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Abstract—Video-on-demand (VoD) service has been explo-
sively growing since its first appearance. For maintaining an
acceptable buffering delay, the bandwidth costs have become
a huge burden for the service providers. Complementing the
conventional client-server architecture with a peer-to-peer system
(P2P) can significantly reduce the central server’s bandwidth
demands. However, the previous works focus on establishing
a P2P overlay for each video, producing a high maintenance
cost on users. Per-channel-based overlay construction wasfirst
introduced by SocialTube [1], which clusters the users subscribed
to the same video channels into one P2P overlay. However, the
current per-channel overlay structure is not suitable for users
developing new watching preferences. Consider that a channel’s
subscribers tend to watch not only the videos from the channel,
but also other videos from similar channels. In this paper, we
propose a new overlay structure by exploring the existing social
relations of users and the similarities of video channels. Our
system creates a hierarchical overlay: subscribers of the same
channel form the low-level overlay (also known as groups), and in
high-level overlay, different groups are connected based on their
similarities. The new structure has the small-world property, the
existence of which has been found in most data-sharing patterns.
Based on the new structure, we propose a routing algorithm
for both channel subscribed and unsubscribed users. Extensive
simulation results show the efficiency of our approach.

Keywords—Community, peer-to-peer (P2P) systems, social fea-
tures, subscription, video-on-demand (VoD).

I. I NTRODUCTION

In the past decade, we have witnessed the enormous
growth of video-on-demand (VoD) services, such as Vimeo
and YouTube. According to sites [2]–[4], Vimeo attracted
over 100 million unique visitors per month in2013. With the
development of affordable smartphones and Internet, more and
more VoD platforms have allowed users to create their own
media channel and upload videos. For example, Ray Johnson
has the most popular personal Youtube channel [5], which has
gained10 million subscribers. Clearly, a tremendous amount
of network resources have been used to maintain such a huge
supply and demand market. Most of the current VoD systems
are based on a client-server (CS) architecture. All videos are
stored in central servers; whenever a user tries to watch a
video, a query message will be generated and sent to the
servers; then, the corresponding video will be downloaded
from the servers to the requester. Although the CS architecture
is easy to manage, it brings enormous bandwidth costs for the
servers’ provider, and long buffering delays for users.

In order to reduce the bandwidth costs and users’ average
delays, complementing the CS architecture with a peer-to-
peer (P2P) architecture becomes a common approach. In a
P2P architecture, users, also known as peers, are both video-
resources’ suppliers and consumers. Instead of fully depending
on central servers, in P2P, peers are able to download videos
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Fig. 1. Vimeo’s feature space structure. In Vimeo, videos, channels, and
groups are organized by categories. Unlike the conventional tags, categories
are system-defined, and each category consists of several subcategories. Based
on the content of video channels, the channel owners and Vimeo staff can
associate several category values with the channels.

from other peers, which significantly lightens the servers’bur-
dens. Peers are logically connected at the protocol layer, which
builds a network overlay on the top of the underlying physical
network [6]. The research on P2P has existed for decades, and
the main concern is how to construct such a logical overlay
for efficiently locating the files. Representative systems for
unstructured P2P include PA-VOD [7] and NetTube [8], and
the typical structured P2P system is HyperCuP [9]. However,
all of these systems are based on a per-video level: for each
video, an overlay graph is constructed. As pointed out by
paper [1], the per-video overlays not only generate prohibitive
costs for maintaining the overlays, but also create plenty of
redundant links between a pair of nodes on different overlays.

To resolve these problems of the conventional P2P systems,
SocialTube [1] leverages users’ actual subscription relation-
ships. Many VoD sites provide channel subscription functions
to users. A user can create his own media channel webpages,
and each channel contains some videos related to its topic. For
easily browsing channels, most VoD sites classify channelsinto
categories, according to their features, and each categorymay
have different types of values (i.e. subcategories). Fig. 1gives
an example of the category structure in Vimeo. If a registered
user is interested in a channel, and wants to track all videos
from the channel, he can subscribe to it and keep receiving
update feeds whenever new videos are uploaded. Consider
that the subscribers of a channel are likely to watch the same
videos from the channel, and that users with similar interests
tend to access similar videos. SocialTube proposes an interest-
based per-channel hierarchical overlay: peers subscribedto the
same channel are built into one low-level community, and
the channels of each category are formed into a high-level
community. When a video query is generated, random walk-
based searching is conducted within these communities. The
per-channel overlay structure can quickly locate the resources
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when users search for their subscribed channels’ videos. Com-
par to the traditional per-video overlay, the new structurehas
both low maintenance costs and high QoS.

SocialTube has two problems. First, it is not efficient for
subscribers to explore videos belonging to other categories.
Users’ watching preferences (i.e. interests) are not a fixed
value; one may find his new watching preferences by exploring
other categories’ channels. Take Fig. 1 as an example. The
subscribers of “The Great Outdoors” channel are also likely
to watch the videos from “Rainforest Destruction”. By using
SocialTube, one has to go through all the searching space of
either ‘Nature” or “Travel & Events” categories to find the
target channel’s videos. In addition, if the subscribers of“The
Great Outdoors” want to watch videos in the “Animation”
category, it is hard to locate the videos on SocialTube’s overlay,
since there is no efficient overlay connecting across different
categories. Second, SocialTube is not applicable for the VoD
sites (e.g. Vimeo), who are rich in category information.
Note that most channels are naturally suitable to be labeled
by multiple categories. For instance, “The Great Outdoors”
belongs to both the “Animals” subcategory of the “Nature”
category and “Countries” subcategory of “Travel & Events”.
As a result, the high-level communities, created by SocialTube,
are actually overlapped with each other, and eventually form
into one community, instead of several communities.

In this paper, we propose a new hierarchical P2P overlay
structure, call SocialVoD, by exploring both the subscription
relationships and channels’ similarities on Vimeo. The key
design of SocialVoD is the utilization of channel subscribers’
social closeness: the closer the watching preferences of users
are, the better the overlay connectivity should be between
them. We not only build interest-based per-channel overlays,
but also, in a high-level, we organize these overlays according
to channels’ existing category information. The main idea of
our approach is that, by neighboring the channel overlays,
whose category information differs in one dimension, the
resulting graph contains enough routing “hints” for seeking
other unsubscribed channels’ videos. By using SocialVoD, all
peers are clustered into a loosely-connected multi-level com-
munity structure, which has the small-world property. Based
on the new overlay structure, we further propose a routing
algorithm for both channel-subscribed users and unsubscribed
users. SocialVoD keeps the low maintenance cost feature of
previous works, but significantly improves the system’s query
efficiency, especially when users are developing new watching
preferences. Extensive simulation results show the efficiency of
our new system in comparison with SocialTube and NetTube.

Our contributions are threefold: (1) We find that the ex-
isting P2P systems do not fully utilize the social properties
behind the users’ watching patterns. Based on the existing
channel subscription knowledge and category structure on
the Vimeo platform, we introduce a new hierarchical P2P
overlay structure, which has the small-world feature. Con-
sidering the users’ watching patterns also present a small-
world phenomenon [10], our new structure is more suitable.
(2) Our new system explores the existing category information
as an overlay’s construction “guide” and routing “hints”, which
significantly reduces the searching space of videos. We design
a new routing algorithm, which creates several node-disjoint
searching paths within the P2P overlay. The algorithm can be

TABLE I. T HE DISTRIBUTION OFV IMEO CHANNELS’ ASSOCIATED

CATEGORY NUMBERS.

Number of Categories 1 2 3 4 5 . . .
Percentage (%) 41.94 38.11 8.44 7.54 3.96 0

applied to both channel subscribers and non-subscribers. (3)
We provide extensive simulations to show that our new system
can efficiently locate the files and is applicable in a large scale.

II. V IMEO CATEGORY AND USER INTERESTS

Papers [1], [8] show that most videos on VoD systems are
short, and there are strong clustering behaviors among users.
In this section, we further investigate the category features on
Vimeo, and the change of users’ interests over years.

Vimeo has a total of23 system-defined categories. By
checking the number of channels under each category, we find
that there is an obvious gap between a popular group, which
has13 categories, and an unpopular group. We collected the
category information of the popular group’s channels, eachof
which has more than300 subscribers. There are a total of782
unique channels, and we further compute the distribution ofthe
number of associated categories in Table. I. We find that there
are58.06% channels associated with more than one category
feature. Clearly, overlapped categories should be considered
during overlay design.

Users may develop new watching preferences over the
years. We randomly collect6, 000 users’ channel subscription
times, and investigate the change of users’ interests (i.e.
the category features of subscribed channels), year by year.
Table II shows the changing pattern of a typical user’s interests.
This user subscribed to87 channels from2007 to 2011. We
divide the records to5 groups according to subscription time,
and count the distribution of the subscribed channels’ category
features in each year. From the table, we can see that the
user becomes more interested in “Narrative” and “Music”
related channels, and less interested in the channels from the
“Video School” category. Hence, users’ watching preferences
do change over the years.

Users’ watching preferences can be reflected from their
channel subscriptions. We summarize the watching pattern
of users in the following: (1) Users frequently look for the
videos from their subscribed channels; (2) Users are likelyto
seek other unsubscribed channels’ videos, which satisfy their
watching habits; (3) The watching habits may change. Users
may access certain videos to explore new preferences.

III. OVERLAY DESIGN

A. Feature Coordinate and Feature Distance

More and more VoD systems, such as Vimeo and YouTube,
classify video channels by category. Unlike conventional tags,
which are created by individual video owners, categories and
their subcategories are strictly provided by the system. When a
user creates a video channel on Vimeo, he should select several
appropriate categories for describing it. Later, the Vimeostaff
may add more categories or select suitable subcategory values.
Once a channel is created, other users may subscribe to it. We
adoptui to represent a user,ci to represent a channel. In this
paper, we treat each category as one feature dimension in the
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TABLE II. T HE CHANGE OF CATEGORY INTERESTSOVER 5 YEARS (%)

Year Narrative Arts Music Video School Personal Big Picture Sports Animation Travel Tech Experimental Comedy Nature
2011 21.7 16.6 41.7 0 3.3 0 10.0 3.3 0 0 0 3.4 0
2010 41.2 4.8 4.1 4.5 11.4 4.6 0 9.4 13.6 0 1.8 4.6 0
2009 35.7 1.8 12.5 0 0 7.1 14.3 5.4 0 14.3 8.9 0 0
2008 13.0 6.2 22.5 24.5 4.1 4.1 4.1 6.2 0 2.9 4.2 8.2 0
2007 8.8 9.3 8.1 16.8 7.0 0 0 12.5 0 7.6 17.9 6.0 6.0

category-feature space, and we assume that there are a totalof
m dimensions (i.e. system-defined categories).

The feature coordinate of a video channel is defined as
(f1, f2, . . . , fm), where1 ≤ fi ≤ ri and ri is the number
of subcategories in theith dimension. The physical meaning
of value fi depends on a real system. For example, in the
“HD” category dimension,fi = 1 stands for high-definition
videos andfi = 0 represents the regular ones, while, in
the “Language” category dimension,fi = 0, 1, 2, . . . may
indicate English, Chinese, Spanish, and et al. Based on the
feature coordinates, the category-feature space is partitioned
into Πm

i=1ri groups, and each channel belongs to one and only
one group. We useGi to represent a hypercube group. Let̥(·)
be an operation, which gives the feature coordinate of an entity,
and ̥i(·) gives the coordinate value in theith dimension:
̥(ci) and̥(Gj) shows the feature coordinate of channelci
and hypercube groupGi, respectively.

The feature difference set from a source coordinate
S = (s1, s2, . . . , sm) to a destination coordinateD =
(d1, d2, . . . , dm) is represented byH(S,D) = {i|si 6= di, i ∈
[1,m]}. The feature distance is measured as the cardinality of
the feature difference set|H |. For instance, the feature distance
set from(1, 2, 3, 4, 5, 6) to (1, 1, 5, 4, 5, 3) is {2, 3, 6} since the
corresponding values in these three dimensions are different.

B. Channel Subscription and Peer-to-Peer Graph

In practice, a user may subscribe to multiple video channel-
s, the feature coordinates of which may be different from each
other. According to the number of subscribed channels, a user
ui is mapped to one or several nodes{vi1, v

i
2, . . . , v

i
j} in the

P2P network graph. In this section, we assume that each user
subscribes to only one channel, and therefore,ui is uniquely
mapped tovi. The case that users subscribe to more than one
channel will be discussed in the next section.

During the construction of the P2P network, a logical
connection is created from usersui to uj, at the protocol
layer, by lettingui store the IP address ofuj . The whole
system forms a P2P network graphG = 〈V,E〉, E ⊆ V 2,
whereV = {v1, v2, . . . , vn} represents the virtual nodes and
E = {vivj} gives the logic connection from nodesvi to vj .
Let g(ci) be a mapping function from a given channel to a set
of nodes, who subscribes toci; the inverse functiong−1(vj)
gives the channels thatvj subscribed to.

C. Resource Replication Scheme

SocialVoD requires each user to maintain a cache of videos
that has been watched within a system-defined session. When
the cache is full, the oldest file will be replaced by the new
one. This storage scheme can increase the availability of files.
Moreover, the popularity of a video changes with time. This
caching scheme can eliminate the unpopular files in a timely
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Fig. 2. A diagram of the network structure of SocialVoD.

manner and replace them with the new ones. Here, we are
considering a short video, the length of which is usually less
than10 minutes. These files are generally small, and therefore,
this cache requirement does not excessively burden users.

D. Overlay Construction

When a new nodevi appears, it first sends a request to
the server, and the server replies with a set of nodes for
establishing logic connections. Supposevj is a node from the
set. According to the features ofvi and vj , there are three
types of connections in SocialVoD:

• If vi andvj subscribe to the same channelg−1(vi) =
g−1(vj), then edgevivj is an intra-channel link.

• If they subscribe to different channels but have the
same feature coordinateg−1(vi) 6= g−1(vj), ̥(vi) =
̥(vj), then edgevivj is an intra-group link.

• If their feature coordinates differ in one dimension
g−1(vi) 6= g−1(vj), H(̥(vi),̥(vj)) = 1, then edge
vivj is an inter-group link.

In order to control the usage of resources, SocialVoD limits
the number of out-links that a user can create tob. When
the server returns the set, it should guarantee the number of
connections for each type following intra-channel: intra-group
: inter-group= p : (1 − p)q : (1 − p)(1 − q), wherep, q are
two system-defined parameters andp, q ∈ (0.5, 1).

Take Fig. 2 as an example. Assume thatv1 is a new peer in
the system, who subscribes to channelc3, b = 5, p = q = 0.6
and m = 2. When v1 contacts the server for the first time,
the server randomly selectsb × p = 3 peers (i.e.v2, v3, v4),
who are online and also subscribe toc3, to build intra-channel
links, as shown by red arrows in Fig. 2. The server picks up
b×(1−p)q ≈ 1 peer fromc4’s subscribers, andb×(1−p)(1−
q) ≈ 1 peer fromc1 andc3’s subscribers to build inter-group
links (green arrows) and intra-group links (blue arrows).
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The server stochastically creates the connections such that
it not necessary to remember the global structure of the overlay
graph. When the server seeks the end nodes of the intra-
channel links and intra-group links, it randomly picks up
the corresponding number of nodes, who are online at the
moment. When creating the inter-group links, the server first
selects one dimension, in the category-feature space, to be
different from it, and then randomly picks up a peer with
a different subcategory value in that dimension. This peer is
selected as the end of an inter-group link. For a given link, the
probability of having two ends with different coordinates is
(1−p)(1−q)/m. Suppose̥ (Gi) = (f1, . . . , fk, . . . , fm) and
̥(Gj) = (f1, . . . , f

′
k, . . . , fm). The expected number of out-

links from coordinate groupGi toGj , who differ in thekth cat-
egory, can be approximated asb|Gi|×

|{vi|̥k(vi)=f ′

k,i∈[1,n]}|
|{vj |̥k(vj) 6=fk,i∈[1,n]}|×

(1−p)(1−q)/m, whereb is the number of out-links per peer,
|Gi| gives the number of nodes in hypercube groupGi, and
|{vi|̥k(vi)=f ′

k,i∈[1,n]}|
|{vj |̥k(vj) 6=fk,i∈[1,n]}| is the probability for selectingf ′

k as the
new value in dimensionk.

SocialVoD creates a two-tier community structure and three
levels of overlays. Peers, who subscribed to the same channel,
form the low-tier community, also known as the per-channel
community C, as illustrated byC1 to C6 in Fig. 2. The
intra-channel links among the peers build the lowest-level
overlay. Because a subscriber is very likely to watch the
videos provided by his subscribed channel, clustering peers
from the same channel improves files’ availability and reduces
the average length of query paths. Per-channel communities,
who have the same feature coordinate, are clustered into the
top-tier community: the coordinate groupG, as illustrated by
G0 to G3 in Fig. 2. The middle-level overlay is established
by the links connecting different channels within the same
group. SocialVoD connects different groups if their feature
coordinates are different in one dimension. The inter-group
links form the highest-level overlay. As users tend to access the
files with similar features, they may also query the files from
unsubscribed channels. SocialVoD puts similar subscribers
close to each other, which can improve the query efficiency.

E. Inter-group Link Management

In SocialVoD, a feature-specified query is conducted by
forwarding the query messages from group to group via inter-
group links. The speed of finding an inter-group link with
the specific feature coordinate directly influences the routing
efficiency. For accelerating the searching process, the members
of each group vote for a leader, who collects the inter-group
link information from its members. Usually, the leaders are
selected based on their stabilities.

When a nodevi joins a group, he first asks the leader’s IP
address from his connected peers, who are in the same group.
Then,vi reports all of his inter-group links, together with his
own IP, to the leader. When a peer servers as a relay node
in an inter-group routing, he should ask the leader for the IP
of other members, who have the inter-group links to the next
group. The query messages will be forwarded to the next group
via these members. Leaders may consume more resources for
performing the book-keeping work. We can adopt role rotation
and other incentives from the consideration of fairness. When a
leader is going to leave SocialVoD, he should find his inheritor
and broadcast this update to group members.
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Fig. 3. Coordinate routing sequence-based inter-group routing.

Due to the churn of P2P, peers in SocialVoD periodically
check and update their links to other communities. Unlike
SocialTube, where peers always update their links to the
newest visited peers, SocialVoD removes failed links and
replaces them with the links to the other communities, where,
recently, the feature-based routing mostly failed. Essentially,
SocialVoD gives more emphasis on how to reach a destination,
instead of where the destination is.

IV. ROUTING IN SOCIALVOD

A query is conducted by two steps in SocialVoD. The first
step is called feature-spaced inter-group routing, which uses
the highest-level overlay to locate the group with the specific
feature coordinate. In order to control the network traffic,each
query has a limited number of query copies, assumingh. When
selecting query paths, one should avoid the situations where
more than one query message searches the same space. The
second step of a query is to find the target file within the
specific group, and we apply the conventional random walk-
based approach to conduct the searching.

A. Coordinate Routing Sequence and Node-disjoint Paths

In anm-dimensional hypercube, if a sourceS has a packet
for destinationD with feature distancek, there are exactlyk
node-disjoint shortest paths with lengthk from S to D. Since
these paths uniquely partition the searching space intok non-
overlapping subspaces, querying along the node-disjoint paths
is both efficient and resource-saving. Suppose thatS andD
differ in k dimensions, whereH(S,D) = {1, 2, ..., k}.

R1 : 〈1, 2, ..., k〉 is defined as thecoordinate routing
sequence, which determines the resolution order of a given
set of dimension differencesH(S,D) [11]. For instance, the
coordinate sequenceR1 requires peers to construct a query
path by gradually solving feature differences from dimensions
1 to k. When H(S,D) = {1, 2, ..., k}, there are a total
of k coordinate routing sequences, and theith sequence
Ri : 〈i + 1, ..., k, 1, ..., i − 1, i〉 is created by makingi − 1
circular left shifts ofR1:

• The 1st sequence:R1 = 〈1, 2, ..., k − 1, k〉

• The 2nd sequence:R2 = 〈2, 3, ..., k, 1〉

• . . . . . .

• The kth sequence:Rk = 〈k, 1, ..., k − 2, k − 1〉

Note that the resolution order inR1 can be any permutation
of the elements in feature difference setH(S,D).
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Algorithm 1 The selection of coordinate routing sequences at
source nodeS

1: T ← φ
2: for ∀Gi ∈ N(Gs) do
3: for every dimensionj ← 1 . . .m do
4: if ̥j(Gi) 6= ̥j(Gs) then
5: ComputeT ′

j , andT ← T
⋃
{(j, T ′

j)}
6: According toT ′

j , sort the elements ofT in decreasing order.
7: Select the firsth elements and create routing sequencesR.

Each sequence uniquely defines one shortest path from
S to D. Take Fig. 3 as an example. Suppose thatG0 is
looking for a video fromG7, and the feature distance set is
H(S,D) = {1, 2, 3}. When S createsR3 = 〈3, 1, 2〉, the
query path according toR3 is G0 → G2 → G6 → G7,
while, if S createsR2 = 〈2, 3, 1〉, the query path becomes
G0 → G1 → G3 → G7. Hence, the coordinate routing
sequence setR = {R1, R2, ..., Rk} createsk node-disjoint
shortest query paths from the feature difference set.

B. The Selection of Coordinate Routing Sequences

In order to control the network traffic,S has onlyh copies
of a query message. In other words,S can conducth parallel
searches for the destination groupD. Assuming the feature
distance fromS to D is k, the relation betweenh and k
influences the selection of query paths. Whenh > k, S is able
to use not only the shortest paths for searchingD, but also
the non-shortest ones. However, ifh < k, S should determine
which path (or coordinate routing sequence) has more of a
chance to reach the destination group.

Consider that, for a given category, the popularity of
subcategories is different. The sizes of some groups are greater
than others. Since the ends of inter-group links are randomly
and uniformly selected, a larger-sized group absorbs more
inter-group links, and has more of a chance to be visited
from other groups. As a result, we approximate a coordinate
routing sequence’s success rate by subcategories’ popularity.
Suppose the feature coordinates ofS andD are (s1, . . . , sm)
and(d1, . . . , dm), and dimensioni ∈ H(S,D). In the highest
overlay, the transition probability from any groupG, who
satisfies̥i(G) = ̥i(S), to other groupsG′, which have
the property̥ i(G

′) = ̥i(D), is estimated by the following
equation:

Ti =
|{vj |̥i(vj) = di, vj ∈ V }|

|{vj |̥i(vj) 6= si, vj ∈ V }|
(1)

where| · | gives the cardinality of a set, andsi 6= di. Assume
that a path resolves theith dimension difference first. The
successive rate of the path’s remaining steps is approximated
as follows:

T ′
i = (|H | − 1)!

∏

j∈H\{i}

Tj (2)

where H is the abbreviation of the feature difference set
H(S,D), andH\{i} indicates all the unmatched dimensions
betweenS andD except dimensioni.

Algorithm 1 gives the procedure for selecting the coordi-
nate routing sequences whenh < k. Since the inter-group links
are randomly created, a group may not be connected to all oth-
er groups, whose feature coordinates differ in one dimension.
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Fig. 4. The hierarchical community structure in SocialVoD.

AssumeGs is the resident group of sourceS, and letN(Gs)
be a set of groups, who are connected withGs, N(Gs) =
{Gi|H(̥(Gi),̥(Gs)) = 1, i ∈ [1,m], ∃v, v′s.t.v ∈ Gs, v

′ ∈
Gi, vv

′ ∈ E}. For each neighboring groupGi, Algorithm 1
computes the accessing probabilityT ′

j of the remaining feature
difference, if Gi was selected as the first relay group in
the routing path (dimensionj is the first resolved feature
difference). Algorithm 1 creates the corresponding coordinate
routing sequences by selecting theh neighbors, who have the
largestT ′

j. This method essentially explores the rare inter-
group links first. The reason is that, as the processing of the
feature-based routing, the searching space becomes smaller;
fixing the rare dimensions’ values first can increase the success
rate of the remaining steps.

Take Fig. 4 as an example. Assume thatS = (0, 0, 0),
D = (3, 1, 2), and H(S,D) = {1, 2, 3}. The popularity of
the 1st dimension “Nature” follows3 : 6 : 10 : 4, that of the
2nd dimension “HD” is4 : 6, and that of the3rd dimension
“Travel” is 5 : 7 : 3. There are three potential coordinate
routing sequences:R1 = 〈1, 2, 3〉 (the red path),R2 = 〈2, 3, 1〉
(the blue path), andR3 = 〈3, 1, 2〉 (the green path). Using
R1 indicates solving the1st dimension’s difference first. For
the source node, the remaining success rate of the red path is
estimated asT ′

1 = (3−1)!× 6
6 ×

3
7+3 = 3

5 . Similarly, the rates
for usingR2 andR3 can be calculated asT ′

2 = (3 − 1)! ×
3

7+3 ×
4

6+10+4 = 3
25 , andT ′

3 = (3− 1)!× 4
6+10+4 ×

6
6 = 2

5 . If
h = 2, then the source should useR1 andR3.

C. Feature Space Routing

SocialVoD has three types of routings: intra-channel, intra-
group, and inter-group. When a user looks for his subscribed
channel’s videos, an intra-channel routing happens. Query
messages are randomly propagated within the per-channel
community. Each message is associated with a hop counter,
which is decreased by one after each time of forwarding.
Once the counter becomes zero, the query message will be
discarded. Similarly, if the user seeks for videos from other
channels, but have the same feature coordinates, the random
walk-based searches are conducted within the corresponding
group. However, when the user searches the files from other
groups, SocialVoD first sends the messages to the destination
group by inter-group routing, and then, adopts intra-group
routing to locate the target file within the destination group.
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Algorithm 2 Inter-group Routing from SourceS
1: while h > 0 do
2: if R 6= φ then
3: /*shortest path routing*/
4: Pick up a sequenceRi from R.
5: Find Gj ∈ N(Gs) s.t.̥i(Gj) 6= si,̥i(Gj) = di.
6: R← R\{Ri}, mode← 0, send(Ri,mode) to Gj .
7: else
8: /*non-shortest path routing*/
9: Find Gj ∈ N(Gs) s.t.̥i(Gj) 6= si, i ∈ H .

10: H ← H\{i}, mode← 1, send(H
⋃
{i}, mode) to Gj

11: h← h− 1

The inter-group routing at a source node is given by
Algorithm 2. Based on the relation betweenh andk, there are
two modes, wheremode is 0 for a shortest path and1 for a
non-shortest path. Assume that the feature coordinate of source
S is (s1, . . . , sm) and that ofD is (d1, . . . , dm). The feature
difference set is represented byH = {i|si 6= di, i ∈ [1,m]}.
The coordinate sequences setR = {R1, R2, ..., Rk} provide
the basic guidance for the shortest path mode. LetH be the
compliment set ofH , H = {i|si = di, i ∈ [1,m]}, which will
be used for the non-shortest path mode.

Algorithm 2 gives the shortest path routing with a high
priority; as long as setR contains some coordinate sequences
(i.e.h ≤ k), S should use the corresponding shortest path first.
S picks up a sequenceRi from R. Suppose the first resolving
dimension ofRi is i. S findsGj , whoseith dimension value is
the same as that ofD, from neighboring groupsN(Gs). Then,
S sendsRi to Gj and asks it to use shortest path mode. When
R becomes empty (i.e.h > k), it switches to non-shortest path
mode, in which the source node increases the feature distance
from k to k+1. For instance, in Fig. 3,G0 is sending message
to G3, where ̥(G0) = (0, 0, 0) and ̥(G3) = (0, 1, 1).
Although there are only two different dimensions,S can first
send the message to group(1, 0, 0) and then forward it to the
destination. The path becomesG0 → G4 → G6 → G7 → G3.

Algorithm 3 is designed for relay nodes. Assume the
current relay node is in groupGi, and the node got the query
message fromG0, whereGi ∈ N(G0),̥j(Gi) 6= ̥j(G0).
LetR[1] be the first element in the coordinate routing sequence
R. If Gi is the destination group, then intra-group routing will
be used to search the file. WhenGi is not the destination
and the routing is in the shortest path mode, the dimension
is different, and has been resolved fromG0 to Gi; it should
be removed (step.5). The query message is forwarded to the
next group according to the new head ofR. As for the non-
shortest path mode, any element from the dimension difference
set can be used as the next resolving dimension. For example,
in Fig. 3, G0 sendsH = {1, 2, 3} andmode = 1 to G4. At
G4, the unsolved dimension set becomesH = {2, 3}, andG4

can forward the message either toG5 or G6. One can use
Equation. 2 to find out an optimal receiving group.

V. EXTENSION

A. Multi-channel Subscriptions

The main idea of SocialVoD is to cluster users according
to their subscribed channels’ category features. However,since
a user may subscribe to several channels with different feature

Algorithm 3 Inter-group Routing for a Relay Node inGi

1: if ̥(Gi) = ̥(D) then
2: Use intra-group routing withinGi.
3: else
4: if mode = 0 then
5: R← R\R[1], the next resolving dimensionk ← R[1].
6: Find G′

i ∈ N(Gi) s.t.̥k(Gi) 6= dk,̥k(G
′

i) = dk.
7: Send(R,mode) to G′

i.
8: if mode = 1 then
9: H ← H\{j}.

10: Find G′

i ∈ N(Gi) s.t. ∃k ∈ H,̥k(Gi) 6= dk,̥k(G
′

i) =
dk. Send(H,mode) to G′

i.

0 4

3

2

5

1

6

7

s

Fig. 5. Source selection when a user subscribes to multiple channels.

coordinates, if we directly use the basic scheme of SocialVoD,
peers will form into one giant community, instead of several
groups. For instance, usersu1 and u2 are the members of
channelC, and usersu2 andu3 subscribe to another channel
C′. Directly connectingu1 u2 andu2 andu3 will eventually
put u1 u3 into the same community. To avoid this situation, a
user is mapped to several nodes on the P2P graph, according
to his own subscription. Suppose userui subscribed toj
channels, thenui is mapped to a set of nodes{vi1, v

i
2, . . . , v

i
j}.

Each node is associated withb/j out-links (the number of out-
links for each user is stillb). When searching a file, the user
should decide to use which nodevik as the source node, since
they may have different feature distances to the destination
group, as illustrated by Fig. 5.

Algorithm 4 gives the procedure for selecting the initial
node of a routing. The idea of this scheme comes from Algo-
rithm 1. LetM(u) be the mapping function from useru to his
corresponding nodes on the graph,M(u) = {v1, v2, . . . , vj}.
Basically, Algorithm 4 tests all elements inM(u), and calcu-
lates the remaining path’s success rateT ′ from these nodes.
Then, it selects the toph paths with the highest success rate.
Note that, in practice, not all groups, whose feature coordinates
differ in one dimension, are connected. Also, some groups may
temporarily not contain any peer (all of them are off-line.)As
a result, the nodes, which are closer to the destination in the
feature space, may not always be the best source.

Let us go back to Fig. 4’s example, whereD = (3, 1, 2),
and the popularity of each dimension follows3 : 6 : 10 : 4,
4 : 6, and 5 : 7 : 3. Suppose that the user also subscribes
to a channel in group(2, 1, 1), then the feature difference set
is H = {2, 3}. There are two potential coordinate routing
sequences:R1 = 〈1, 2〉 andR2 = 〈2, 1〉. If we solve the1st
dimension first, then we haveT ′

1 = 1
5 , while, if we solve the
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Algorithm 4 The selection of initial node for a useru
1: T ← φ
2: for Every v ∈M(u) do
3: Find Gs s.t.̥(Gs) = ̥(v).
4: for ∀Gi ∈ N(Gs) do
5: for j ← 1 . . .m do
6: if ̥j(Gi) 6= ̥j(Gs) then
7: ComputeT ′

j , andT ← T
⋃
{(v, j, T ′

j)}
8: According toT ′

j , sort the elements ofT in decreasing order.
9: Select the firsth elements inT , and use them as routing sources.

2nd dimension, we getT ′
2 = 7

10 . Again, if h = 2, then the
user should use routing sequence〈1, 2, 3〉 from group(0, 0, 0)
and 〈2, 1〉 from group(2, 1, 1).

When users are allowed to subscribe to multiple channels,
the inter-group routing can be accelerated. Here, we propose a
new approach, calledfeature matching shortcut. In the classic
hypercube routing, each instance of message forwarding can
solve only one dimensional difference. But, in SocialVoD,
since a user is mapped to several nodes, it is possible that
the physic holder of a query message may be mapped to
another peer, who is more than one feature distance closer to
the destination. Take Fig. 5 as an example. Supposevi fromG2

gets a message withG6 as destination. Since there is another
nodevj possessed by the same useru, vi, vj ∈ M(u), vj ∈
G6, vi ∈ G2, u can stop the inter-group routing and begin to
use intra-group routing fromvj ’s out-links.

B. Routing for non-subscribers

As for users, who have not subscribed to any channel,
there is no feature coordinate information. Based on historical
query records, SocialVoD deducts the most frequently searched
subcategory features of a non-subscriber, in each dimension,
and uses these values as the user’s feature coordinate. Inter-
group links are generated from the user to the corresponding
coordinate group, which consists of the subscribers, who have
the same feature coordinate. Since non-subscribers’ coordi-
nates are not accurate, links are created only from a non-
subscriber to subscribers, and not vice versa. When a non-
subscriber wants to watch some videos, the inter-group routing
will be conducted from the linked coordinate group. Once a
non-subscriber’s watching preference is formed (i.e. subscribe
to certain channels), most of his links will have already been
connected to the subscribed communities.

C. Pre-fetch for new videos

One common problem for new videos is their availabilities.
Unlike other VoD platforms, Vimeo allows all subscribers ofa
channel to upload their videos. After a new video is being up-
loaded, in the initial phase, most queries about it are responded
to by the central servers. For improving the availabilitiesof
new videos, SocialVoD uses a pre-fetch scheme, which pushes
the new contents to other peers from the same per-channel
community. Whenever a new video is generated, the source
node sends out several random walkers, carrying the video, to
his resided community. When a walker stops, the latest visited
peer will store the video in cache.

VI. PERFORMANCEANALYSIS AND EVALUATION

In this section, we conduct extensive simulations to eval-
uate the performances of our proposed system by using both
synthetic data and real data. For the ease of comparison, we
call our scheme, which clusters the subscribers of the same
channel into a community and connects different communities,
whose coordinates differ in one dimension,SocialVoD; the
previous work [1], which only clusters the peers in individual
categories, is calledSocialTube; we also compare the results
with NetTube [8]. Since these approaches use different search-
ing schemes, we keep the maximum possible length of their
overall searching paths be the same.

A. Simulation Setup and Evaluation Metric

To measure the performance of SocialVoD, we conducted
extensive simulations by using Matlab. For the synthetic simu-
lation, we assume that there are4 categories and each category
has 4 different value types (i.e. subcategories); For the real
one, we use the real category features of Vimeo channels.
We generate5, 000 peers for the synthetic simulations and
15, 000 peers for the real ones. Each peer is associated with
a fixed-size buffer and outlink budget. While setting up, we
randomly assign a popularity degree to each subcategory, and
each peer randomly selects the subscribed channel coordinates
based on the popularity. Therefore, different channels have
different sizes. During simulation, some peers randomly create
new videos and save into their own buffers.

In this paper, we emphasize on the following two aspects
of users’ watching behaviors: 1) frequently watching their
subscribed channels’ videos; 2) developing new watching
preferences by exploring other unsubscribed channels that
have similar features. To accurately simulate the watching
behaviors, we use the following video selection mechanism.
For each dimension, we assign users with a probability for
watching the videos with the same subcategory feature. As
a result, a user may query the videos from his subscribed
channel, and he may also query for other types of videos;
users have a better chance of the videos with similar features
to their subscribed channels than a totally different videotype.
After sending a query, a node will wait for aTTL. When time
is up, the node will send a query directly to the central server
and get the video file. No matter whether the node found the
corresponding video from the P2P system or not, eventually,
it will get the file and locally save it in the buffer.

When building the P2P overlay in the feature space, the
number of outlinks from one community to the other is
determined by the number of peers subscribed to the channel
and system variable(1 − p)(1 − q). During feature space
routing, SocialVoD sends out several query messages with
different coordinate sequences. Since the feature space overlay
is stochastically established, some messages may not be able
to reach the communities with the target feature coordinates.
Once a message reaches the destination communities, it uses
a random walk-based scheme to search the videos in the
buffers of the community’s peers. Later, we test the impactsof
message copy numbers on both feature space routing and inner
community routing. In our simulation, we are interested in the
following two metrics: (1) Average hitting rate: the percentage
of queries having found the corresponding videos from P2P
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Fig. 6. The impact of the buffer size
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Fig. 7. The impact of the new content’s arriving rate

overlays. This value shows the percentage of workloads that
have been reduced from the server. During simulation, we
mainly consider this metric. (2) Average delay: the average
waiting time before watching a video. Note that all three
approaches first search the videos on P2P overlays, and then
resort to the server. Hence, the delay has a upper bound value.
Generally speaking, the shorter the average delay is, the better
a P2P overlay design is.

B. Simulation results

We first investigate the impacts of the buffer’s size. The
buffer temporarily stores the videos that have been watched
before. Clearly, the bigger the buffer is, the higher the
probability is for finding a video by P2P overlay. However,
the benefits for using buffers do not grow linearly. In this
simulation, we let a peer’s query probability be80%, different
dimension’s exploring probability be35%, let 5% of peers
generate new contents per simulation session (with there being
20 sessions). As shown by Fig. 6, with the growth of the
buffer, the average hitting rates go up. SocialVoD always has
the highest average hitting rate. Moreover, when the popularity
of subcategory values follows normal distribution, the hitting
rate of SocialVoD is lower than that of the uniform distribution
condition. However, SocialVoD still beats others.

In Fig. 7, we consider the impacts of the new contents’
arriving rates. If a lot of new videos are generated in a short
time, only a few peers may cache the files. As a result, with the
growth of the new content arrival rate, the average hitting rates
quickly drop down, which is much faster than the changing
speed of the average delay. In simulation, we let the generation
rate of each peer change from1% to 8%. We assume that
peers know about the new contents. As more contents are
generated, users have more choices for the queried contents.
If a node’s query frequency is slower than the system’s new
content’s generating frequency, the cached files will soon
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Fig. 8. The impact of users’ watching preferences
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Fig. 9. The impact of each peer’s total number of links

become useless. Here, we let the average query rate of each
peer be75% per session, and the size of a peer’s buffer be1.

Next, we study the influence of the users’ watching pref-
erences. Based on the feature coordinates of users’ subscribed
channels, each user has his own watching preferences. How-
ever, any user may also explore other types of videos with
similar feature coordinates. In Fig. 8, we gradually decrease
the probability of exploring new features for each query from
18.5% per dimension to0%, and we can see that the average
hitting rate of all methods goes up. Note that each video has
several dimensions. For example, if the exploring probability is
30% and there are4 dimensions, the query rate for a peer’s own
subscribed channel’s video is about24%. Since SocialVoD
is specially designed for exploring other video features, its
performance is much better than that of others, especially when
the system’s dimension exploring rate is high.

The number of links that each peer connects to essentially
affects the query’s efficiency. A well-connected community
has a relatively short mixing time, and the random walk-based
queries from the same peer can quickly become independent of
each other. Moreover, for the overlay in feature space, having
more outlinks from a peer can increase the routing success
rate. In Fig. 9, we gradually increase the number of outlinks
per node from5 to 25, and keep10% of the outlinks connecting
to other communities. We can see that the average hitting
rate gradually becomes higher and higher. Note that, due to
new content existing, and the stochastic feature of our overlay
structure, the average hitting rate cannot reach100%.

In the next two figures, we study the impacts of the length
of the searching paths during the random walk-based query.
For SocialVoD, when there are less query budgets for inter-
community routing, it will only use the shortest paths’ coordi-
nate sequences. However, if there are more query paths, then
the SocialVoD algorithm can also adopt the coordinates of non-
shortest paths. In general, the number of non-shortest paths is
much greater than that of the shortest paths. So, the success
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TABLE III. T HE IMPACT OF THE PUSH OPERATION FOR NEWLY

GENERATED CONTENTS.

Method SocialVoD SocialVoD (push) SocialTube SocialTube (push)
Delay 14.369 14.003 26.121 25.912

Hit rate 97.39% 98.35% 77.10% 77.63%
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Fig. 10. The impact of the length of random walks.

rate of inter-community will be increased by using more
query messages. For all approaches, including SocialVoD,
SocialTube and NetTube, the hit rate is also related with the
length of intra-community random walks. In the simulation,
we gradually increase the query’s TTL of intra-group routing
from 3 to 8, and keep these approaches’ maximum possible
overall length of query paths be the same. Fig. 10 gives the
results. Because SocialVoD first uses a relatively small number
of messages to shrink the searching space of potential peers, it
performs better than others in the aspects of hitting rate. Note
that, since SocialTube is specially designed for YouTube where
each channel can only belong to one and only one category, its
intra-category searching becomes less efficient when channels
have multi-dimensional features.

In order to increase the average hitting rate, whenever a
peer generates a new content, he can push the data to other
peers randomly. Essentially, the operation can increase the
availability of the new contents, and there are several ways
to implement it. For example, from the new content owner,
he could send out several copies of the new content and use
random walk-based approach to spread the content within his
community. Here, we test the simplest case, where the new
content is directly pushed to the peer’s neighbors. Table. III
shows that the pushing scheme can improve the new contents’
availability on a P2P overlay. Both SocialVoD and SocialTube
have less average delays for the queries of the new contents.

Fig. 11 shows the testing results by using real data. We
collect the category information of Vimeo channels, who have
more than300 subscribers. In total, there are782 channels and
13 categories. Users are randomly assigned to different chan-
nels and the average number of users is12.7. The experiment
results of Figs. 11 (a), (b), and (c) are consistent with thatof
the synthetic simulations. In Fig. 11 (d), we test the impacts
of the value of(1−p)(1−q), which controls the percentage of
outlinks connecting to other communities that have different
feature coordinates. There is a trade-off between the number
of inter-community links and intra-community links. With the
growth of intra-group (or inter-group) links, searching files
from the resident community (or other communities) becomes
easier. From Fig. 11 (d), we find that both approaches are
affected byp andq; However, SocialVoD gets more influence.
The reason for this phenomena is that, when looking for
videos with different features, SocialVoD utilizes the inter-

group links for routing, while, SocialTube independently seeks
files from each related dimensions. As a result, SocialVoD
gets more impacts when there is few inter-group links (i.e.
(1 − p)(1 − q) = 1). But, for most cases, SocialVoD still has
better hit rate than SocialTube.

VII. R ELATED WORK

The research on P2P architecture has existed for a decade.
Many papers have proposed different schemes [12]–[15]. PA-
VoD [7] and NetTube [8] are the two most classic unstructured-
P2P systems. PA-VoD builds a video’s overlay by grouping all
the peers, who are watching the same video, together. When
a user finishes watching, he no longer acts as a provider and
eventually will be wiped out from the overlay. PA-VoD works,
if there are plenty of users watching the same long video, such
as a movie, the typical length of which is1-2 hours. However,
as for the VoD platform, such as Vimeo, most videos are short,
the median length of which is about200 seconds [16]. As a
result, a majority of short videos’ requests are handled by the
central server, instead of peers. The basic idea of the NetTube
is that the users, who are watching the same videos, are more
likely to view the same content in the future. By associating
a cache buffer with each node, NetTube puts the viewers of
the same video into one overlay, and further allows them to
search for videos from each other. Unlike PA-VoD, the users of
NetTube will temporarily store the videos, which were watched
previously, in their local buffer. Therefore, after he or she
finishes watching a video, as long as the buffer contains the
file, the user will remain in the video’s overlay. This unique
design significantly improves the resource availability ina P2P
system. However, both NetTube and PA-VoD create an overlay
for each video, which wastes plenty of network resources.

Hypercup [9] is a typical structured-P2P system, which
organizes peers into a hypercube structure. Compared to the
unstructured system, Hypercup is fault tolerant and suitable
for efficient search. However, since Hypercup constructs the
overlay by directly connecting peers to peers, as for high churn
conditions, where peers frequently join and leave the system,
it suffers from huge maintenance traffic. Unlike Hypercup,
SocialVoD treats a group of users, who have the same watching
preferences, as a node in hypercube. Although a system may
face the frequent connection and disconnection of peers, the
absence of a whole group is rare. As a result, SocialVoD has a
high searching efficiency and low maintenance costs. The idea
of node group-based hypercube has existed for a while [17],
[18]. However, the existing schemes neither consider the social
property of peers [19], nor are they suitable for short videos;
they simply connect all peers of a group to a super-peer, and
use the super-peers to build a hypercube structure. Since the
size of a VoD channel varies greatly from tens of subscribers
to millions, and there are plenty of channels having the same
category features, the conventional scheme does not suit the
modern VoD system any longer. SocialVoD clusters the peers,
who subscribe to the same channel, into a community, and
further puts similar communities close to each other.

The design of P2P overlay’s structure is highly related with
users’ data accessing pattern. Unlike traditionally streaming
video systems, modern VoD systems, such as Vimeo and
YouTube, have social aspects [20]. As shown by papers [10],
[21], the date-sharing patterns in VoD systems have a small
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Fig. 11. Real data-based simulation results.

world property, which suggests that the videos on these sys-
tems have strong correlations with each other. As a result, the
P2P overlay structures of VoD should also possess the small
world property. A theoretical model for small-world networks
by paper [22] picture a small world as a loosely connected
set of highly-connected subgraphs [10]. The structure of our
proposed SocialVoD overlay exactly satisfies this structure.

VIII. C ONCLUSION

Over the past decade, we have witnessed an explosive
growth of online video-on-demand (VoD) services, such as
Vimeo and YouTube. With the growth of the services’ popular-
ity, the scalability, bandwidth, and delay problems of the con-
ventional client-server architecture have become increasingly
obvious, which has compelled the development of the peer-to-
peer architecture. In this work, we leveraged the existing social
relationships (i.e. common channel subscription) and social
similarity (i.e. the similarity of users’ watching preferences)
to establish a new P2P overlay structure. Unlike other VoD
systems, the users on Vimeo have more social interactions: any
subscriber of a channel is allowed to upload his videos to the
channel, and all subscribers can watch and discuss the videos’
contents within the channel. Clearly, in such a high-interaction
platform, a channel’s subscribers are likely to watch the videos
from the same channel. Moreover, users’ watching preferences
gradually vary, and therefore, they also tend to watch other
unsubscribed channels’ videos, which have similar content
features (i.e. category values). Based on these properties, our
system, SocialVoD, creates a hierarchical overlay among peers:
subscribers of the same channel form into a low-level com-
munity, and in high-level overlay, different channels’ groups
are connected based on their similarity. This unique structure
has three significant features. First, the SocialVoD provides
relatively short query paths when users are searching for the
videos, the features of which are close to their subscribed
channels. The second advantage is that SocialVoD can effi-
ciently locate the low-level communities with specific features
via the high-level overlay structure. Third, compared to the
conventional per-channel overlay structure, in SocialVoD, each
peer has low maintenance costs. Extensive simulation results
show the superior performance of our approach.
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