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Abstract—Real-time video analytics (VA) presents challenges
due to its computational intensity and latency sensitivity, es-
pecially when processed on mobile devices with limited local
resources. We propose to offload VA tasks to edge servers
with diverse computational capabilities. We present a “detect +
track” approach with on-device object tracking and edge-assisted
object detection. We formulate a long-term nonlinear integer
programming to maximize the overall accuracy within detection
frequency and latency constraints. We then design a queue-
based online optimization algorithm to solve it: relax the original
problem from the integer domain to the real domain, then employ
a queue-based adaptation and randomized rounding strategy. Via
rigorous proof, both dynamic regret regarding detection accuracy
and the real-time requirement are ensured. Evaluation results
also demonstrate the effectiveness of our approach.

Index Terms—Video analytics, resource allocation, online op-
timization

I. INTRODUCTION

In recent years, with the rapid development of technologies
such as mobile augmented reality, the Internet of Things,
and vehicular networks, the demand for applications like
virtual reality devices and traffic monitoring systems has
steadily increased [1, 2, 25]. Due to limited local computing
resource [3], these terminal devices can only perform limited
analyses. Offloading a large number of video analytics tasks to
multiple remote servers introduces significant delays. In many
typical application scenarios, there is an urgent requirement for
high-accuracy, low-latency analytics results, imposing higher
demands on rapid and precise analytics of video streams.
Designing the video analytics task offloading algorithms facing
multiple challenges as follows:

Firstly, frame-by-frame video analytics is a computation-
ally intensive task that consumes significant computing re-
sources [4, 5] and can lead to notable delays [6, 24]. For
instance, neural networks like YOLO [7], Faster-RCNN [8],
and Mask-RCNN [9] often require hundreds of milliseconds
for object detection per frame, and higher-accuracy CNN
models may need even longer detection time. For high-frame-
rate videos, this processing approach can cause long detection
delays, making it difficult to meet the real-time requirement
of video analytics tasks. Moreover, offloading video analytics
tasks to edge servers introduces additional video transmission
delay, further increasing the total processing time. Therefore,
reducing the processing time of video analytics tasks to meet
real-time requirements has become a research focus.

Secondly, the computing resources on devices are typically
limited, unable to support high-precision neural networks,
and can only perform lightweight computational inference,
failing to provide high-precision analytics results. Moreover,
offloading video analytics tasks to edge servers results in
longer delays. Thus, how to maximize video analytics accuracy
while ensuring real-time performance is another pressing issue.

Thirdly, in real-time video stream analytics applications,
video frames usually arrive online and need to be processed
immediately upon arrival. This requires preemptive offloading
decisions for video frames, i.e., determining whether and
which server to offload the incoming video frame in advance.
Therefore, making preemptive offloading decisions based on
existing video analytics results for upcoming video frames
presents another research challenge.

Prior research can be classified into two broad types: edge-
assisted video analytics task offloading [5, 16, 18, 22, 23, 26,
27, 29] and frame-filtering object detection [19–21]. However,
none of them fully solved the aforementioned three challenges.

In this paper, we adopt the “detect + track” processing
strategy, which involves offloading some frames to edge
servers for object detection, and performing tracking for the
other frames on the device, thus achieving high-accuracy
video analytics while meeting real-time requirements. We
propose a queue-based online optimization algorithm OLA
for offloading real-time video analytics tasks in a multi-
edge environment, aiming to maximize analytics accuracy
while minimizing overall latency. Via rigorous proof, both
dynamic regret regarding detection accuracy and the real-
time requirement are ensured. Evaluations also demonstrate
the effectiveness of our approach.

II. SYSTEM MODEL

Fig. 1 illustrates the considered scenario, which contains
a mobile device and multiple edge servers, denoted by S =
{1, ..., s, ...S}. Each edge server is equipped with different
CNN models primarily used for VA tasks (in this paper,
we mainly consider a typical VA task, object detection).
The mobile device, with limited resources, performs object
tracking using optical flow [10]. We consider a set of epochs
T = {1, .., t, .., T}, where the time duration for each epoch
is fixed, such as one second. Ft represents the set of video
frames within epoch t. For example, if the time span of
each epoch is one second and the frame rate is 30 fps, then



Network

Device Edge Server

CNN
model

. . .

T
i
m
e

DetectTrack

Bounding box

Frame

Fig. 1. Considered scenario and system architecture

the number of video frames contained within each epoch is
|Ft| = 30, ∀t ∈ T . At the beginning of each epoch, we
must determine which video frames are offloaded and to which
servers they should be offloaded. If a frame is offloaded to a
server for inference using a CNN model, bounding boxes for
detected objects are generated; otherwise, the frame updates
the bounding boxes locally via object tracking.

Decision Variables. We introduce a binary decision xf,s ∈
{0, 1}, ∀f ∈ Ft, ∀s ∈ S , to indicate whether frame f should
be offloaded to edge server s for object detection. Furthermore,
we use xt to represent the set of decisions for epoch t.

Accuracy Model. Objects positions are typically repre-
sented by bounding boxes defined by two-point coordinates.
For frame f , the bounding boxes tracked by the mobile
device are denoted as BD

f , those detected on an edge server
s as Bs

f , and the ground-truth bounding boxes as BG
f . The

detection accuracy is measured by the overlapped area between
a bounding box from BD

f or Bs
f and a bounding box from BG

f .
Hence, ∀b ∈ BD

f ∪ Bs
f , ∀b∗ ∈ BG

f , the accuracy of b respect
to b∗, denoted by IoUb,b∗ , is defined as

IoUb,b∗ = xf,s · IoUs
b,b∗ + (1− xf,s) · IoUD

b,b∗ , (1)

where IoUs
b,b∗ denotes the detection accuracy on server s, and

IoUD
b,b∗ denotes the tracking accuracy on the device. Hence,

for ∀f ∈ Ft, ∀s ∈ S, the overall accuracy of all objects in the
ground truth from frame f on server s is measured by

Accf,s =
∑

b∗∈BG
f

max
b∈BI

f

{xf,s ·IoUs
b,b∗+(1−xf,s)·IoUD

b,b∗}, (2)

where the maximum is due to the possible outputs of multiple
bounding boxes for the same object.

Latency Model. Latency is a critical performance metric,
directly affecting whether the system can meet the real-time
requirements. We use LD to denote the local processing
latency, i.e., object tracking on the device. Data transmission
latency is determined by the data size of a frame and the
current network bandwidth conditions. Data processing latency
refers to the time it takes for an edge device to perform object
detection, primarily depending on the hardware capacity of
edge server and the complexity of the deployed CNN model.
Therefore, the overall latency for frame f is defined as

Lf,s = xf,s · (
d

bs,t
+ es) + (1− xf,s) · LD, (3)

in which d denotes the data size of a frame, bs,t is the
bandwidth between edge server s and the device in epoch
t, and es denotes the processing delay for server s. Thus,
( d
bs,t

+ es) means the service latency for frame f on server s,
which is also denoted by LS

s .
Overall Formulation. We aim to maximize the overall

accuracy under a latency budget. The overall problem PG with
respect to the ground truth is formulated as follows:

min
∑
f,t,s

(1−
∑

b∗∈BG
f

max
b∈BI

f

{xf,s · IoUs
b,b∗ + (1− xf,s) · IoUD

b,b∗})

s.t. C1 :
∑
t∈T

∑
f,s

xf,s ≥
∑
t∈T

∑
f

τ,

C2 :
∑
f,s

{xf,sL
S
s + (1− xf,s)L

D} ≤ Lmax,∀t ∈ T ,

C3 :
∑
s

xf,s ≤ 1,∀f ∈ Ft,

var. C4 : xf,s ∈ {0, 1}, t ∈ T , f ∈ Ft, s ∈ S.
(4)

Constraint C1 is the minimum detection frequency con-
straint in the long run, which ensures that at least τ frames
are offloaded to edge servers for detection in each epoch.
Constraint C2 restricts the maximum latency to real time limit
Lmax per epoch. Constraint C3 restricts that only one edge
server can be selected per online decision. C4 restricts the
domain of our decision variables.

Since the ground truth cannot be obtained before the ana-
lytics is completed, the existing detection results need to be
utilized to replace the ground truth. Based on the similarity
between consecutive frames and frequent detection, the latest
detection results can be very close to ground truth. Therefore,
we reformulate PG based on the observable inputs as PD:

min
∑
f,t,s

(1−
∑

b∗∈BG
f

max
b∈BI

f

{xf,sĨoU
s

b,b∗ + (1−xf,s)ĨoU
D

b,b∗})

s.t. C1, C2, C3, C4.

(5)

where ĨoU
D

b,b∗ denotes the tracking accuracy from observable
inputs, i.e., the IoU between the tracking result and the latest
detection result. The same measure is used in ĨoU

s

b,b∗ for
evaluating the target detection accuracy on edge server s.

The problem PD remains intractable despite using the
observable inputs in place of the ground truth. Since the
domain of xf,s ∈ {0, 1}, PD belongs to 0-1 integer program,
which is known as NP-complete. In addition, since the frames
always arrive in an online manner, it requires the algorithm
to make the offloading decision in advance and achieve high
accuracy with latency constraints satisfied.

III. ONLINE ALGORITHM DESIGN

In order to solve the above problems, we design a queue-
based online optimization algorithm, OLA, which “learns”
the video analytics accuracy results from previous offloading
decisions and uses this information to make better decisions
for the current epoch. In terms of algorithm design, firstly, we



relax the domain of the original problem PD from the integer
domain to the real domain. Then, we use a queue to measure
the cumulative violation of the long-run constraints, i.e., the
cumulative number of violations of the frequency constraints
detected in the long run, and the problem is decoupled into
a series of subproblems in each epoch. Finally, we propose
a randomized rounding strategy to revise the decisions into a
feasible integer provisioning.

Transformation. For the ease of presentation, we define:

fG
t (xt) =

∑
f,s

(1−
∑

b∗∈BG
f

max
b∈BI

f

{xf,sIoU
s
b,b∗ + (1− xf,s)IoU

D
b,b∗}),

ft(xt) =
∑
f,s

(1−
∑

b∗∈BG
f

max
b∈BI

f

{xf,sĨoU
s

b,b∗ + (1− xf,s)ĨoU
D

b,b∗}),

gt(xt) =
∑
f

(τ −
∑
s

xf,s),∀t ∈ T ,

ht
1(xt) =

∑
f,s

{xf,s · LS
s + (1− xf,s) · LD} − Lmax,∀t ∈ T ,

hf
2 (xt) =

∑
s

xf,s − 1,∀f ∈ Ft.

Since PD is NP-hard, we relax the domain of PD from the
integer domain to the real domain and get problem P̃D:

min
∑T

t=1
ft(x̃t)

s.t.
∑T

t=1
gt(x̃t) ≤ 0,

∀t : ht(x̃t) ≤ 0, x̃t ∈ X̃ ,

(6)

where x̃t is the fraction version of xt, X̃ = [0, 1]|Ft|×S is the
real domain, and ht = [ht

1, ..., h2
f , ...]T.

Since ft is equivalent to a linear function, the constraints gt
and ht also consist of linear functions. Also, the domain of x̃t

is a convex set. Thus, P̃D is a convex optimization problem.
Queue-based Online Optimization. Due to the detection

frequency constraint over a long-term scope in problem P̃D, it
is considered as a long-term optimization problem. We propose
a queue-based approach to decouple the problem. First, we
introduce a virtual queue Qt to measure the cumulative degree
to which the detection frequency constraint is exceeded. ∀t:

Qt+1 = max{−gt(xt+1), Qt + gt(xt+1)}, (7)

where Qt+1 is updated per epoch by the increment gt(xt+1)
to measure the cumulative violation of the detection frequency
constraint. In other words, minimizing Qt is beneficial as it
allows more video frames to be offloaded to edge servers
for inference, thereby enhancing video analytics accuracy.
The original problem is then decoupled into a series of sub-
problems, where the optimization objective includes detection
accuracy, the violation of detection frequency constraint and
the regular term, while strictly restraining a latency constraint.
At the end of each epoch t, we optimize Pt+1 to make the
decision for the next epoch; here, α > 0 is the step size:

min
x∈X̃

{ft(x) + (Qt + gt−1(xt))gt(x) + α∥x− xt∥22}

s.t. ht(x) ≤ 0.
(8)

Algorithm 1 Queue-based OnLine Optimization Alg. (OLA)
Input: τ , Lmax

1: Initialize a proper step size α, Q1 = 0, g0(·) = 0;
2: Initialize x̂1 by offloading video frames to fixed edge

server, ẋ1 = ẍ1 = x̂1;
3: for t = 1 to T do
4: Deploy the provisioning x̂t;
5: Solve subproblem P0

t+1 to obtain ẋt+1;
6: Solve subproblem Pt+1 to obtain ẍt+1;
7: Update the virtual queue:

Qt+1 = max{−gt(ẋt+1), Qt + gt(ẋt+1)};
8: if (ẋt+1 − ẍt+1)

T(ẋt − ẍt+1) ≥ 0 then x̃t+1 = ẍt+1;
9: else x̃t+1 = ẋt+1;

10: Obtain x̂t+1 by rounding x̃t+1 randomly;
11: end for

Since the bandwidth bs,t between the device and server
s varies over time, the instantaneous constraint ht

1 is time-
varying. However, designing an online optimization algorithm
with guaranteed performance with time-varying constraints is
challenging [12]. To address this issue, we introduce a tight
constraint for the latency constraint. Although the network
bandwidth fluctuates over time, there exists a lower bound bs,0,
i.e., bs,0 ≤ bs,t. Therefore, there is LE

s,t ≤ LE
s,0. Accordingly,

the delay constraint ht
1 is transformed into a time-independent

tight constraint using the lower bound bs,0. Thus, ∀t ∈ T :

h0(xt) =
∑
f∈Ft

{xf,t,s ·LS
s,0 +(1−xf,t,s) ·LD}−Lmax. (9)

To facilitate the algorithm design and meet the analytics
requirements, we transform the original subproblem Pt+1 into
P0
t+1 with time-independent constraints:

min
x∈X̃

{ft(x) + (Qt + gt−1(xt))gt(x) + α∥x− xt∥22}

s.t. h0(x) ≤ 0.
(10)

Since constraints for P0
t+1 are tighter than those for Pt+1,

i.e., the constraints of h0(x) must be satisfied with ht(x).
Therefore, any feasible solutions of P0

t+1 also applies to Pt+1.
Given that Pt+1 is solved in the real domain, while the

original problem seeks solutions in the integer domain, we
have to convert the solution x̃t from the real domain into a
feasible solution x̂t in the integer domain. Thus, we propose
a randomized rounding strategy. For each element xi in x̃t, it
is rounded to 1 with a probability of xi, otherwise to 0.

We propose the queue-based OnLine optimization Algo-
rithm (OLA), shown in Alg. 1. In lines 4-7, OLA sepa-
rately solves P0

t+1 and Pt+1 for each epoch, obtaining the
respective solutions ẋt+1 and ẍt+1. We then use ẋt+1 to
update the virtual queue Qt. In lines 8-10, OLA derives
the integer solution for the original problem. Specifically, if
(ẋt+1− ẍt+1)

T(ẋt− ẍt+1) ≥ 0, we choose ẍt+1. Otherwise,
ẋt+1 with a tight constraint. Finally, the rounding strategy
converts x̃t+1 into integer x̂t+1.
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IV. THEORETICAL ANALYSIS

Due to space limitations, we show only theoretical results.
For details, please refer to supplemental materials [31].
Lemma 1. With the definition of dynamic regret and constraint
violation in integral and real domains, we have:

RegT ≤ R̃egT , V ioT = Ṽ ioT . (11)

Lemma 2. The solution of the objective function ft over the
real domain is bounded:

T∑
t=1

ft(x̃t) ≤
T∑

t=1

ft(ẋt) + 2max
t

{Qt}
T∑

t=1

θt. (12)

Theorem 1. With previous assumptions and lemmas, the
integral dynamic regret is upper-bounded as:

RegT ≤ R̃egT = o(T ), (13)

if Vλ, Vf , Vg , Vx are subliner with respect to T .

Theorem 2. With previous assumptions and lemmas, the
integral constraint violation is upper-bounded as:

V ioT = Ṽ ioT = o(T ), (14)

if Ṽg , Vλ are sublinear; Vf , Vg , Vx are subquadratic with T .

V. EXPERIMENTS AND CONCLUSION

Data and Settings. We use the Jetson AGX Xavier as
the terminal device, employing OpenCV (i.e., the optical
flow method) to perform object tracking on the device. We
implement OLA with an efficient convex programming solver
CVXPY from Python. In each epoch, two convex optimization
problems need to be solved: P0

t+1 and Pt+1. Jetson AGX
Orin is used as the edge server, with three different edge
servers deploying YOLOv5s, YOLOv5m, and YOLOv5l [13]
as inference models for object detection.

We perform evaluation on the real-world road monitoring
videos [14], with the raw videos processed to 1080p and 30fps
using the FFmpeg tool [17]. Each epoch contains 10 frames.
The network bandwidth is based on a real-world trace [15],
varying from 30 to 70 Mbps. Additionally, to ensure that the
bounding boxes for the target objects can be corrected with
frequent detection results, the video task offloading frequency
τ in the long-term constraint is set as 0.1.

We compare OLA with the following algorithms. (1) Frame-
by-Frame offloading: it ignores latency constraints and aims
to maximize analytics accuracy by offloading all frames to
the server deploying the smallest model, i.e., YOLOv5s. (2)

Fixed-Frame offloading: it randomly selects a server to offload
frames at a fixed frequency, e.g., every 15 frames.

Experiment Results. Fig. 2 shows the video analytics
accuracy for different algorithms. OLA achieves an average
accuracy of 79.9%, representing a 17.3% improvement over
Fixed-Frame (68.12%). This is because OLA can offload more
video frames, which helps correct cumulative tracking errors
between consecutive frames. Frame-by-Frame uses CNN mod-
els to detect objects in every frame, resulting in the highest
average accuracy of 85%, while OLA’s accuracy is only 6%
lower. Fig. 3 shows the overall latency for analyzing one
second of video for different algorithms. OLA has an average
latency of 944ms, which strictly adheres to the instantaneous
latency constraint and meets the real-time requirements for
video analytics. Although Frame-by-Frame achieves the high-
est accuracy, its overall latency reaches 2,997ms, which is 3.17
times that of OLA, with only a 6% increase in accuracy. Since
the Fixed-Frame offloads fewer video frames, it has the lowest
latency but also the lowest accuracy.

Fig. 4 shows the latency for processing each frame using
OLA. The average latency for online scheduling is 28ms, the
average transmission latency for a single frame is 78ms, the
average inference latency on an edge server is 26ms, and the
average tracking latency for a single frame on the device is
14ms. These time costs may vary with network bandwidth
fluctuations and changes in video content. Out of 240 frames
in an 8-second video, a total of 38 frames were offloaded,
with an average latency of 103ms for each offloaded frame,
including transmission and inference time. The total video
processing time per second is strictly controlled within one
second, meeting the real-time requirements for video analytics.

Conclusion. This work adopts a “detect + track” approach,
offloading video frames to edge servers for object detection
at a relatively high frequency while continuously tracking de-
tected objects on the terminal device using tracking technology
between consecutive frames. We propose a queue-based online
optimization algorithm, OLA. Experiments demonstrate that
OLA can achieve high-accuracy video analytics results while
meeting real-time requirements, and rigorous theoretical proof
verifies that the dynamic regret bound and constraint violation
bound grow sublinearly over time.
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