment 2

Segment 1 Segment 2

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 4. (a) Segmentation of a multi-layer video with 3 layers. (b) Intra-layer NC. (c) Joint inter- and intra-layer coding.

the currently streamed segment. The simulation results show a
significant increase in the streaming bitrate. The authors in [7]
use helpers in a P2P VoD system to stream a single video. The
authors propose a distributed bandwidth allocation algorithm
for the helpers.

In [3], the role of coding in the design of a large-scale
Video-on-Demand (VoD) system is studied. The authors show
that NC can convert a combinatorial problem into a tractable
problem. In [4], a P2P Video-on-Demand (VoD) system using
helpers is proposed. The objective of the paper is to minimize
the server load in the case of limited helpers’ bandwidth
and storage. The authors formulate the problem as an LP
optimization, and propose a distributed algorithm to solve it.
However, their distributed scheme oscillates among different
solutions. As a result, it does not converge to the optimal
solution. The other problem with the oscillation is that it can
result in delay oscillation, which might cause playback lags. In
contrast with the proposed distribution algorithm in [4], our
distributed algorithm converges to the optimal solution very
quickly. Moreover, in this work, we consider multi-layer VoD
streaming and the unreliability of the links.

III. SETTING

We consider a VoD system, where a video provider delivers
a set of videos to a set of users. This video provider might
consists of a set of video servers. In the rest of the paper
we refer to this vide provide as the central server. A group
of helpers, which are micro-servers with limited storage and
bandwidth resources help the central server in providing the
users with the videos. These helpers might be set up by the
video providers or third-party companies in order to reduce
the workload on the server. In general, the users can also
participate in the video distribution by allocating a portion
of their local storage to work as a helper. Without loss of
generality, we consider the helpers and users to be separate
nodes. We represent the set of helpers, users, and videos as
H , U , and M , respectively. The users are stationary, and each
helper covers a subset of the users (these sets does not need
to be mutually exclusive). The coverage can be based on the
geographic location or physical connection between the nodes.
The k-th video mk has a constant streaming rate rk and size
vk. User ui has a stationary request, denoted as qi, which
means ui watches a single video at a time from the beginning
to the end.

The helper hj has storage and upload bandwidth capacities
equal to Sj and Bj , respectively. If the helpers adjacent

to user ui can cumulatively provide the streaming rate of
the requested video by the user, the whole video will be
downloaded only from the helpers. Otherwise, the user will
request the remaining portion of the video directly from the
central server (Figure 1), which incurs some costs. In our
problem, the cost is in terms of the load on the central server.
Our objective in this work is to minimize the server’s total
upload rate to the users. In other words, we want to maximize
the total number of videos that helpers provide to their adjacent
users.

The users have diverse network conditions and use different
types of devices with different processing and bandwidth
resources to watch the videos. As a result, they might desire
different levels of video quality. In order to provide the users
with different levels of video qualities, each video mk is
divided into ek layers. The l-th layer of video mk has a
streaming rate and size equal to rkl and vkl, respectively. Each
user ui can subscribe to his or her desired number of layers
ci. Requesting more layers results in a better watching quality.
The user can make a decision regarding ci based on the quality
of its network connection, or any other network limitations it
may have. The l-th layer of a video is not useful unless all
of the layers with a smaller index are available. Let the j-th
helper node’s upload rate to its adjacent user ui over the l-th
layer of video mk be xkl

ji . We represent the set of adjacent
helpers to the user ui and adjacent users to the helper hj as
N(uj) and N(hj), respectively. We consider the links to be
reliable. Later, in Section V, we extend our proposed methods
to the case of unreliable connections. Table I summarizes the
set of symbols used in this paper.

We develop a distributed algorithm to find the optimal
solution for the stationary case, where the number of users and
helpers are fixed. We show via simulation results that, even
for dynamic networks, our algorithm appears to converge to
the optimal solution.

IV. VOD WITH MULTI-LAYER VIDEOS

In general, a helper might not be able to store a full copy
of a video because of storage limitations. Moreover, a helper
might provide more help to the central server by storing more
partial videos, rather than by storing a small number of full
videos [3]. The reason is that, by storing more partial videos,
the helper can provide partial help to a greater number of users.
Under this setting, in order to minimize the pressure on the
central server, the following questions have to be addressed:

4

TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
ui, U The i-th user, the set of users
hj , H The j-th helper, the set of helpers
mk,M The k-th video, the set of videos
Bj The bandwidth limit of helper hj

Sj The capacity limit of helper hj

rkl/vkl The rate/size of layer l of video mk

N(ui)/N(hj) The set of adjacent helpers/users to ui/hj

xkl
ji Upload rate from hj to ui over layer l of video mk

fkl
j The fraction of layer l of video mk stored on helper hj

ek The number of layers of video mk

qi The requested video by user ui

ci The number of layers requested by user ui

xk
j Upload rate of helper hj over video mk (in live stream-

ing)
dkji The download rate of user ui from helper hj over video

mk (in live streaming)
ϵji The reliability of the link between the helper hj and

user ui

ϵi The reliability of the link between server and user ui

• Content placement: Which packets of which layers of
each video should a helper store?

• Bandwidth allocation: Which packets, and to which ad-
jacent users, should each helper serve its stored content?

• Coding scheme: How should we design the coding
scheme for the helpers?

Intra-layer NC helps to simplify the content placement
problem on the helpers. As stated in the introduction, intra-
layer NC also increases the efficiency of the content placement
on the helpers. We divide each layer of a video into segments
of n packets, according to the playing time of the video
frame that they belong to. Figure 4(a) shows a video with
3 layers. Each segment of a layer consists of 2 packets, and
the playback of segment 1 is before segment 2. In our intra-
layer NC scheme, each coded packet of a segment is a random
linear combination of the whole packets in that segment. In
Figure 4(b), the coefficients are not shown for simplicity. For
instance, p1 + p2 means a1p1 + a2p2, where ai is a random
coefficient. Coding too many packets together increases the
time and memory complexity of coding and decoding. That
is why we partition the packets into segments and code the
packets of each segment together. When using intra-layer NC,
all of the coded packets from the helpers will contribute the
same amount of information, and a user will be able to view
the segment if it downloads any n linearly independent coded
packets from the helpers that have the segment stored.

In order to enable a helper to serve any users watching video
m, regardless of their playback time, we uniformly store the
packets from each segment. Using this scheme, in order to
store a fraction f of a layer of video m on helper h, we store
f × n random linearly coded packets of each segment on the
helper. Consider the video layer in Figure 5(a), in which each
segment contains 4 packets. Assume that we want to store
half of the video layer on a helper. We store 2 random linearly
coded packets for each segment, as shown in Figure 5(b). Note
that the 2 coded packets of each segment are different, since
they have different random coefficients. For simplicity, we do

Video layer

Time

(a) (b)

Segment 1 Segment 2 Segment 1 Segment 2

+ + +

...

...

...

...
...
...+ + +

+ + +

+ + +

Fig. 5. (a) Segments of a video layer. (b) Storing a half of the video layer
on a helper.

not show the coefficients in the figure. Using this scheme,
helper h can supply at the rate of f × r to the users that need
video m, where r is the rate of the video. The use of intra-layer
NC enables a flow-based model of the content, which changes
our content placement and bandwidth allocation questions to
finding:

• The rate at which coded packets of a video layer should
be stored on a helper.

• The rates at which coded packets of a video layer should
be uploaded to a helper’s adjacent users.

• The optimal coding scheme.
An alternative coding approach to random linear NC are

rateless (fountain) codes [25], [26], which have less coding
and decoding complexity. However, assuming that n packets
are coded, n(1 + ϵ) coded packets are required for decoding,
where ϵ is a small overhead. It is shown that as n becomes
larger, ϵ becomes smaller. In this paper we user random linear
NC. However, it can be replaced with a rateless code.

A user might receive the packets of the current segment
from the helpers and the server with different delays. As the
packets of each segment are linearly coded with each other,
the user is not able to decode the segment until it receives
enough coded packets for the current segment. It means that,
the user will be able to decode and watch the current segments
when it received the last coded packet of the current segment
from the helper or server that has the largest delay. In order
to address this problem, which might result in the video lag
problem (the video stopping as a result of delay in receiving
the required packets), each user buffers the received coded
packets and delays the playback so that the differences of the
transmission delays and changes in the delays do not result in
playback lags. The delay of the paths changes over time; thus;
this buffering time should be large enough such that it does
not result in lag problem. A large buffering time increases
the waiting time to start the payback; thus, the buffering time
should not be too large. Computing the buffering time of the
users is beyond the scope of this work.

A. Intra-Layer Network Coding

In this section, we assume that the links are reliable. As a
result, minimizing the server load is equivalent to maximizing
the help provided by the helpers. This optimization can be
modeled as the following LP optimization problem:

We refer to this problem as problem A. Objective function
(1) is the summation of the helper nodes’ upload rates to their
adjacent users, over the subscribed layers of the requested
videos. Function (1) is a linear function, so it is a concave

5

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

xkl
ji (1)

s.t xkl
ji ≤ fkl

j rkl, ∀j, i, l, k : ui ∈ N(hj),mk = qi, l ≤ ek
(2)∑

i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H (3)

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H (4)∑

j:hj∈N(ui)

xkl
ji ≤ rkl, ∀i, l, k : ui ∈ U, l ≤ ci,mk = qi

(5)

0 ≤ fkl
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek (6)

Fig. 6. Problem A: LP optimization with intra-layer NC.

function (Note that (1) is not strictly concave). We use the
set of Constraints (2) to limit each helper’s upload rate at the
available service rate of the videos (the rate of stored videos).
This upload rate differs for different layers of a video; thus, for
each layer of a video, we have a separate constraint. The set of
constraints (3) and (4) are feasibility constraints on bandwidth
and storage, respectively. In more detail, the total upload rate
of a helper and the total stored data on it cannot exceed its
bandwidth and capacity limit. Note that in VoD applications,
even in the case that the adjacent users to a helper watch the
same video, their playback times are different; so, the helper
needs to allocate separate bandwidths for each adjacent user.
If two adjacent users to the same helper are watching the
same video within a small time difference (e.g, 30 seconds),
buffering at the users could be used to transmit the same
information to both. However, for long videos it does not
happen frequently.

It is sufficient for user u to download layer l of its requested
video mk at a rate equal to the streaming rate of the layer,
since more than that value will not be useful. The set of
Constraints (5) limits the aggregated download rate of the
requested layers of video m to the user u at the rate of the
layers. The set of Constraints (6) are the feasibility constraints
on the fraction of stored video layers on the helpers, which
limits them to be in the range of 0 and 1.

Assuming that each user is connected to all of the helpers,
the number of variables x and f are equal to |U ||H|e and
|H||M |e, where e is the maximum number of video layers.
Moreover, the number of Constraints (2)-(6) are equal to
|U ||H|e, |H|, |H|, |U |e, and |H||M |e, respectively. Therefore,
the solution of the optimization can be calculated in polyno-
mial time [27].

B. Joint Inter- and Intra-Layer Network Coding

In this section, we extend the formulation of problem A
(Figure 6) to the case of joint inter- and intra-layer NC.

In the general form of random linear NC, each packet can be
coded with any other packets. Thus, in the case of n packets,
there are 2n − 1 random linear NC possibilities. Figure 7(b)

(a) (b)

(c)

 , ,

, ,

Fig. 7. p1+p2 means a1p1+a2p2, where ai is a random coefficient. (a) The
original packets. (b) The general form of random linear NC. (c) Triangular
NC scheme.

shows the seven possible ways to code the three packets in
Figure 7(a) using the general form of NC. For simplicity, the
random coefficients are not shown in the figures. In contrast
with the general form of coding, in triangular NC [28], each
coded packet is a random linear combination of the first i
packets, ∀i : 1 ≤ i ≤ n. In other words, the coded packets
have a prefix form. Therefore, there are just n possibilities for
coding n original packets. Figure 7(c) shows the three possible
coded packets using the triangular coding scheme.

As stated in the introduction, inter-layer NC helps to in-
crease the provided help of the helpers. In order to benefit
from joint inter- and intra-layer NC, we first perform intra-
layer NC (Figure 4(b)). Then, we use the triangular NC scheme
to code the intra-layer coded packets together. In our scheme,
the coded packets of each segment of a video’s l-th layer are
a random linear combination of that segment in layers 1 to
l. Figure 4(c) depicts the joint inter- and intra-layer coded
packets, using the triangular scheme. In this figure, the packets
of layer 1 are similar to those in the intra-layer approach,
but the packets of layer 2 are a linear combination of layers
1 and 2. Also, the packets of layer 3 are a random linear
combination of all the 3 layers. In the figure, the random
coefficients are not shown for simplicity. For example, P1+P4

means a1P1 + a2P4.
We prefer using triangular NC over the general form for two

reasons. First, it limits the coding space of the coding problem,
such that the convex optimization problem can be solved in a
polynomial time. Second, in our setting, we limit the number
of received layers of each user to his request. Because of this
limitation, the gain of the triangular NC is not less than the
general form of NC. Before discussing the reason, we propose
the following lemma:

Lemma 1: A set of general linear coded packets (non-
triangular) can be mapped to a set of triangular coded packets
such that the rank of the set is preserved.

Proof is provided in Appendix A. Under the proposed
setting, we do not provide a user with more number of layers
that he requested, which makes the gain of the triangular
NC not less than that of the general form of inter-layer NC.
Assume that the largest non-zero index in a general coded
packet is d. Based on our setting, we should deliver ci layers
to user ui. As a result, we do not transmit this coded packet
to a user that requested fewer layers than d layers, and any
changes in this coded packet does not have any impact on this
user. On the other hand, following Lemma 1, mapping a set
of general linear coded packets to a set of triangular coded
packets does not change the rank of the set. Therefore, the
mapping does not have a negative impact on the users that
requested at least d layers.

6

Assume that user ui has subscribed to ci layers, each of
which contains n packets. We represent the received coded
packets of the l-th coded layer as Zl. In [28], it is shown that
under the triangular coding scheme, a user can decode all of
the ci layers if

∑ci
j=ci−l+1 |Zj | ≥ ln, ∀l ∈ [1, ci]. This means

that the total number of received coded packets should be at
least equal to cin. Also, the total number of received coded
packets from layers 2 to ci needs to be equal to or more than
(ci − 1)n. In general, the number of received coded packets
from layers l to ci should not be less than (ci− l+1)n, which
gives us an insight into the following lemma:

Lemma 2: Assume that the l-th layer contains nl packets.
Providing more than

∑l′

l=1 nl coded packets from the first l′

coded layers is not useful to user u.
For the proof refer to Appendix B. From Lemma 2, for

the case of joint inter- and intra-layer NC, we can modify
the formulation of problem A in Figure 6, as Follows. The
objective function is the same as that of in problem A. Also,
much like the problem A, we have the set of Constraints (2),
(3), and (4). However, the set of Constraints (5) should be
modified as:

l′∑
l=1

∑
j:hj∈N(ui)

xkl
ji ≤

l′∑
l=1

rkl, (7)

∀i, l′, k : 1 ≤ l′ ≤ ci, ui ∈ U,mk = qi

which implies that the total upload rates of the first l′ layers
of the user-requested video should not be more than the total
streaming rate of those layers. This set of constraints ensures
that the helpers will not provide users with coded packets that
are not useful for decoding. Moreover, we do not have the set
of Constraints (6) anymore. The reason is that the coded video
layers are joint inter- and intra layer. As a result, the variable
f can be greater than 1. For example, consider a 2-layer video
with n packets per layer. In the case of inter- and intra-layer
coding, a user that does not receive any coded packet from
layer 1 and receives 2n coded packets over layers 2 is able to
decode both of the layers. Consequently, a helper can store the
inter-layer coded packets of layer 2 at a rate equal to f = 2.

V. VOD WITH UNRELIABLE CONNECTIONS

We extend our methods for unreliable connections in two
cases. In the first case we assume that the connections between
the server and the users are reliable, and that losses happen
just on the links between the helpers and the users. In the
second case, the links from the server and helpers to the users
might be lossy.

A. Reliable Server Links

As we assume that the links from the server to the users
are reliable, maximizing the provided data to the users by
the helpers minimizes the load on the server. The main
difference between the case of unreliable helper links and the
proposed methods in Section IV is that, here, the provided
data (delivered successfully) from helper hj to its neighboring
user ui over layer k is equal to ϵjix

kl
ji , where ϵji is the

reliability of the link between these two nodes. Based on this

discussion, in the following sections, we modify the proposed
linear programming equations in Section IV.

1) VoD with intra-layer Coding: In the case of using intra-
layer coding and the existence of lossy helper nodes’ links,
the optimal bandwidth and storage can be found using the
following LP:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

ϵjix
kl
ji (8)

s.t xkl
ji ≤

fkl
j

ϵji
rkl,∀j, i, k, l : ui ∈ N(hj),mk = qi, l ≤ ek

(9)∑
i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H (10)

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H (11)∑

j:hj∈N(ui)

ϵjix
kl
ji ≤ rkl,∀i, l, k : ui ∈ U, l ≤ ci,mk = qi

(12)

0 ≤ fkl
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek (13)

The objective function (8) is a summation of the delivered
data from the helpers to their adjacent users. In contrast with
the case of reliable links, here xkl

ji is not equal to the received
rate of the user ui. As a result, the helpers can perform
redundant transmission, since some of the transmissions will
be lost. That is why, in the set of Constraints (9), we divide
fkl
j by ϵji. The set of Constraints (10) and (11) ensure that the

data uploaded by a helper and the stored data on the helper do
not exceed its bandwidth and storage constraints. We use the
set of Constraints (12) to limit the receiving rate of each layer
of a video by a user, which is equal to ϵjix

kl
ji , to the rate of

that layer. We refer to this LP as reliable intra-layer coding.
2) VoD with Joint Inter and Intra-layer Coding: Similar to

the case of using intra-layer NC, we can modify the proposed
joint inter- and intra-layer LP to the case of unreliable helper
links. Solving the following LP results in the optimal band-
width and storage allocation when the links between helpers
and the users are unreliable:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

ϵjix
kl
ji

s.t xkl
ji ≤

fkl
j

ϵji
rkl, ∀j, i, k, l : ui ∈ N(hj),mk = qi, l ≤ ek∑

i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji ≤ Bj , ∀j : hj ∈ H

∑
k:mk∈M

∑
l:l≤ek

fkl
j vkl ≤ Sj , ∀j : hj ∈ H

l′∑
l=1

∑
j:hj∈N(ui)

ϵjix
kl
ji ≤

l′∑
l=1

rkl,∀i, l′, k : 1 ≤ l′ ≤ ci,mk = qi

B. Lossy Server Links

In the previous sections we maximized the provided data
from the helpers to the users, since that is equivalent to

7

Video

Playback

Video

Helper

Playback

Video

Playback

Video

Helper

Playback

(a) (b)

Fig. 8. VoD vs. Live streaming.

minimizing the load on the server. It is obvious that when
the links between the server and users are lossy, maximizing
the provided data from the helpers to the users might not
minimize the load on the server. The reason is that, the links
between the server and the users that could not download a
100% portion of their requested video from the helpers might
be worth much more than the users that receive their requests
in full from the helpers. As a result, we need to change the
objective functions of the proposed linear programming from
maximizing the provided help from the helpers to minimizing
the server load az follows:

min
∑

i,k,l:ui∈U,mk=qi,l≤ci

[
rkl −

∑
j:hj∈N(ui)

ϵjix
kl
ji

]
/ϵi (14)

We represent the delivery rate of the link between the user
ui and the central server as ϵi. The rate of the layer k is
equal to rkl, and the inner summation in Equation (14) is the
total portion of the layer k provided to the user ui through its
neighboring helpers. Therefore, the summation over the users
in Equation (14) results in the total load on the central server.

VI. WIRELESS LIVE STREAMING APPLICATIONS

In this section, we show how the proposed solution for VoD
can be extended for wireless live streaming (LS) applications.
By ‘LS’ we are referring to applications where some videos
are broadcast to the users, such as TV station channels or
surveillance systems. In VoD, the users can play the videos
asynchronously as depicted in Figure 8(a). However, in LS,
the playback times of the users that watch the same video
are synchronous (Figure 8(b)). Therefore, the main difference
between LS and VoD is that, in LS, the helpers do not need to
allocate separate bandwidths to their adjacent users that watch
the same video, as shown in Figure 8(b).

In the case of VoD, the summation of the allocated band-
width from each helper to its adjacent users should be less than
or equal to its bandwidth. However, in LS, the summation of
the allocated bandwidth from each helper for all of the videos
should be less than or equal to its bandwidth. The reason
for this is that more than one neighboring user might request
the same video, and all of the users use the same broadcast
packets. Consider Figure 9, where users u1 and u4 requested
the same video, m1. Also, the users u2 and u3 requested
video m2. In this case, helper h1 shares its bandwidth between
videos v1 and v2, without assigning a separate bandwidth for
each users. In order to formulate the case of LS, we represent
the allocated bandwidth for the video mk over helper hj as
xk
j . The summation of these variables for each helper should

be less than or equal to the helper’s bandwidth. Also, the

Central

Server

 ...

...

Fig. 9. Live streaming.

download rate of user ui over video mk from the helper hj ,
which is represented as dkji, should be less than or equal to
xk
j . The problem of LS in the case of single-layer videos can

be formulated as follows:

max
∑

i,k:ui∈U,mk=qi

∑
j:hj∈N(ui)

dkji (15)

s.t xk
j ≤ fk

j rk, ∀j, k : mk ∈ M (16)∑
k:mk∈M

xk
j ≤ Bj , ∀j : hj ∈ H (17)∑

k:mk∈M

fk
j vk ≤ Sj , ∀j : hj ∈ H (18)

dkji ≤ xk
j , ∀i, j, k : hj ∈ N(ui),mk = qi (19)∑

k:mk=qi

∑
j:hj∈N(ui)

dkji ≤ rk, ∀i : ui ∈ U

0 ≤ fk
j ≤ 1, ∀j, k, l : hj ∈ H,mk ∈ M, l ≤ ek

Objective function (15) is the summation of the download
rates of users. The set of Constraints (16) ensures that the
upload rate of a video by a helper cannot exceed the available
service rate of the video. Constraints (17), (18), and (6) are
feasibility constraints on bandwidth and storage. We limit the
download rate of a user from a helper to the upload rate of its
requested movie, using the set of Constraints (19). We refer to
our method as wireless live streaming (WLS). For simplicity
we formulated the problem for the case of single-layer videos.
The formulation can be easily extended for multi-layer videos.

VII. DISTRIBUTED SOLUTION

In this section, we solve the proposed optimization problem
A (Figure 6) for the case of multi-layer VoD streaming, using
intra-layer NC in a distributed way. The same approach can
be used to find a distributed solution for the other settings.
The idea is to solve the Lagrange dual of the problem using
the gradient method [29]. In this way, the helpers start from
empty storage, and gradually update their storage and band-
width allocation, based on the exchanged Lagrange variables
between them and their adjacent users.

The objective function (1) is not a strictly concave function,
due to the presence of a linear summation. Consequently,
a direct application of standard gradient iterative method
might lead to multiple solutions. In this case, the output of
an iterative method may oscillate between multiple feasible
solutions. In order to overcome the problem due to the lack of

8

strict concavity, we can apply the Proximal method described
in [30], page 233. The idea behind the Proximal method is
to add quadratic terms to the objective function and make it
strictly concave. A detailed description of the Proximal method
is in [30], [31]. To apply the Proximal method, we introduce
auxiliary variables yklji . By using the Proximal method, the
optimization becomes:

max
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

(
xkl
ji − (xkl

ji − yklji)
2
)

(20)

subject to the set of Constraints (2), (3), (4), (5), and (6).
The optimal solution of (20) is also the solution of (1). Let

x⃗∗ and f⃗∗ be the optimal solution of (1) then, x⃗ = x⃗∗, f⃗ = f⃗∗,
and y⃗ = x⃗ is the maximizer of (20). The standard proximal
method iteratively works as follows:

1) Fix y⃗(t) and maximize (20) with respect to variables
x⃗(t) and f⃗(t).

2) Set y⃗(t+1) = x⃗(t), increment t, and go back to step 1.

Since the Slater condition holds (see reference [32]), there
is no duality gap between the primal and the dual problems.
Therefore, we can use the dual approach to solve the problem.
Let λjil

1 , λj
2, λj

3, and λil
4 be the Lagrange variables for

Constraints (2), (3), (4), and (5), respectively. Here, i, j, and
l are corespondent to the indices in the set of Constraints (2)
to (5). The Lagrange function of (20) is:

L(x⃗, f⃗ , y⃗, λ⃗) =∑
i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

(
xkl
ji − (xkl

ji − yhlji)
2
)

−
∑

j,i:hj∈H,ui∈N(hj)

∑
k,l:mk=qi,l≤ci

λjil
1 (xkl

ji − fkl
j rkl)

−
∑

j:hj∈H

λj
2(

∑
i,k,l:ui∈N(hj),mk=qi,l≤ci

xkl
ji −Bj)

−
∑

j:hj∈H

λj
3(

∑
k,l:mk∈M,l≤ek

fkl
j vkl − Sj)

−
∑

i,k,l:ui∈U,mk=qi,l≤ci

λil
4 (

∑
j:hj∈N(ui)

xkl
ji − rkl)

By rearranging the terms, we have:

L(x⃗, f⃗ , y⃗, λ⃗) =
∑

i,k:ui∈U,mk=qi

∑
j,l:hj∈N(ui),l≤ci

[
(1− λjil

1 − λj
2

− λil
4)x

kl
ji − (xkl

ji − yklji)
2
]

+
∑

j,i:hj∈H,ui∈N(hj)

∑
k,l:mk=qi,l≤ci

λjil
1 fkl

j rkl

−
∑

j:hj∈H

∑
k,l:mk∈M,l<ek

λj
3f

kl
j vkl

By a simple change of variables, the Lagrange function is

Algorithm 1 Calculation of f⃗ (for helper hj)

1: rem = Sj , calculate γkl
j ∀k, l : mk ∈ M, l ≤ ek

2: for each fkl
j in descending order of γkl

j do
3: if γkl

j > 0 and rem > 0 then
4: if rem > vkl then
5: set fkl

j = 1, rem = rem− vkl
6: else set fkl

j = rem
vkl

, rem = 0

7: else fkl
j = 0, rem = 0

separable in x⃗ and f⃗ , and we can rewrite it as:

L(x⃗, f⃗ , y⃗, λ⃗) =∑
i,k:ui∈U
mk=qi

∑
j,l:hj∈N(ui)

l≤ci

[
(1− λjil

1 − λj
2 − λil

4)x
kl
ji − (xkl

ji − yklji)
2
]

+
∑

j,k:hj∈H
mk∈M

(
∑

i,l:ui∈N(hj)
l≤ci

λjil
1 rkl −

∑
l:l<ek

λj
3vkl)f

kl
j (21)

The objective function of the dual problem is:

D(y⃗, λ⃗) = max
x⃗≥0
y⃗≥0

L(x⃗, f⃗ , y⃗, λ⃗)

The dual problem itself is minλ≥0 D(y⃗, λ⃗). The dual
optimization problem can be solved using the gradient
method [29]. The updates of the Lagrange variables are listed
as follows:

λjil
1 (t+ 1) =

[
λjil
1 (t) + α(xkl

ji(t)− fkl
j (t)rkl)

]+
,

∀j, i, k, l : hj ∈ H,ui ∈ N(hj),mk = qi, l ≤ ek

λj
2(t+ 1) =

[
λj
2(t) + α

∑
i,k:ui∈N(hj),mk=qi

∑
l≤ci

xkl
ji(t)−Bj

]+
,

∀j : hj ∈ H

λj
3(t+ 1) =

[
λj
3(t) + α

∑
k:mk∈M

∑
l:l≤ek

fkl
j (t)vkl − Sj

]+
,

∀j : hj ∈ H

λil
4 (t+ 1) =

[
λil
4 (t) + α

∑
j:hj∈N(ui)

xkl
ji(t)− rkl

]+
,

∀i, k, l : ui ∈ U,mk = qi, l ≤ ci

where [.]+ denotes the projection on [0,∞). Also, by setting
the first derivative of (21) with respect to x⃗ being equal to
zero, the optimal x⃗ can be calculated as follows:

xkl
ji(t+ 1) =

1− λjil
1 (t)− λj

2(t)− λil
4 (t)

2
+ yklji (t)

∀j, i, k, l : hj ∈ H,ui ∈ N(hj),mk = qi, l ≤ ek

Algorithm 1 illustrates the computation of f⃗ . Here, γkl
j =∑

j,k:hj∈H
mk∈M

(
∑

i,l:ui∈N(hj)
l≤ci

λjil
1 rkl−

∑
l:l<ek

λj
3vkl) is the mul-

tiplier of fkl
j in Equation (21), and rem is the free space

of helper hj . The idea here is that, in order to maximize the
second line in Equation (21), we should give a greater value to

9

Algorithm 2 Users’ Protocol (for user ui)
1: Initialization
2: Send the request and the number of desired layers to the

adjacent helpers. Set λil
4 (1, 0) = 0

3: Iteration Phase at the τ -th iteration
4: for t = 0, ..., T − 1 perform the following step sequen-

tially
5: send λil

4 (τ, t + 1) = [λil
4 (τ, t) +

α(
∑

j:hj∈N(ui)
xkl
ji(τ, t) − rkl)]

+ ∀l : l ≤ ci to
all adjacent helpers.

6: λ⃗4(τ + 1, 0) = λ⃗4(τ, T)

the fraction of the videos with a greater γ value. On the other
hand, the fraction of videos with a negative γ value should
be equal to zero. Therefore, for each helper, we sort the γkl

j

in descending order of their values, and we start to fill the
helpers with videos that have a greater γ. Let us represent
the set of videos requested by the neighboring users of helper
hj as Mj . For each layer of a video we have a fkl

j variable;
thus, the number of executions of the For loop in Algorithm 1
is equal to the total number of layers of the videos in Mj .
Therefore, the time complexity of Algorithm 1 is order of
O(

∑
k∈Mj

ek). If we represent the maximum number of layers
as e, the complexity will be is order of O(|Mj |e).

We can define two iterative levels for the distributed algo-
rithm [31]. In the inner loop, we fix the auxiliary variables
y⃗ and update x⃗, f⃗ , and λ⃗, for T times. We run the outer
loop τ times, in which we set y⃗(τ + 1, 0) = x⃗(τ, T). The
users’ and helpers’ policies are shown in Algorithms 2 and
3, respectively. The users can receive xkm

ij from the helpers
explicitly. However, they can compute it based on the actual
receiving data rate from their neighboring helpers. The con-
vergence of our algorithm can be proven using a technique
similar to [33]. We omit the proof for brevity, and in our
simulations, we empirically verify the convergence.

The For loop in Algorithms 2 runs for T iterations. Also,
user ui needs to calculate ci different λil

4 variables. For each
of these Lambda variables, the the summation in line 5 has
a complexity of O(|N(ui)|). Therefore, the complexity of
Algorithms 2 is O(|N(ui)|ciT). The For loop in Algorithms 3
runs for T iterations. Line 5 needs to be calculated for
|N(hj)|e, where e is the maximum number of video layers.
The complexity of line 6, 7, and 8 is O(e|Mj |). Also, in line 9,
the helper node runs Algorithm 1. As a result, the complexity
of Algorithms 3 is in order of O(Te(|Mj |+ |N(hj)|)).

Consider the topology in Figure 10, in which users u1 and
u2 requested movies m1 and m2, respectively. In order to
simplify the example, we assume that the movies contain one
layer. As a result, we remove the index l from all of the
notations and equations. Also, without loss of generality, we
do not show variable τ in the equations, since we discuss
the process for one round of updates. At the beginning, the
users u1 and u2 set up their Lagrange variables λ1

4 and λ2
4 to

zero, respectively. Moreover, helpers h1 and h2 initialize their
correspondent variables xk

ji, f
k
j , λj,i

1 , λj
2, and λj

3 to zero, or
any other default value (Figure 10(a)). The variables ykji are

Algorithm 3 Helpers’ Protocol (for helper hj)
1: Initialization
2: Set xkl

ji(1, 0) = 0, fkl
i (1, 0) = 0, λjil

1 (1, 0) = 0,
λj
2(1, 0) = 0, λj

3(1, 0) = 0, yklji (1, 0) = 0
3: Iteration Phase at the τ -th iteration
4: for t = 0, ..., T − 1 perform the following steps sequen-

tially

5: λjil
1 (τ, t+1) = [λjil

1 (τ, t)+α(xkl
ji(τ, t)−fkl

j (τ, t)rkl)]
+

6: λj
2(τ, t + 1) = [λj

2(τ, t) +
α
∑

i:ui∈N(hj)

∑
l≤ci

xkl
ji(τ, t)−Bj]

+

7: λj
3(τ, t + 1) = [λjl

3 (τ, t) +
α(

∑
k:mk∈M

∑
l:l≤ek

fkl
j (τ, t)vkl − Sj)]

+

8: xkl
ji(τ, t+ 1) =

1−λjil
1 (τ,t)−λj

2(τ,t)−λil
4 (τ,t)

2 + yklji (τ, t)

9: run algorithm 1 to calculate f⃗(τ, t+ 1)

10: y⃗(τ+1, 0) = x⃗(τ, T), x⃗(τ+1, 0) = x⃗(τ, T), λ⃗1(τ+1, 0) =
λ⃗1(τ, T), λ⃗2(τ+1, 0) = λ⃗2(τ, T), λ⃗3(τ+1, 0) = λ⃗3(τ, T)

initialized to the values of their correspondent variables xk
ji

by the helpers.
Following the initializing phase, the users update their

Lagrange variables λ1
4 and λ2

4 based on the received band-
widths xk

ji from the helpers. User u1 calculates λ1
4(t + 1) =

[λ1
4(t) + α(x1

1,1(t) + x1
2,1(t) − r1)]

+, and transmits it to the
helpers h1 and h2. Similarly, as shown in Figure 10(b), user
u2 calculates λ2

4(t+1) = [λ2
4(t)+α(x1

1,2(t)+x1
2,2(t)− r2)]

+

and sends it to the helpers. In the next round, the helpers
use the received Lagrange variables to update their Lagrange
variables, and modify the bandwidth and storage assignment.

In Figure 10(c) we show the updates for helper h1. The
updates for helper h2 can be done in a similar way. The
helper h1 first updates λ1,1

1 and λ1,2
1 using equations λ1,1

1 (t+
1) = [λ1,1

1 (t) + α(x1
1,1(t) − f1

1 (t)r1)]
+ and λ1,2

1 (t + 1) =

[λ1,2
1 (t)+α(x2

1,2(t)−f2
1 (t)r2)]

+, respectively. These Lagrange
variables correspond to the set of Constraints (2). Moreover,
helper h1 calculates λ1

2 and λ1
3 as shown in Figure 10(c). Then,

the helper runs Algorithm 1 to calculate f1
1 and f2

1 . Finally,
helper h1 assigns its bandwidth to the users u1 and u2, using
equations x1

1,1(t+1) = [1−λ1,1
1 (t)−λ1

2(t)−λ1
4(t)]/2+y11,1(t)

and x1
1,2(t + 1) = [1 − λ1,2

1 (t) − λ1
2(t) − λ1

4(t)]/2 + y11,2(t),
respectively. The processes in Figure 10(b) and (c) are repeated
periodically. After T times of running these steps, the variables
y11,1 and y21,2 are set to x1

1,1 and x2
1,2, respectively, and the

updates by the users and helpers are repeated.

VIII. SIMULATION RESULTS

We compare our proposed methods with a single layer
VoD streaming using the helpers. For this purpose, we use
LP optimization to find the optimal video placement and
bandwidth allocation of the helpers to the users. We refer to
this scheme as DIST methods. We also study the convergence
of the proposed distributed method under the static and dy-
namic cases. For this purpose, we implemented a simulator in

10

(a) (b)

Then, uptade x and f

(c)

Initializing, set the

variables to 0

Fig. 10. Example of the distributed solution.

TABLE II
THE RANGES OF THE PARAMETERS IN THE SIMULATIONS.

Video’s
rate

Video’s
size

Bandwidth
capacity

Storage
capacity

Num. of adjacent
helpers to a user

[1,2] kbps [0.5,2] MB [2,4] kbps [0.5,2] MB [1,3]

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(a) Number of helpers: 20

15 20 25 30 35
0

10

20

30

40

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(b) Number of users: 40
Fig. 11. Server’s load in kbps, VoD, 5 videos, 5 layers.

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter− & intra−layer
DIST

(a) a = 2

40 45 50 55 60
0

10

20

30

40

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter− & intra−layer
DIST

(b) a = 3
Fig. 12. Server’s load in kbps, VoD power-law distribution of the videos
popularity, Number of helpers: 20, Number of layers: 5.

the Matlab environment. For solving the linear programming
optimizations, we use the Linprog optimization toolbox which
is embedded in Matlab.

We assume that the popularity of the videos and the number
of subscribed layers by each user are uniformly distributed. We
evaluate the methods on 100 random topologies, and use the
average output of the simulation for plots of this section. By
random topologies we mean randomly connecting the users to
the helpers and randomly setting the bandwidth limit of the
helpers. Number of adjacent helpers to user ui is randomly
selected in the range of [1,3]. Assuming that this number is
di, we connect user ui to di helpers. The range of a video’s
rate, size, storage capacity, bandwidth capacity, and number
of adjacent helpers to each user are randomly chosen in the
ranges shown in Table II.

A. Performance

In Figure 11(a), we compare the loads on the central server.
Each video contains 5 layers, and the number of requested
layers by each user is randomly chosen in the range of [1, 5].
The other parameters are shown in Table II. The figure shows

that the result of the joint inter- and intra-layer coding is very
close to that of the intra-layer coding. Moreover, the server’s
load in our methods is up to 75% less than that of the DIST
approach. The figure shows that the slope of the load in the
DIST method is more than that of our proposed approaches,
which is due to to users’ greater amount of required resources
when using the DIST method.

In our next experiment, we study the effect that the number
of helpers has on the server’s load. It is clear that more helpers
can provide more portions of the videos, due to more available
capacity and bandwidth resources. As a result, the server’s load
in all of the methods decreases as we increase the number of
helpers, as illustrated in Figure 11(b).

We repeat the experiment in Figure 11(a) for the case that
the popularity of the videos has a power-law distribution [34],
i.e., the fraction of movies with d request (denoted as Pd) is
proportional to d−a: Pd = (a− 1)d−a. Here, a is the power-
law distribution parameter, which usually satisfies a ∈ [2, 3].
In Figure 12(a), we set a = 2. The other parameters are the
same as Figure 11(a). Comparing to the Figure 11(a), the load
on the server reduces in Figure 12(a). The reason is that, in
this case, the probability of common requests increases; thus,
the storage of the helpers can be used more efficiently. We
increase a to 3 and repeat the experiment. Figure 12(b) shows
that as the popularity of few videos increase, the advantage of
using the helpers increase as well; as a result, the load on the
server reduces.

Figures 13(a) and (b) depict the effect of the number of
videos and layers of the server’s load. The simulation’s pa-
rameters are chosen randomly in the ranges shown in Table II.
The server’s load of the methods increases as we increase the
number of videos. This is because, as we increase the number
of choices, the number of common requests decreases. As a
result, the helpers need to store more videos, which is not
feasible due to the storage limitations. More layers give the
users the choice to select videos with a lower quality, which
decreases the load on the server, as shown in Figure 13(b).
In this figure, the server’s load is almost fixed in the DIST
method, since DIST is a no-layer approach.

In order to validate the result of Figure 11(a), we repeat the
same experiment in the case of geographic distribution of the
nodes. For this purpose, we distribute the nodes randomly in a
4×4 M area, and set the transmission range of the nodes to 1
M. Figure 14 (a) shows the load on the server of the different
methods. In this figure, the video rates, video sizes, storage
capacity, and bandwidth capacity of the helpers are in the range
of [1, 2], [0.5, 2], [0.5, 2], and [1, 3], respectively. Most similar
to Figure 11 (a), the load on the server increases as we increase

11

4 6 8 10 12
0

10

20

30

40

Movies

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(a) Number of layers: 5

2 4 6 8 10
0

10

20

30

40

Layers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer
DIST

(b) Number of videos: 5
Fig. 13. Server’s load in kbps, VoD, Number of users: 50, number of helpers:
20.

40 45 50 55 60
0

10

20

30

40

50

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
Joint coding
DIST

(a) Number of helpers: 20

15 20 25 30 35
0

10

20

30

40

50

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
Joint coding
DIST

(b) Number of users: 40
Fig. 14. A server’s load (in kbps) in the case of geographic distribution of
the user and helpers, VoD, Number of videos: 5, number of layers: 5.

the number of users, which is due to more video requests. In
Figure 14(a), the average number of adjacent helpers to the
users is equal to 4.2. Figure 14(b) shows the effect of changing
the number of helpers on the server’s load. As it is expected,
most similar to Figure 11(b), the load on the server decreases
as we increase the number of helpers.

As we stated in the introduction, there are cases where the
inter-layer NC reduces the server’s load. However, Figures 11
and 13 show that the server’s load using joint NC and just
intra-layer coding are very close. In order to study the benefit
of inter-layer coding, we repeat the first experiment with a
single video, as to eliminate competition between the users
with different video requests. The helpers’ bandwidths are in
the range of [5, 10], and the video size, video rate, and the
storage capacities are set to 4, 4, and 1. Also, the degree of
each user is in the range of [1, 4], and we set the number of
requested layers of each user to its degree. Figure 15(a) shows
that the server’s load using joint coding is up to 17% less than
that of the intra-layer coding method. Figure 15(b) shows that,
as we increase the number of helpers, the difference between
the methods decreases, which is due to the availability of
a high percentage of the video through the helpers in both
methods. Based on our observation, we can find that when the
users compete to receive different videos, and the bandwidth
is the bottleneck, inter-layer NC cannot increase the content
available to the users. As a result, we can conclude inter-layer
NC is not much useful in practice.

Figures 16(a) and (b) show the comparison between the
server’s load in the DIST and WLS (wireless live streaming)
methods. The experimental parameters are chosen randomly in
the ranges shown in Table II. In the case of LS, the playback
time of the users that watch the same video are synchronous.
Thus, in the WLS method, the helpers do not assign a separate
bandwidth to the users that watch the same video, which
results in providing more portions of the videos through the

10 15 20 25
0

2

4

6

8

10

Users

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer

(a) Number of helpers: 10

10 15 20 25
0

0.5

1

1.5

2

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer
Inter & intra−layer

(b) Number of users: 10
Fig. 15. The advantage of joint inter- & intra-layer coding over intra-layer
coding, VoD, Number of layers: 4.

40 45 50 55 60
10

15

20

25

30

35

40

Users

Lo
ad

 o
n

th
e

se
rv

er

DIST
WLS

(a) Number of helpers: 20

15 20 25 30 35
10

15

20

25

30

35

40

Helpers

Lo
ad

 o
n

th
e

se
rv

er

DIST
WLS

(b) Number of users: 50
Fig. 16. Live streaming, Load on the server in kbps, Number of videos: 5,
number of layers: 1.

helpers. As a result, the server load in the WLS method is
less than that of the DIST method. In Figure 16(a), the slope
of DIST is more than that of the WLS, which means that the
helpers do not have enough free bandwidth to support more
users. On the other hand, in Figure 16(b), WLS has less slope
than the DIST method since, even in the case of 15 helpers,
the users receive a large portion of their requests.

B. Convergence

In this section, we study the convergence of our distributed
solution under both the static and dynamic cases.

1) Static System: We evaluate the convergence of the
proposed distributed algorithm in Figure 17. We solve the
DIST method using a similar scheme to our solution in the
case of inter-layer coding. However, in order to study the
effect of Proximal method, we do not use proximal method
for DIST. In this figure, the number of users, helpers, and
videos are equal to 50, 20, and 5, respectively. In order to
have a fair comparison, we set the number of video layers to
1. The optimal solution is computed off-line for comparison.
It is clear in Figure 17(a) that the proposed distributed solution
converges to the optimal solution very fast; however, the
convergence speed of the DIST approach is less than that of
our approach. Moreover, the DIST method oscillates around
the optimal solution. Figure 17(b) depicts the convergence of a
particular helper’s (helper h5) storage allocation. The allocated
storage for videos 2 and 4 goes to zero, since these videos
are not requested by the adjacent users of this helper. The
convergence of the allocated bandwidth from helper h5 to its
adjacent users is shown in Figure 17(c).

We repeat the previous experiment by increasing the step
size α from 0.01 to 0.03. The results are shown in Fig-
ures 17(d), (e), and (f). By comparing Figures 17(a) and (d),
it can be inferred that our distributed method converges faster
to the optimal solution as we increase the step size. Moreover,

12

0 500 1000
0

50

100

150

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

DIST
Intra−layer
Optimal

(a) α : 0.01

0 500 1000
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b) α : 0.01

0 500 1000
0

0.5

1

1.5

2

2.5

3

Number of iteration

A
llo

ca
te

d
ba

nd
w

id
th

User 18 (requested movie: 1)
User 22 (requested movie: 3)
User 35 (requested movie: 5)

(c) α : 0.01

0 500 1000
0

20

40

60

80

100

120

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

DIST
Intra−layer
Optimal

(d) α : 0.03

0 500 1000
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(e) α : 0.03

0 500 1000
0

0.5

1

1.5

2

2.5

3

Number of iteration

A
llo

ca
te

d
ba

nd
w

id
th

User 18 (requested movie: 1)
User 22 (requested movie: 3)
User 35 (requested movie: 5)

(f) α : 0.03
Fig. 17. VoD with intra-layer coding. Convergence of the proposed distributed method to the optimal solution in a static network case. The number of users,
helpers, and videos are equal to 50, 20, and 5, respectively. (a) and (d): Total allocated bandwidth to the users. (b) and (e): The fraction of each video on
helper h5. (c) and (f): The allocated bandwidth from helper h5 to its adjacent users.

0 800 1600 2400 3200
10

15

20

25

30

35

40

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

Intra−layer
Optimal

(a)

0 800 1600 2400 3200
0

0.2

0.4

0.6

0.8

1

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b)
Fig. 18. Convergence of the proposed distributed method to the optimal
solution in the case of dynamic users, Number of helpers: 10, Number of
videos: 5. (a) Total allocated bandwidth. (b) Frac. of videos on helper h8.

even with a greater α, our method does not oscillate. On the
other hand, the DIST method’s oscillation increases rapidly as
we increase the step size. Figures 17(e) and (f) illustrate the
bandwidth and storage allocation of helper h5, respectively.

2) Dynamic System: In this section, we show that our
distributed approach automatically adapts to the system dy-
namics. As a result, the users and the helpers only need to
run the distributed algorithm, regardless of the changes in the
system.

We study the effect of changing the number of users to
the system in Figure 18. For this purpose, we add 5 users
at both iterations 800 and 1600, and we randomly connect
them to [1,3] helpers. We also remove 5 users at iteration
2400. The initial number of users is 10, and there are 10
helpers in the system. We set the number of videos to 5.
The optimal solution is computed off-line for comparison.
Figure 18(a) shows that the total allocated bandwidth of the
optimal solution changes as we add or remove users, and the
distributed solution converges to the optimal result. We depict
the fraction of stored videos on a helper h8 in Figure 18(b).

We repeat the previous simulation for the case of dynamic
helpers. We set the number of users, helpers, and videos
to 20, 6, and 5, respectively. We add 3 new helpers at

0 800 1600 2400 3200
10

15

20

25

30

35

40

45

Number of iteration

T
ot

al
 a

llo
ca

te
d

ba
nd

w
id

th

Intra−layer
Optimal

(a)

0 800 1600 2400 3200
0

0.1

0.2

0.3

0.4

0.5

Number of iteration

F
ra

c.
 o

f v
id

eo
s

on
 th

e
he

lp
er

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

(b)
Fig. 19. Convergence of the proposed distributed method to the optimal
solution in the case of dynamic helpers, Number of users: 20, Number of
videos: 5. (a) Total allocated bandwidth. (b) Frac. of videos on helper h3.

iterations 800 and 1600, and remove 3 helpers at iteration
2400. Figures 19(a) and (b) show that the proposed distributed
method adapts to the changes in the dynamic case. After
removing 3 helpers, the the allocated bandwidth does not
return to the level of iteration 1600. The reason is that, the
removed helpers are not those that are added at iteration 1600.
We can conclude that the storage size or bandwidth limit of
the removed helpers are less than those of the added helpers.
Another possibility is that the added helpers covered the users
with a common video request, but the removed helpers did
not.

C. Unreliable links

Here, we repeat the experiment in Section VIII-A for the
topologies with unreliable links between the helpers and the
users. We set the reliability of these links in the range of
ϵ ∈ [0.8, 1], and measure the effect of number of users on the
server load. The number of helpers, movies, and the video
layers are equal to 20, 5, and 5 respectively. The server
load of the methods increases in Figure 20(a) as we increase
the number of users, which is due to limited bandwidth and
storage resources. By comparing Figures 20(a) and 11(a), we
find that the gap between our proposed method and the DIST

13

40 45 50 55 60
0

10

20

30

40

50

60

Users

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(a)

40 45 50 55 60
0

10

20

30

40

50

60

Users

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(b)
Fig. 20. Server’s load in kbps, in the case of unreliable links from helpers
to the users and reliable server links, VoD, Number of helpers: 20, Number
of videos: 5, number of layers: 5. (a) ϵ ∈ [0.8, 1] (b): ϵ ∈ [0.6, 0.8]

15 20 25 30 35
0

5

10

15

20

25

30

35

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(a)

15 20 25 30 35
0

5

10

15

20

25

30

35

Helpers

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
DIST

(b)
Fig. 21. Server’s load in kbps, in the case of unreliable links from helpers
to the users and reliable server links, VoD, Number of users: 40, Number of
videos: 5, number of layers: 5. (a) ϵ ∈ [0.8, 1] (b): ϵ ∈ [0.6, 0.8]

method is more in Figure 20(a). This is because the DIST
method does not consider the unreliability of the links.

In Figure 20(b), we reduce the reliability of the links to the
range of ϵ ∈ [0.6, 0.8] and repeat the previous experiment. The
two reasons that make the server load in the DIST method
more than the reliable intra-layer coding are a.) the layered
approach in our method, and b.) considering the reliability
of the links. Having more users increases the requests for the
resources, which results in more load on the server. The server
load in Figure 20(b) is more that that of in Figure 20(a), which
is due to less reliable helpers’ links.

The number of users, videos, and layers in Figures 21(a) and
(b) are equal to 40, 5, and 5, respectively. We set the range of
links’ reliability in Figure 21(a) to ϵ ∈ [0.8, 1]. Most similar
to Figure 13(a), the load on the sever decreases as we increase
the number of helpers. The reason is that, more helpers can
provide a larger portion of the videos to the users. We change
the reliability of the links from ϵ ∈ [0.8, 1] to ϵ ∈ [0.6, 0.8], and
repeat the previous experiment. By comparing Figures 21(a)
and (b), we find that the unreliability of the links has more
of a negative effect on the DIST approach, compared to the
reliable intra-layer coding method.

Next, we compare the proposed intra-layer coding method
with the reliable intra-layer coding. Figure 22(a) shows the
load on the server for different ranges of link reliability. The
number of helpers, videos, and layers are equal to 20, 5, and
5, respectively. Moreover, we set the number of users to 40.
As expected, the proposed reliable intra-layer coding method
reduces the load on the server, since it considers the unreliable
links between the helpers and the users. This method gives
more priority to the more reliable helper links, since giving
the same priority to the links results in wasting the bandwidth
resources. As the reliability of the links increases, the gap

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1

5

10

15

20

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(a) Number of users: 40

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1

5

10

15

20

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(b) Number of users: 60
Fig. 22. Server’s load in the case of unreliable links from helpers to the users
and reliable server links, VoD, Number of helpers: 20, number of videos: 5,
number of layers: 5.

[0.6−1] [0.7−1] [0.8−1] [0.9−1] 1
0

5

10

15

20

25

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Intra−layer coding
DIST

(a) Number of users: 40

[0.6,1] [0.7,1] [0.8,1] [0.9,1] 1
0

5

10

15

20

25

Reliability

Lo
ad

 o
n

th
e

se
rv

er

Reliable Intra−layer
Intra−layer

(b) Number of users: 60
Fig. 23. Server’s load in kbps, in the case of unreliable links from helpers
and the server to the users, VoD. Number of helpers: 20, number of videos:
5, number of layers: 5.

between the proposed method vanishes. In the case of reliable
links, the server load of the methods becomes the same. We
repeat the same experiment for 60 users in Figure 22(b), which
results in more server load that that of in Figure 22(a).

We repeat the last two experiments in the case of unreliable
links from the server and helpers to the users. Obviously, the
server lossy links result in more of a load on the server, which
can also be inferred from Figures 23(a) and (b). Remember
that, in the case of lossy server links to the users, we change
the objective function from maximizing the provided help
through the helpers to minimizing the load on the server.

IX. CONCLUSION

In this paper, we study the problem of utilizing helpers
to minimize the load on the central video servers. For this
purpose, we formulate the problem as an LP optimization
problem. This is done by using joint inter- and intra-layer
NC. We discuss the advantages of joint inter- and intra-
layer NC over just intra-layer NC, and through an empirical
study, we found the cases in which joint coding reduces the
server’s load. We use a lightweight triangular inter-layer NC
instead of the general form of inter-layer NC, to reduce the
time complexity of the optimization. We solve the proposed
optimization in a distributed way, and evaluate the convergence
and the gain of our distributed approach via comprehensive
simulations. Our future work is to consider the cost of helpers
in the optimization and study the overhead that results from
introducing the helpers.

REFERENCES

[1] A. Finamore, M. Mellia, M. Munafò, R. Torres, and S. Rao, “Youtube
everywhere: impact of device and infrastructure synergies on user
experience,” in ACM IMC, 2011, pp. 345–360.

14

[2] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet inter-domain traffic,” in ACM SIGCOMM, 2010, pp.
75–86.

[3] S. Pawar, S. Rouayheb, H. Zhang, K. Lee, and K. Ramchandran, “Codes
for a distributed caching based video-on-demand system,” in ACSSC,
2011.

[4] H. Hao, M. Chen, A. Parekh, and K. Ramchandran, “A distributed
multichannel demand-adaptive P2P VoD system with optimized caching
and neighbor-selection,” in SPIE, 2011.

[5] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” Arxiv preprint arXiv:1109.4179, 2011.

[6] J. Wang and K. Ramchandran, “Enhancing peer-to-peer live multicast
quality using helpers,” in IEEE ICIP, 2008, pp. 2300–2303.

[7] H. Zhang, J. Wang, M. Chen, and K. Ramchandran, “Scaling peer-to-
peer video-on-demand systems using helpers,” in IEEE ICIP, 2009, pp.
3053–3056.

[8] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in ACM CCR, 1996, pp. 117–130.

[9] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Médard, “Network coding
for multi-resolution multicast,” in IEEE INFOCOM, 2010, pp. 1–9.

[10] N. Shacham, “Multipoint communication by hierarchically encoded
data,” in IEEE INFOCOM, 1992, pp. 2107–2114.

[11] M. Effros, “Universal multiresolution source codes,” IEEE Transactions
on Information Theory, vol. 47, no. 6, pp. 2113–2129, 2001.

[12] T. Fang and L. Chau, “Op-based channel rate allocation using genetic
algorithm for scalable video streaming over error-prone networks,”
Image Processing, IEEE Transactions on, vol. 15, no. 6, pp. 71 323–
1330, 2006.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h. 264/avc standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, 2007.

[14] M. Shao, S. Dumitrescu, and X. Wu, “Layered multicast with inter-
layer network coding for multimedia streaming,” IEEE Transactions on
Multimedia, vol. 13, no. 99, pp. 353–365, 2011.

[15] E. Magli, M. Wang, P. Frossard, and A. Markopoulou, “Network coding
meets multimedia: A review,” IEEE Transactions on Multimedia, vol. 15,
no. 5, pp. 1195–1212, 2013.

[16] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[17] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[18] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE Transactions on Information Theory, vol. 11, no. 5, pp. 782–795,
2003.

[19] P. Ostovari, J. Wu, and A. Khreishah, “Network coding techniques for
wireless and sensor networks,” in The Art of Wireless Sensor Networks,
H. M. Ammari, Ed. Springer, 2013.

[20] B. Li, Z. Wang, J. Liu, and W. Zhu, “Two decades of internet video
streaming: A retrospective view,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 9, no. 1s, pp. 1–20,
2013.

[21] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[22] J. Wang, C. Huang, and J. Li, “On ISP-friendly rate allocation for peer-
assisted vod,” in ACM Multimedia, 2008, pp. 279–288.

[23] C. Wu and B. Li, “On meeting P2P streaming bandwidth demand with
limited supplies,” in SPIE MMCN, 2008.

[24] J. Wang, C. Huang, and J. Li, “Challenges, design and analysis of a
large-scale P2P-vod system,” in ACM SIGCOMM, 2008, pp. 375–388.

[25] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002, pp. 271–280.

[26] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[27] Y. He and L. Guan, “A new polynomial-time algorithm for linear
programming,” in ACM STOC, 1984, pp. 302–311.

[28] D. Koutsonikolas, Y. Hu, C. Wang, M. Comer, and A. Mohamed,
“Efficient online wifi delivery of layered-coding media using inter-layer
network coding,” in IEEE ICDCS, 2011, pp. 237–247.

[29] E. Chong and S. Zak, An Introduction to Optimization. John Wiley &
Sons, 2013.

(a) (b)

Mapping

Fig. 24. (a) Coefficient matrix of a set of general linear coded packets. (b)
Coefficient matrix of a set of triangular coded packets.

[30] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Upper Saddle River, NJ (USA); Prentice Hall
Inc., 1989.

[31] X. Lin and N. Shroff, “Utility maximization for communication net-
works with multipath routing,” IEEE Transactions on Automatic Control,
vol. 5, no. 51, pp. 766–781, 2006.

[32] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ
Press, 2004.

[33] A. Khreishah, C.-C. Wang, and N. B. Shroff, “Optimization based rate
control for communication networks with inter-session network coding,”
in IEEE INFOCOM, 2008, pp. 81–85.

[34] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

[35] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th ed.
Upper Saddle River, NJ (USA); Prentice Hall, 2003.

APPENDIX A
PROOF OF LEMMA 1

Assume that A is the coefficient matrix of a set of general
linear coded packets. Each row of A represents the coefficients
of a coded packet. Consider di as the rightmost non-zero
column in row i. In order to map row i to a triangular form,
we should change it in way that the columns 1 to di becomes
non-zero. The rank of a matrix is preserved under elementary
column operations [35]. Therefore, we can multiply a column
by a number and add the result to another column without
changing the rank of the matrix.

Our mapping works as follows. We start from the rightmost
column j and add it to its left column j − 1. Then, we repeat
this process by adding the new values of column j − 1 to
column j − 2. This mapping is done for all of the columns.
At the end, matrix A is converted to a coefficients matrix A′,
which contains the coefficients of a set of triangular coded
packets. It should be noted that even in the case that adding
column k to column k − 1 results to a zero value for some
of the cells in column k − 1, we can multiply column k by
a number before adding it to column k − 1 to prevent the
zero cells to from. Figures 24(a) and (b) show the coefficient
matrices of a set of general linear coded packets and their
mapping to a set of triangular coded packets.

APPENDIX B
PROOF OF LEMMA 2

Clearly, receiving more than n1 coded packets from layer 1
is not useful to user u, since n1 coded packets are enough to
decode layer 1. In other words, receiving n1 linearly indepen-
dent coded packets results in a rank equal to n1, and receiving
more coded packets does not increase the rank. Coded layer
2 contains coded packets over the first two original layers.
As a result, the user does not need more than n1 + n2 coded
packets from the first two layers. With the same reasoning,
receiving more than

∑l′

l=1 nl coded packets from the first l′

coded layers is not useful.

