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Abstract—Transfer learning refers to transferring the knowl-
edge of a specific domain to a related domain. In cases where
the source and the target learner have similar distribution and
parameters, transfer learning can reduce the cost of learning
and the construction of the target learner and improve the perfor-
mance of the target learner. In wireless ad-hoc networks, the users
connect to networks based on the service location, and various
network channels with different levels of quality-of-service (QoS)
are available. The wireless channels represent specific ranges of
radio frequencies. When the users move from one location to
another, the mobile application may switch channels for good
quality of service. This paper predicts the wireless channel based
on the user’s location. Since channel prediction based on location
is feasible in one city, the knowledge of channel prediction in one
city can be transferred to another city. Thus, transfer learning
is applicable and effective in such applications. The paper uses
two cities’ wireless mapping datasets to predict network channels
and uses transfer learning to predict one city’s network channels
based on the other city’s model. Experiments using different
initial learning rates during training and different source and
target domain data ratios show that transfer learning is feasible
for network prediction among different cities.

Index Terms—Cellular networks, deep learning, transfer learn-
ing.

I. INTRODUCTION

Cellular systems are fundamental wireless communication
tools in modern communication networks, enabling data to be
transferred seamlessly across locations worldwide [1]. Cellular
systems provide wireless service by the geological arrangement
of individual cellular base stations. Each base station provides
a coverage range for a certain radius, and stations locate strate-
gically to avoid signal interference while providing maximum
coverage, thus having the name “cellular,” where each cell
represents the geographic area covered by a base station [1].
When users use mobile devices, they communicate with the
base station in their current area via radio waves, allowing
data transmission [1].

Each base station provides several radio-frequency (RF)
bands that can be divided into individual channels. Each
channel represents a distinct range of the electromagnetic
spectrum and can perform different tasks, such as TV channels,
radio channels, and voice transmission during phone calls [1].
When a user moves from one location to another, their mobile
devices gather and analyze the radio-frequency signals from
the channels provided by the base station at their current
location, then select the channel that provides the strongest

Fig. 1: The knowledge gained from training a DNN model
from Beijing dataset can be transferred to Philadelphia.

signal strength or the quality of service (QoS), and connect
to it. This action is called channel switching [1, 2]. Mobile
devices switch to a channel that provides the strongest signal
strength to improve the call quality, data transfer speeds, net-
work connectivity, upload and download speeds [1]; however,
channel switching is a challenging task because (1) It is time-
consuming to gather and analyze the channel information, and
(2) it is time-consuming to disconnect from the current channel
and switch to the new one [2].

Since base stations provide channels based on their cur-
rent location, we can use location information to predict the
channels that might appear in a specific area [2, 3]. We can
use machine learning algorithms to carry out such tasks by
using location information to train a statistical model or neural
network [2, 3]. The intuitive way is to train predictive models
individually for each location. However, doing so is time-
consuming, and the trained model is data-dependent, which
requires a large amount of data for training for each location.
A more convenient way is to train a general model that works
on a location or several locations, then transfer the knowledge
obtained by the model, lastly, train a set of data from a different
location to get results. This is called transfer learning [4–7].

Transfer learning is a machine learning technique that uses a
pre-trained model’s gained knowledge about a task to perform
a similar task with different input data [4–7]. Transfer learning
improves the model performance of the target domain that is
being transferred knowledge to and reduces the amount of
time and data needed from the target to perform a similar
task as the source domain that transfers knowledge to it [4–7].
A convenient way to perform transfer learning is using deep



neural networks (DNN) [2, 3], which are deep learning models
composed of multiple neural network layers between the input
and output layers [8, 9]. This paper uses DNN as a model
architecture for transfer learning.

In this paper, we experiment with the wireless mapping data
of two cities and apply transfer learning to them. The two cities
are (1) Beijing, which denotes city A in this paper, and (2)
Philadelphia, which denotes city B. We wish to examine the
model accuracies of channel prediction using transfer learning
and the training speed of transfer learning. Figure 1 shows the
transfer learning method in this paper and demonstrates how
wireless channel prediction utilizes transfer learning.

This paper demonstrates the feasibility of transfer learning
in spectral channel prediction based on location in terms of
time and data dependency. Our research is summarized as the
following:

• We show that transfer learning in channel prediction can
be applied among different locations.

• We use different source and target data proportions for
training and use different combinations of initial learning
rates for DNN during model fine-tuning.

• We evaluate the model accuracy and training time of
transfer learning on channel prediction through extensive
simulation.

The limitations of this work include, firstly, the sample of
cities is limited, with only two cities examined; secondly, the
transfer learning model constructed in this paper is preliminary,
as the models primarily test the feasibility of transfer learning
on network channel prediction via location. There is a trade-
off among experimenting with different combinations of data
ratio, fine-tuning initial learning rates, and a more sophisticated
model that is more time-consuming to run. In practice, the
results of transfer learning represent certain level of accuracy,
compared to training individual models. To achieve accurate
results via transfer learning, comprehensive and extensive
simulations of model training across various cities and hyper-
parameters are required.

II. RELATED WORK

A. Channel prediction

Predicting RF channels can significantly reduce the re-
sources used during channel switching. Biswas and Wu [2]
proposed using DNN to predict channels based on GPS loca-
tions and combined the channel prediction results and users’
mobility patterns to predict the users’ future locations. Navabi
et al. [10] have used neural networks to predict the wireless
channel features at base stations that are not directly observable
to the base station. Their work gave rise to the potential of
predicting unknown channels based on observable channels. In
Tumuluru et al.’s paper [11], the authors used neural networks
and the hidden Markov model (HMM) to predict channel
status, i.e., whether a channel is used or unused, which sought
to reduce the energy needed by the mobile devices to sense and
access unused channels. Azmat et al. analyzed the occupancy
of the RF spectrum in cognitive radio networks [12] using

Fig. 2: RF channel switch when the mobile devices go from
one location to another.

various machine learning algorithms, and have proposed a new
SVM algorithm to classify the channel occupancy information.

B. Transfer learning

Transfer learning can be applied to a wide range of tasks.
In [4], Zhuang et al. performed transfer learning for text-
processing and object-detection models. The results show that
transfer learning algorithms and approaches allow pre-trained
models to be applied to various tasks while saving training
time and maintaining certain accuracies. [6] demonstrates the
feasibility of transfer learning in human activity recognition
tasks. It has characterized the sensor modality for human
activity recognition, the source and target environment, the
data availability, and the type and amount of data that are
transferred. Pan et al. [13] have used transfer learning to
predict the cross-domain Wi-Fi localization data. They can
transfer the knowledge from the source domain, which has
a few labeled data, to the target domain containing a large
amount of unlabeled data. In the medical field, transfer learning
is also applied to transferring one hospital’s data to another
[14] and can enhance hospital-specific data prediction. [15]
demonstrates transfer learning is also feasible for natural
language processing (NLP).

III. OVERVIEW

A. Wireless channels

The cellular network is essential in telecommunication. It
allows radio waves to pass data and voice among wireless
devices. The cellular network also enables network access,
security, etc. [1]. In a given location, multiple base stations (or
cell towers) make up a cellular system, each covering a range
of a certain radius. Antennas are placed within the range of
the base station, acting as transmitters and receivers of radio
waves among mobile devices [1].

When a mobile device is within the range of a base
station, the device receives a list of channels. These sections
of radiofrequency (RF) bands are called channels occupying
specific ranges of frequencies in the electromagnetic spectrum
and are expressed in MHz [1, 2]. For example, TV channel
2 has an RF range of 54 – 60 MHz. In the case of Wi-Fi
signals, for example, a 2.4 GHz band Wi-Fi ranges from 3000
Hz to 300 GHz within the RF band. There are many channels.



Every channel is 20 MHz wide. 5 MHz separates the channels.
However, many of them overlap [1].

When a mobile device is placed from one location to
another, it receives the RF channels provided by the base
station through the antenna. It then analyzes the signal strength
of the channels, which also implies network stability, and then
chooses the unused channel that provides the most robust
signal strength at the current location, disconnects from its
existing channel, and connects to the new channel [2, 11].
Figure 2 illustrates the process of channel switching.

B. Deep neural network

A deep neural network (DNN) is a neural network class
with multiple layers between the input and output layers.
DNN learns automatically from the representation of data
(i.e., features) through a series of non-linear transformers.
DNN is built Conventionally based on Stochastic Gradient
Descent (SGD) [8, 9]. When training a DNN model, the
goal is to maximize the model’s accuracy. Thus, choosing
the hyperparameters, such as the initial learning rate, can help
minimize the loss function [8]. A loss function measures how
well a model performs [8, 9]. If the error is high, the loss
function is also high, whereas a decay in the loss function
means the model performs well.

In deep learning, stochastic gradient descent (SGD) is a
fundamental technique during model training [8], in which it
adjusts training parameters iteratively based on the sample’s
gradient. Still, the required computation complexity is less than
that of gradient descent, an optimization algorithm that iterates
to find the local maximum of a differentiable function [8]. By
adjusting the parameter’s gradient at every iteration, SGD or
gradient descent goes opposite to the current gradient. Thus,
finding the suitable weight for the sample and minimizing the
loss function [9].

During the optimization process using gradient descent, the
update speed of whether the gradient should change direction
is determined by the initial learning rate [8, 9]. A lower
initial learning rate allows the optimization function to reach
the optimal state after a long time, and a higher initial rate
enables the loss function to decay faster. Still, it may lead to
fluctuations in model accuracy [8, 9].

C. Transfer learning

Transfer learning is a machine learning technique that trans-
fers knowledge from a source domain to a target domain [4–7].
Transfer learning enables a target domain, usually the subject
being transferred knowledge to. The target domain learns the
knowledge of a specific topic in a shorter time and uses less
labeled data than building a model specific to the dataset
and domain. This technique is promising when the source
and target perform different but related tasks [4–7]. There
are two categories of transfer learning: Homogeneous and
heterogeneous transfer learning. There are several approaches
to transfer learning: Instance-based, parameter-based, feature-
based, and relational-based [4–7]. In this paper, we focus

mainly on homogeneous transfer learning and instance-based
learning.

Homogeneous transfer learning refers to when the source
and target domains have similar input features, learning tasks
(e.g., network channel prediction), and domain of interest [4–
7]. In homogeneous transfer learning, most approaches focus
on correcting the marginal distribution differences between the
source and target domains [4].

During instance-based transfer learning, we wish to correct
the marginal and conditional differences between the source
and target domains [4, 5]. There is a sample selection bias
or covariate shift when the source and target domains’ dis-
tribution does not match [16]. Therefore, we need to correct
the selection bias and covariate shift. The idea is to assign
weights to the loss function of the source domain [4, 16]. The
weighting strategy is shown in the following function:
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where E(x,y) is the expected risk, x is the pattern in the
domain, y is the label in the domain, L (x, y; f) is the
loss function that depends on the parameter f . When the
distribution of the source domain (PS(x)) is different from
that of the target (PT (s)), the instances are generalized and
are drawn from the target domain (PT (x)), denoted in PT (x)

PS(x)
.

The generalized instances are now viewed as the weighting
parameter, which is denoted in β (x, y). To estimate the re-
weighting coefficient β, the re-weighted regularization risk
is first minimized, and Ω(f ) is the regularizer, and n is the
number of instances [16].

Therefore, the learning task’s general objective function can
be written as the following [4, 16]:
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where βi(i = 1, 2, . . . ., ns) is the weighting parameter, and
its theoretical value is equal to PT (xi)/P

S(xi). However, in
practice, the values may be hard to determine [16].

IV. METHODOLOGY

This paper uses transfer learning on Beijing (City A) and
Philadelphia (City B) wireless mapping datasets. This paper
aims to transfer knowledge from city A to city B. We can
predict City B’s channels using the channel-prediction model
originally trained by City A’s data.

A. Data collection

We collected data from Wigle.net [17], which is a wireless
data mapping database. From the website, we downloaded data
from two cities: Beijing, as city A, and Philadelphia, as city
B. City A has 10,300 observations, and City B has 13,900
observations. Both cities have the same features.

The wireless mapping datasets show the date, type of chan-
nel the mobile device is connected to, the type of encryption



Fig. 3: Wireless channels overlap in RF frequency band.

used for the network, the quality of service of the channel, and
other wireless information of the connected user at a specific
location. The location information in the dataset includes
latitude, longitude, city, country, street number, and more.
Network information includes channels, BCN interval, SSID,
quality-of-service (QoS), encryption, and more. The channels
in the datasets are not represented in radio frequencies in MHz.
Instead, they are represented by channels 1, 2, etc. City A has
29 channels, and City B has 38, where some channels are the
same, i.e., have the same frequencies.

B. Data processing

Because some channel frequencies overlap in the 2.4 GHz
RF frequency band [1], many channels in the datasets also
overlap. Since many channels overlap, some parts of channel
2 may overlap with channel 1, some parts of channel 3
may overlap with channels 1 and 2, and others. Figure 3
shows how wireless channels overlap in the RF frequency
band. We can combine the overlapping channels and reduce
the possible channels in both cities. Doing so simplifies the
channel classification process and reduce the chances of false
positive results. City A has 7 channels combined, and City B
has 9.

C. Feature selection

Since the wireless mapping datasets have a large amount of
labeled data, i.e., a specific variable name for the observation,
we selected the features and the response variable by hand for
supervised learning. This paper uses the wireless channel as the
response variable for channel prediction. For the basic model,
we selected latitude and longitude as the model features, and
this model is used for the simulations.

Besides the basic model, we selected two extra features:
encryption and quality-of-service (QoS). We have used the
additional features and location features to run some machine
learning classification algorithms without transfer learning.

D. Building the DNN

For the simulations, we used a 7-layered neural network
to perform the model training process. We use DNN because
we can fine-tune the training process by adjusting the initial
learning rates. The DNN can share the learned weights among
the datasets.

The DNN comprises a feature input layer, where the location
values are normalized in z-score; a fully connected layer
contains 50 nodes. A batch normalization layer, a rectified
linear unit layer (reLu) as the activation function. This fully
connected layer includes the number of possible network

Fig. 4: Transfer learning strategy for simulations.

channels, a SoftMax layer, and a classification layer. The
training options use the mini-batch size of 30 and use adaptive
moment estimation (adam) as the optimization algorithm.

E. Applying transfer learning

We use the basic model, which uses latitude and longitude
as features, to predict the wireless channels. During transfer
learning, we first use a certain proportion of City A’s data
to train the prediction model at a certain initial learning rate.
Once the last mini-batch of City A’s data is trained, we apply
a certain proportion of City B’s data on the same model at a
specific initial learning rate, which may differ from City A’s.
The transfer learning model is then tested using city B’s test
data. After each training, we record the test accuracy and the
training speed. Figure 4 illustrates the strategy for transferring
learning from City A to City B.

V. SIMULATION

In this section, we conduct simulations in three scenarios:
(1) Basic model training without transfer learning, (2) Transfer
learning from City A to City B, using different proportions of
City A and City B’s data during training, and fine-tuning the
models using different initial learning rates, and (3) training
speed and accuracy of transfer learning from training 100% of
City A’s data, and transfer to different proportions of City B’s
data, at different initial learning rates.

A. Basic model results without transfer learning

In the basic model, latitude and longitude are the features
used for channel prediction. Without transfer learning, we want
to use the base model results as the baseline and upper bound
accuracies for the rest of the transfer learning simulations.
To obtain the baseline accuracy, we first train the channel-
prediction model with 100% of City A’s data and then test the
model using 20% of city B’s data, without transfer learning.
We repeated this process 101 times for different initial learning
rates applied to the model, from 0.001 to 1, in steps of 0.01.



Fig. 5: (1) Transfer learning results at different training data
ratios, when A’s initial learning rate = 0.01.(2) Transfer learn-
ing results at different training data ratios, when A’s initial
learning rate = 0.05.

Fig. 6: (1)Transfer learning results for initial learning rate fine
tuning, when initial learning rate of A = 0.01. (2)Transfer
learning results for initial learning rate fine tuning, when initial
learning rate of A = 0.025.

The baseline value is the average of the results, which is
6.26%.

The upper bound test accuracy is obtained from training and
testing solely on city B’s data without transfer learning. We
split the train-test data in 80/20, and the resulting upper bound
accuracy is 28.40%.

B. Transfer learning results

In this subsection, we perform transfer learning from City
A to City B, using different proportions of City A and City
B’s data for training over different initial learning rates. For
instance, the model trained on 100% of City A’s data transfers
to 20% of City B’s data, the model trained on 40% of City A’s
data transfers to 60% of City B’s data, 80% of City A with
20% city B for training, 60% city A and 40% city B, and 20%
city A and80% city B for training.

We evaluated the test results for city B across various com-
binations of training data and initial learning rates. Initially,
we tested three different initial learning rates for city A: 0.001,
0.01, and 0.05. Then, we trained models for City B using seven
different initial learning rates, which were paired with the City
A models. We assessed City B’s performance for each pairing
using five different training data proportions from Cities A and
B. We applied five different training data proportions for Cities
A and B, resulting in 35 trials. Thus, we ran 105 tests to assess
City B’s performance under different training scenarios with
the specified initial learning rates. The results from Figure 5
show that, in general, as the proportion of City B’s training
data increase in the model, the higher the model accuracies,
regardless of the initial learning rates.

After experimenting with three different initial learning
rates, we sought to fine-tune them by adjusting the initial
learning rates of the transfer learning models. We then do

Fig. 7: Training speed of transfer A to different proportions of
B, over different initial learning rates.

Fig. 8: Test accuracies that correspond to the training speed
measured in Fig 9

simulations over more combinations of initial learning rates
for Cities A and B. Six initial learning rates for City A are
set to be 0.001, 0.01, 0.025, 0.05, 0.075, and 0.1. We also
choose seven different initial learning rates for City B to pair
with City A. However, the initial learning rates for City B are
greater than or equal to City A’s.

Figure 6 shows that finding the optimal initial learning
rate requires extensive tests and only sometimes guarantees
an increase in model accuracy. The results also show that
increasing the data of City B used to train the model always
results in a greater overall model accuracy compared to using
a small City B sample proportion.

C. Training speed vs. model accuracy

This section will conduct transfer learning simulations and
record their corresponding training speed and test accuracy
over different initial learning rates. The initial learning rates
range from 0.001 to 1, in steps of 0.05, with 21 initial learning
rates. The channel-prediction model is first trained using 100%
of City A’s data. Then, with the same initial learning rate as
city A, different proportions of city B’s data are used to train
the model. City B’s data proportions are 20%, 50%, 80%, and
100%.

Figure 7 shows the training speed of different proportions
of city B data used in transfer learning. We see that training
20% of City B’s data uses 1/4 of the training time as training



100% of City B’s data and training 50% of City B’s data uses
half of the time.

Figure 8 shows the transfer learning model accuracies corre-
sponding to the training speed measured in Figure 7. Training
20% of City B’s data during transfer learning yields 17.27%
accuracy. However, it only takes 1/4 the time to train a model
that uses 100% of City B’s data, and its accuracy significantly
improved compared to the baseline of 6%. The simulation
results show that transfer learning can reduce the training time
and the amount of data needed to train a model.

VI. CONCLUSION

In this study, we explored the application of transfer learn-
ing for Wi-Fi channel prediction across distinct geographical
locations, specifically focusing on the Wi-Fi channel datasets
of Beijing (City A) and Philadelphia (City B). Our objective
was to train a deep neural network (DNN) model trained on
one city (City A) to enhance the prediction accuracy in another
city (City B) through instance-based transfer learning.

We began by constructing DNN models for the baseline
and upper bound benchmarks of transfer learning, achieving
accuracies of 6.26% and 28.4%, respectively. These initial ac-
curacies served as our performance benchmarks for subsequent
evaluations. Subsequently, we introduced and implemented an
instance-based transfer learning methodology. This approach
involved retraining the City-A-trained DNN on subsets of
the City B dataset, utilizing two key parameters: the City B
dataset’s size and the sample’s initial learning rate.

Our experimental results demonstrated the effectiveness of
the instance-based transfer learning strategy for wireless chan-
nel prediction. We conducted extensive simulations by varying
the initial learning rates in DNN training for Cities A and B.
The accuracy of these transfer learning models consistently
outperformed the lower-bound benchmark – a DNN model
trained on the City A dataset and tested on City B data. Our
transfer learning models exhibited performance improvements,
albeit varying degrees, compared to the standalone DNN model
trained solely on City B data, indicating the potential to
transfer channel prediction knowledge from one city to another.

Furthermore, we compared the speed of transfer learning on
different sizes of City B data. The results show that a small
proportion of City B data can improve the baseline accuracy
and uses less training time compared to training a standalone
City B model. This efficiency gain reinforces the practical
utility of transfer learning in real-world scenarios where time
and resources are limited.

In the context of accuracy, our transfer learning models
presented results falling between the upper-bound and baseline
benchmarks, validating the value of transfer learning in bridg-
ing the gap between distinct geographical domains. Future
work can involve applying transfer learning to more cities.
Exploring the optimal subset size, initial learning rates, more
sophisticated DNN model, and use enhanced training models
could yield even better results.
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