
Non-Submodularity and Approximability: Influence
Maximization in Online Social Networks

Huanyang Zheng∗, Ning Wang†, and Jie Wu‡
∗Google, Menlo Park, USA

†Rowan University, Glassboro, USA
‡Center for Networked Computing, Temple University, Philadelphia, USA

Email: huanyang.zheng@gmail.com, wangn@rowan.edu, and jiewu@temple.edu

Abstract—Motivated by many Online Social Network (OSN)
applications such as viral marketing, the Social Influence Max-
imization Problem (SIMP) has received tremendous attention.
SIMP aims to select k initially-influenced seed users to maximize
the number of eventually-influenced users. Under the indepen-
dent cascade model, the SIMP has been proved to be NP-hard,
monotone, and submodular. Therefore, a naive greedy algorithm
that maximizes the marginal gain obtains an approximation ratio
of 1−e−1. This paper extends the SIMP by considering the crowd
influence which is combined group influence in additional to indi-
vidual influence among a given crowd. Our problem is proved to
be NP-hard and monotone, but not submodular. It is proved to be
inapproximable within a ratio of |V |ε−1 for any ε > 0. However,
since user connections in OSNs are not random, approximations
can be obtained by leveraging the structural properties of OSNs.
We prove that the supmodular degree, denoted as ∆, of most
OSNs has the following property lim|V |→∞

∆
O(|V |) = 0, i.e.,

∆ ∈ o(|V |) for most OSNs. The supermodularity, denoted by
∆, is used to measure to what degree our problem violates the
submodularity. Two approximation algorithms have been applied
with ratios of 1

∆+2
and 1− e−1/(∆+1), respectively. Experiments

demonstrate the efficiency and effectiveness of our algorithms.
Index Terms—Social influence maximization; independent cas-

cade; non-submodularity; approximability; supermodularity.

I. INTRODUCTION

Online Social Networks (OSNs) mainly focus on building
social relationships among users who share interests, activities,
backgrounds, stories, and real-life connections. OSNs are very
valuable tools used by numerous people to extend their daily
contacts. Existing OSNs such as Facebook, Twitter, and VK
are three of the top ten most-visited websites in the world. As
of January 2014, 74% of online adults use OSNs.

Motivated by many OSN applications such as viral mar-
keting [1] and personalized recommendation [2], social influ-
ence propagations have received tremendous attention in the
last decade, especially for the Social Influence Maximization
Problem (SIMP). Given an influence propagation model such
as the independent cascade model, the SIMP selects k initially-
influenced seed users to maximize the number of eventually-
influenced users [3]. In the literature, the influence propagation
model is generally submodular [4]. Therefore, a simple greedy
algorithm can obtain an approximation ratio of 1 − 1

e to the
optimal algorithm. However, few results [5] are provided when
the influence propagation model even slightly violates the sub-
modularity. In contrast, this paper studies a non-submodular
SIMP under the independent cascade model in hypergraphs.

Charlie
Bob

Alice

Edge

Hyperedge
0.5

0.7

0.6

Influenced?

Alice Bob

Yes No

No Yes

Yes Yes

Probability to propagate the

influence to Charlie

0.5

0.7

1-(1-0.5)(1-0.6)(1-0.7) = 0.94

Fig. 1. Social influences through edges and hyperedges.

Our key justification for the non-submodularity comes from
the crowd psychology [6]: One reason is that people are afraid
of doing anything new. Attempting new things always requires
courage, since we do not know what will happen in the future.
Following the crowd gives people a cushion of comfort to
make mistakes. Another reason is because of criticism. Once
we do something atypical, we may be criticised heavily by
friends, family and parents for not doing what everyone else
is doing. After we fail, we would start doing what the crowd
does. As a result, the crowd psychology reveals that the
crowd influence is different from the combined independent
influences of people in the crowd. That is, in additional to
individual influence among a given crowd, there is a combined
group influence called crowd influence. This phenomenon
yields non-submodularity in social influence propagations,
which are modeled through hypergraphs.

Fig. 1 provides a more specific example. Directed edges
represent the influence from Alice or Bob to Charlie. The
influences Charlie receives from Alice and Bob are indepen-
dent of each other. According to crowd psychology, if both
Alice and Bob are influenced, there should exist a crowd
influence in addition to Alice’s and Bob’s influences. Fig. 1
shows how a combined influence on Charlie is calculated
using both individual influence and the crowd influence of
Alice and Bob. A hyperedge (of a hypergraph) is used to
depict such a crowd influence. Note that influences through
hyperedges are not submodular since seed user selections in
the SIMP are no longer diminishing returns. Consequently,
solving the SIMP in hypergraphs poses unique challenges. The
first challenge is to deal with non-submodularity. The problem
hardness and approximability both need to be explored. New
algorithms are needed, since a simple greedy algorithm can
no longer guarantee an approximation ratio. Another challenge
is scalability. Since hyperedges change the scalability of the
SIMP, it is difficult to reduce their complexities.

1

This paper studies the SIMP under the independent cascade
model in hypergraphs. The problem is proven to be NP-hard,
and cannot be approximated within a ratio of |V |ε−1 for
any ε > 0. |V | is the number of nodes in the hypergraph,
meaning that no algorithm can do better than a random seed
user selection in terms of the asymptotic approximation ratio.
However, since user connections in OSNs are not random,
approximation algorithms are proposed by leveraging certain
structural properties of OSNs. A concept called supermodu-
larity (denoted by ∆) is used. ∆ measures to what degree
our problem violates the submodularity, and ∆ is expected to
be bounded in OSNs. We prove that the supmodular degree,
denoted as ∆, of most OSNs has the following property
lim|V |→∞

∆
O(|V |) = 0, i.e., ∆ ∈ o(|V |) for most OSNs.

The supermodularity, denoted by ∆, is used to measure to
what degree our problem violates the submodularity. Two
approximation algorithms are applied with ratios of 1

∆+2 and
1− e−

1
∆+1 , respectively.

Our main contributions are summarized as follows:
• Motivated by the crowd psychology, we study the SIMP

in hypergraphs. Our problem is proven to be NP-hard,
monotone, non-submodular, and inapproximable.

• A concept called supermodularity is used to measure to
what degree hyperedges violate the submodularity. The
supermodularity is expected to be bounded in OSNs.

• Two approximation algorithms are applied with ratios
of 1

∆+2 and 1 − e−
1

∆+1 , respectively. Here, ∆ is the
supermodularity. Algorithms are scalable for large OSNs.

• Real data-driven experiments are conducted to evaluate
the proposed solutions. The results are shown from dif-
ferent perspectives to provide insightful conclusions.

II. RELATED WORKS

Motivated by applications such as viral marketing, personal-
ized recommendations, and online gaming [1, 2, 7], researches
on the social influence propagation have received tremendous
attention in the last decade, especially for the SIMP. The
original SIMP was proposed by Kempe et al. [3] with two
influence propagation models of independent cascade and
linear threshold. The SIMP aims to select k initially-influenced
seed users to maximize the number of eventually-influenced
users. Under the independent cascade and linear threshold
models, the SIMP has been proven to be NP-hard, monotone,
and submodular. Consequently, a simple greedy algorithm,
which iteratively maximizes the marginal gain, obtains an
approximation ratio of 1 − 1

e to the optimal algorithm. A
fruitful literature for the SIMP [8–11] has been developed.
However, almost all variations of the SIMP are submodular
or unbounded. For example, Chen et al. [12] considered
a variation of the SIMP with both positive and negative
influence propagations. Their model maintains submodularity
for maximizing the spread of positive influences. Unbounded
variations of the SIMP are studied, usually through a data
mining approach. For example, Goyal et al. [13] used available
traces to learn how influence propagates in OSNs. Based on the
learned model, the expected influence spread can be estimated

to solve the SIMP. Tang et al. considered the seed cost in SIMP
problem [14].

Unfortunately, few results [5] are provided when the influ-
ence propagation model even slightly violates the submodular-
ity. Hung et al. [5] studied a variation of the SIMP with multi-
ple items. Their problem is NP-hard and non-submodular, and
thus, only heuristic algorithms are provided. This is because
the problem of non-submodular function maximization [15]
has not been perfectly solved in the literature [16]. Although
the problem of supermodular function maximization can be
optimally solved by the minimum-norm-point algorithm [17],
non-submodular functions are not the same. The latest ap-
proach is based on the curvature [18], which assumes that the
marginal gain of the non-submodular function varies within a
given curvature. This paper can be viewed as a curvature-based
approach that is specially designed for the SIMP in OSNs.

Recent studies in network science show that many net-
works exhibit special structures. This paper relates to the
structural properties of OSNs. Recent research show that user
connections in OSNs are not truly random [19]. The degree
distribution in OSNs is acknowledged to follow the power-law
distribution [19]: a majority of users are inactive with a small
number of connections, while a minority of users are active
with a large number of connections. Based on [20], OSNs usu-
ally have small diameters (about 6), high clustering coefficients
(larger than 0.1), and community structures. These structural
properties can be incorporated into algorithmic designs.

III. MODEL AND FORMULATION

A. Model and Notations

Our scenario is based on a directed hypergraph G = (V,E),
where V = {v} is a set of nodes (i.e., users in an OSN),
and E = {e} is a set of directed hyperedges. Hyperedges
represent influence propagation directions, including personal
and crowd influences. | · | denotes the set cardinality: |V | and
|E| are the numbers of nodes and hyperedges, respectively.
For a hyperedge e, let He and Te denote its head and tail
sets of nodes (i.e., e connects nodes in He to nodes in Te).
Hyperedges are a generalization of normal edges. As a special
case, when |He| = |Te| = 1, e becomes a normal edge. Let we
denote the weight of e, representing the influence propagation
probability (0 ≤ we ≤ 1). Given an OSN, the hypergraph
G can be generated using Hung’s approach [5]: while nodes
are just users in the OSN, hyperedges and their weights can
be learned based on a statistical inference-based framework.
Therefore, this paper assumes that G is known a priori.

B. Independent Cascade in Hypergraphs

The independent cascade is a classic model [3] that simu-
lates influence propagations in OSNs. Since the independent
cascade is designed for normal graphs, a simple extension is
made for hypergraphs. Let us start with a set, S, of nodes.
All nodes in S are initially active and are also called seed
users [3]. In contrast, all other nodes are initially inactive.
Independent cascade unfolds in discrete steps according to the
following randomized process. Given a hyperedge e, when all

2

e3

e2

e1

v2

v3

v1v5

v6

v4

S

(a) v1 is reachable from S.

e3

e2

e1

v2

v3

v1v5

v6

v4

S

(b) v1 is not reachable from S.

Fig. 2. An example of the reachability.

nodes in He first becomes all active in step t, attempts are
made to activate each inactive node in Te. Each activation
attempt is independent of all others, and it succeeds with a
probability we. Here, we represents the influence propagation
probability. If an inactive node has received multiple activation
attempts, these activation attempts can be sequenced in an
arbitrary order. If an inactive node is successfully activated,
it will become active in step t+ 1. In addition, whether or not
an activation attempt succeeds, it will have no further impacts
in subsequent steps. The above process iterates step by step
and terminates when no more activations are possible.

Active nodes in the independent cascade model represent
influenced nodes. All seed nodes in S are initially-influenced,
while all active nodes at the end of the process are eventually-
influenced. Note that a hyperedge e could only propagate the
influence when all nodes in He first become all active. If He

includes an inactive node, e cannot propagate the influence.
This is because hyperedges represent crowd influences. We use
σ(S) to denote the expected number of eventually-influenced
nodes. σ(S) is also called the influence spread of S.

C. Problem Formulation

Our objective is to select k initially-influenced seed users
to maximize the number of eventually-influenced users:

maximize σ(S) (1)
s.t. |S| ≤ k (2)

k is a pre-defined constant to bound the size of the seed set
S. Given S, σ(S) is determined by the independent cascade
model. Our problem is almost the same as the classic SIMP
in [3], except that our problem uses a hypergraph rather than
a normal graph. However, this difference, despite how small it
seems, leads to unique challenges. This is because the SIMP
has become non-submodular instead of submodular.

For presentation simplicity, four concepts (i.e., hyperdegree,
cycle, path, and reachability) are defined:

Definition 1: Let dv denote the hyperdegree of the node v.
dv is the number of hyperedges that include v in their heads
or tails, i.e., dv = |{e | v ∈ He or v ∈ Te}|.

Definition 2: For a directed hypergraph G = (V,E), a cycle
in G is defined as a sequence (v0, e0, v1, e1, ..., en−1, v0) of
alternating nodes and hyperedges where (i) ei is distinct for
∀i ∈ {0, ..., n−1}, (ii) vi ∈ Hei for ∀i ∈ {0, ..., n−1}, and
(iii) v(i+1)%n ∈ Tei for ∀i ∈ {0, ..., n−1}.

Definition 3: For a directed hypergraph G = (V,E), a path
from v0 to vn in G is a sequence (v0, e0, v1, e1, ..., en−1, vn)
of alternating nodes and hyperedges where (i) ei is distinct

for ∀i ∈ {0, ..., n−1}, (ii) vi ∈ Hei for ∀i ∈ {0, ..., n−1}, and
(iii) vi+1 ∈ Tei for ∀i ∈ {0, ..., n−1}.

Definition 4: For a directed hypergraph G = (V,E), a node
v is said to be reachable from a node set S if (i) there exists
a path from a node in S to v and (ii) each head node of each
hyperedge of the above path is reachable from S.

Note that the reachability is recursively defined. An example
is shown in Fig. 2. In Fig. 2(a), v1 is reachable from S since
v2 and v3 are also reachable from S. In contrast, in Fig. 2(b),
v1 is not reachable from S since v2 is not reachable from S.

IV. ANALYSIS

A. NP-hard and Monotone

We start with the problem hardness:
Theorem 1: The SIMP in a hypergraph is NP-hard.
This is because the classic SIMP in a normal graph [3] is

NP-hard by reduction from the set cover problem, which is
NP-complete. Meanwhile, every instance in the classic SIMP
is a special case of our problem (a graph is a special case of a
hypergraph). Therefore, the SIMP in a hypergraph is NP-hard.

Theorem 2: Given a hypergraph G, σ(S) is monotone with
respect to S, meaning that σ(S′) ≤ σ(S) for ∀S′ ⊆ S.

Proof: We prove through formulating an equivalent view of
the independent cascade. Let us convert the hypergraph G to
another hypergraph G′. G and G′ have the same nodes. Each
hyperedge, e, in G is mapped to a set, {e′}, of hyperedges in
G′: {e′ |we = we′ , He′ = He, |Te′ | = 1, Te′ ⊆ Te}. Such a
conversion decomposes hyperedges in G by separating their
tail nodes. By definition, the independent cascades in G and
G′ should be exactly the same.

In G′, let us consider a hyperedge e′ whose head nodes
first become all active. Note that e′ has exactly one tail node
by definition. Now e′ tries to activate its tail node, succeeding
with probability we′ . We can view the outcome of this random
event as being determined by flipping a coin of bias we′ . From
the view of the independent cascade, it does not matter whether
the coin was flipped at the moment that e′ tries to activate its
tail node, or whether it was flipped at the very beginning of the
whole process and is only being revealed now. Continuing this
reasoning, we can assume that for each hyperedge e′ ∈ G′, a
coin of bias we′ is flipped at the very beginning of the process
(independently of the coins for all other hyperedges), and the
result is stored so that it can be checked later when e′ tries to
activate its tail node.

The remainder is similar to [3]. With all the coins flipped
in advance, the independent cascade in G′ can be equivalently
viewed as follows. In G′, the hyperedges, for which the coin
flip indicated an activation will be successful, are declared to
be live; the remaining hyperedges are declared to be blocked.
If we fix the outcomes of the coin flips and then initially
activate a seed set S, it is clear how to determine the full
set of active nodes at the end of the independent cascade:
a node v ends up active if and only if it is reachable (see
Definition 4) from S via only live hyperedges. In each possible
set of outcomes (in terms of all coin flip outcomes on the
hyperedges), if a node v is reachable from S′, it must be

3

Algorithm 1 Naive Greedy (NG)
Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S, initiated ∅.

1: while |S| < k do
2: Find v = arg maxv∈V σ(S ∪ {v})− σ(S).
3: Update S = S ∪ {v}.

reachable from S, since S′ ⊆ S. Therefore, σ(S′) ≤ σ(S)
holds for ∀S′ ⊆ S, and the proof completes. �

B. Non-Submodular and Inapproximability

Theorem 3: Given a hypergraph G, σ(S) is not submodular
with respect to S, meaning that σ(S ∪ {v})− σ(S) > σ(S′ ∪
{v})− σ(S′) for ∃ v ∈ V, S′ ⊂ S, S ⊆ V .

Proof: We prove by a counterexample in Fig. 2(a). We focus
on three nodes of v1, v2, v3, and one hyperedge of e1 with
w1 = 1. Let us set S′ = ∅, S = {v2}, and v = v3. We have
σ(S ∪ {v}) = 3, since v1 will be influenced by v2 and v3.
Meanwhile, we have σ(S) = 1 and σ(S′∪{v}) = 1, since not
all head nodes of e1 are active, and thus, e1 cannot activate
v1. In addition, we have σ(S′) = 0 since S′ = ∅. As a result,
σ(S ∪ {v})− σ(S) = 2 > σ(S′ ∪ {v})− σ(S′) = 1. �

The submodularity for the influence propagation in a normal
graph is not preserved in a hypergraph. The intuition is that
the SIMP is no longer diminishing return due to the crowd
influence, which is in addition to the influence of each person
in the crowd. This phenomenon yields non-submodularity. A
simple variation of Hung’s first theorem in [5] can lead to the
following approximability result:

Theorem 4: For the SIMP in a general hypergraph, unless
P = NP, no algorithm can guarantee an approximation ratio
of |V |ε−1 for any ε > 0.

Theorem 4 validates that the SIMP in a general hypergraph
is not approximable, i.e., any given algorithm must perform
poorly under certain hypergraphs. Therefore, Theorem 4 poses
a unique challenge to solve the SIMP in OSNs.

C. Naive Greedy

Since Theorem 4 shows the inapproximability of the SIMP
in a general hypergraph, this subsection focuses on a naive
greedy algorithm, as shown in Algorithm 1. Starting with an
empty seed set (line 1), it iteratively add a node that maximizes
the marginal gain of σ(Si), until k nodes are selected (lines
2 to 5). Since σ(·) is no longer submodular, such a greedy
algorithm cannot guarantee an approximation ratio of 1−1/e.
Note that Algorithm 1 involves the sub-problem of computing
σ(S) for a given S. This sub-problem is NP-hard [21] and has
been extensively studied in the literature. This paper does not
explore this sub-problem, and uses the Monte Carlo simulation
[21] to compute σ(S) for a given S in G.

V. ALGORITHMS

The previous section has proven that the SIMP in a general
hypergraph is NP-hard, monotone, non-submodular, and not
approximable within a ratio of |V |ε−1 for any ε > 0. However,

OSNs are not general hypergraphs. Recent studies in network
science validate that user connections in OSNs are not truly
random [19]. Consequently, approximation algorithms become
possible by leveraging certain structural properties of OSNs.

We have proved that the SIMP in a general hypergraph is
NP-hard, monotone, non-submodular, and not approximable
within a ratio of |V |ε−1 for any ε > 0. However, OSNs are not
general hypergraphs, and thus, approximation algorithms are
possible by leveraging certain structural properties of OSNs.

A. Supermodularity

To enable approximation algorithms by revealing structural
properties of OSNs, two concepts in [15] are used:

Definition 5: Given a monotone objective function σ(·), the
modularity set of a node v is Mv = {v′ |σ(S∪{v, v′})−σ(S∪
{v′}) > σ(S∪{v})−σ(S) for ∃ v ∈ V, v′ ∈ V, S ⊆ V }, which
includes all nodes that might increase the marginal gain of v.

Definition 6: The supermodularity, ∆, is the maximum
cardinality among all modularity sets, i.e., ∆ = maxv |Mv|.

For a node v, only nodes in Mv might increase the marginal
gain of v for the objective function σ(·). In contrast, nodes that
are not in Mv never increase the marginal gain of v. If v is
locally submodular for σ(·), then Mv = ∅. Consequently, the
supermodularity ∆ measures the degree to which σ(·) violates
the submodularity. σ(·) gets closer to the submodularity for a
smaller ∆, and is submodular when ∆ = 0.

For a general hypergraph, ∆ is not bounded, and can be
as large as O(|V |). This is the reason that SIMP in a general
hypergraph is not approximable.

B. OSNs as Scale-Free Hypergraphs

Recent studies in network science show that OSNs are scale-
free networks [19], meaning that the degree distribution in an
OSN follows the power-law distribution [22]. Let pd denote
the fraction of nodes with a hyperdegree d. The power-law
means that pd = (γ − 1)d−γ , in which γ ranges from 2 to 4
in OSNs [19]. Let w = 1

|E|
∑
e we denote the average weight

of the hyperedges. We proves that the supmodular degree,
denoted as ∆, of most OSNs has the following property
lim|V |→∞

∆
O(|V |) = 0, i.e., ∆ ∈ o(|V |) for most OSNs.

Theorem 5: In scale-free OSNs with γ and w, it is expected
to have ∆ ∈ o(|V |) when 4 + 6w γ−1

γ−2 ≤ 3(γ−1
wγ+1)2.

Proof: Similar to the proof of Theorem 2, we again form
an equivalent view of the independent cascade to compute ∆.
For each hyperedge e, coins are flipped based on its weight,
we. Let Cv be the maximum Weakly Connected Component
(WCC) containing v via live hyperedges in G after the coin
flip. Here, two nodes are weakly connected if there exists a
path connecting them (see Definition 3), when each hyperedge
is regarded as bi-directional. We claim that Mv ⊆ Cv . This is
because nodes outside Cv cannot increase the marginal gain
of v. Consequently, we can conclude that ∆ is upper-bounded
by the size of the maximum WCC via live hyperedges in G.

The following part of the proof uses Molloy’s Theorem 1
in [23] to derive the size of the maximum WCC through live
hyperedges in G. All prerequisites of this theorem are satisfied.

4

In addition, Molloy’s Theorem 1 was developed under general
graphs, but it can be applied to hypergraphs through separating
each hyperedge into a set of normal edges. Let qd denote the
fraction of nodes with a live-hyperdegree d (live-hyperdegree
is the hyperdegree that only counts live hyperedges). We have:

qd =
1

w
pd/w =

γ − 1

w

(d
w

)−γ
(3)

Let d = w γ−1
γ−2 be the average live-hyperdegree. We define:

χ(α) = d− 2α−
∞∑
d=1

dqd
(

1− 2α

d

) d
2

≈ d− 2α−
∫ ∞
d=1

dqd
(

1− 2α

d

) d
2 dd− ψ

= d− 2α− γ − 1

wγ+1

[2d1−γ(1− 2α

d
)
d
2

+1

d+ 2

]∣∣∣∞
d=1
− ψ

= d(1− 2α

d
) +

γ − 1

wγ+1 ×
2

3
(1− 2α

d
)

3
2 − ψ (4)

Eq. 4 is derived under 0 ≤ 2α ≤ d. E q. 4 does not consider
the case of d < 1 (no impact on the graph connectivity).
Here, ψ comes from Euler-Maclaurin formula for integral
boundaries:

ψ =
1

2
× [

γ − 1

wγ+1 (1− 2α

d
)

1
2 + 0] =

1

2

γ − 1

wγ+1 (1− 2α

d
)

1
2 (5)

Let αD be the smallest positive root for χ(α) = 0. We have
the following result for αD and definition for εD:

(1− 2αD

d
)

1
2 =

√
12(γ−1

wγ+1)2 + 9d
2 − 3d

4 γ−1
wγ+1

(6)

εD = 1−
∑
d

qd(1−
2αD

d
)
d
2 ≤ 1− q1(1− 2αD

d
)

1
2

=
(4 + 3d)−

√
12(γ−1

wγ+1)2 + 9d
2

4
(7)

We can have εD ≤ 0 when 4+6w γ−1
γ−2 ≤ 3(γ−1

wγ+1)2. Molloy’s
Theorem 1 in [23] proved that the size of the maximum WCC
via live hyperedges in G (the size of a giant component in a
random graph) is εD|V |+o(|V |), or just o(|V |) when εD ≤ 0.
Since ∆ is upper-bounded by the size of the maximum WCC
via live hyperedges in G, the proof completes. �

The insight of Theorem 5 is that the influence propagation
from a node decays quickly with respect to w. The influence
of a node becomes limited when w is small (we have ∆ = 0
when w = 0). Note that 4+6w γ−1

γ−2 ≤ 3(γ−1
wγ+1)2 is satisfied for

most OSNs that have w < 0.7 and γ > 2.1 [21]. Therefore,
the SIMP in OSNs is approximable. In addition, γ has a big
impact on ∆. When γ is smaller, the hyperdegree distribution
is closer to “uniform,” and ∆ is larger. On the other hand,
when γ is larger, fewer nodes have large hyperdegrees and
∆ becomes smaller. A smaller ∆ can represent a smaller gap
from the submodularity. The following subsections will use the
existing supermodularity techniques [15, 24] to approximate
the SIMP with a bounded ∆ in OSNs. We simplify Feldman’s
algorithm and proof [15] to a special case for the SIMP.

Hi \ Hi +1

Hi +1 \ Si +1 Si

Si +1 \ Si

Fig. 3. Relationship between Si and Hi. We have Si+1 = (Si+1 \Si)∪Si,
Hi+1 = (Hi+1\Si+1)∪Si+1, and Hi = (Hi\Hi+1)∪(Hi+1\Si+1)∪Si.

C. Improved Greedy

By leveraging the structural properties of OSNs, ∆ is shown
to be bounded in OSNs (Theorem 5). Consequently, approxi-
mation algorithms become possible. The key idea is that, when
the node v is selected as a seed node, nodes in Mv should
be further considered, since they can improve v’s influence
propagations. This observation can improve Algorithm 1.

Consequently, Algorithm 2 is proposed as another greedy
algorithm. In line 1, it initializes i = 0 and S0 = ∅. Lines 2
to 5 describe greedy iterations. While Algorithm 1 iteratively
selects one seed node, Algorithm 2 iteratively selects a set of
seed nodes, in order to mitigate the negative impact resulting
from the non-submodularity. In line 3, once v is selected as
a seed node, partial nodes in Mv (denoted as M ′v) are jointly
selected as seed nodes. The greedy criterion is that v and M ′v
can maximize the marginal gain of the current seed set, i.e.,
maximize σ(Si ∪ {v} ∪M ′v) − σ(Si). The constraint is that
|Si ∪ {v} ∪M ′v| ≤ k, i.e., at most k seeds are selected. Lines
4 and 5 update the seed set Si and the index i. The greedy
iteration terminates once k seed nodes are selected.

Computing σ(S) for a given S is considered to take O(|E|)
in the Monte Carlo simulation [21]. Algorithm 2 has at most
k greedy iterations, and each iteration it exhausts v and Mv

in line 3. Consequently, the time complexity of Algorithm 2
is O(2∆k|V ||E|). We claim that Algorithm 2 is bounded:

Theorem 6: Algorithm 2 has an approximation ratio of 1
∆+2

to the optimal algorithm.
Proof: Let S∗ denote the optimal set of seed nodes, in terms

of maximizing σ(·). An auxiliary parameter, Hi, is used. With
H0 = S∗, Hi is recursively defined as an arbitrary subset of
Hi−1 ∪ Si, under the constraint that Si ⊆ Hi and |Hi| = k.
Intuitively, Hi consists of Si and a part of S∗. The relationship
between Si and Hi is shown in Fig. 3. When i becomes larger,
nodes from Si are added to Hi, and nodes in S∗ are removed
from Hi, maintaining |Hi| = k. By definition, we have:

|Hi+1| = |Hi| − |Hi \Hi+1|+ |Si+1 \ Si| (8)

Since |Hi+1| = |Hi| = k, we have:

|Hi \Hi+1| = |Si+1 \ Si| ≤ |{v} ∪M ′v| ≤ 1 + ∆ (9)

This is because M ′v ⊆Mv and ∆ = maxv |Mv|. Eq. 9 means
that, in each greedy iteration, at most 1 + ∆ nodes in S∗ are
ignored by Algorithm 2.

We claim that the marginal gain in each greedy iteration of
Algorithm 2 has a lower bound with respect to σ(Hi):

σ(Hi)−σ(Hi+1) ≤ (∆+1)×[σ(Si ∪ {v} ∪M ′v)−σ(Si)] (10)

5

Algorithm 2 Improved Greedy (IG)
Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S, initiated ∅.

1: while |S| < k do
2: Find arg maxv∈V,M ′

v⊆Mv
σ(S ∪ {v} ∪M ′v)− σ(S) s.t.

|S ∪ {v} ∪M ′v| ≤ k.
3: Update S = S ∪ {v} ∪M ′v .

To prove Eq. 10, let us order nodes of Hi\Hi+1 in an arbitrary
order (say v1, v2, ..., vl), and let Hj

i = Hi \{v1, v2, ..., vj} for
1 ≤ j ≤ l (H0

i = Hi and H l
i ⊆ Hi+1). For each j, we have:

σ(Si ∪ {vj} ∪ (Mvj ∩H
j
i))− σ(Si)

≥σ(Si ∪ {vj} ∪ (Mvj ∩H
j
i))− σ(Si ∪ (Mvj ∩H

j
i))

≥σ(Si ∪ {vj} ∪Hj
i)− σ(Si ∪Hj

i) (11)

The first inequality is from the monotonicity in Theorem 2,
since Si ⊆ Si∪(Mvj ∩H

j
i) and σ(Si) ≤ σ(Si∪(Mvj ∩H

j
i)).

The second inequality is from the definition of the modularity
set, because only nodes in Mvj can increase the marginal gain
of vj . Hence, nodes in Hj

i \Mvj might decrease the marginal
gain of vj . By accumulating Eq. 11 among j, we obtain:∑l

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩H

j
i))− σ(Si)]

≥
∑l

j=1
[σ(Si ∪ {vj} ∪Hj

i)− σ(Si ∪Hj
i)]

=σ(Si ∪H0
i)− σ(Si ∪Hl

i) ≥ σ(Hi)− σ(Hi+1) (12)

The first inequality is from Eq. 11. The equality results from
the definition of Hj

i , since {vj} ∪ Hj
i = Hj−1

i . The last
inequality is because σ(Si ∪H0

i) = σ(Hi) and σ(Si ∪H l
i) ≤

σ(Hi+1). We have σ(Si ∪H0
i) = σ(Hi), since H0

i = Hi and
Si ⊆ Hi. We have σ(Si∪H l

i) ≤ σ(Hi+1) by the monotonicity,
since Si ⊆ Si+1 ⊆ Hi+1 and H l

i ⊆ Hi+1. We have:

(∆ + 1)× [σ(Si ∪ {v} ∪M ′v)− σ(Si)]

≥
∑l

j=1
[σ(Si ∪ {v} ∪M ′v)− σ(Si)]

≥
∑l

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩H

j
i))− σ(Si)]

≥σ(Hi)− σ(Hi+1) (13)

The first inequality results from Eq. 9, in which 1 ≤ j ≤ l =
|Hi\Hi+1| ≤ ∆+1. The second inequality comes from line 3
in Algorithm 2, which always selects the maximum marginal
gain in each greedy iteration. The third inequality comes from
Eq. 12. Therefore, Eq. 10 is valid.

Since the marginal gain in each greedy iteration of Algo-
rithm 2 has a lower bound, we can accumulate Eq. 10 among
all greedy iterations (note that Si+1 = Si ∪ {v} ∪M ′v):

σ(H0)− σ(Hi) ≤ (∆ + 1)× [σ(Si)− σ(S0)] (14)

Since H0 = S∗, Hi = Si = S when Algorithm 2 terminates,
and S0 = ∅, we have σ(S∗) ≤ (∆ + 2)× σ(S). �

The key insight of Theorem 6 is that Algorithm 2 ignores at
most 1+∆ nodes in the optimal set of seed nodes, resulting in
a bounded marginal gain for each greedy iteration. Theorem 6
does not violate the inapproximability in Theorem 4, since ∆

Algorithm 3 Capped Greedy (CG)
Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S, initiated ∅.

1: for each v′ ∈ V do
2: for each ∆′ from 1 to ∆ do
3: for each S′ ⊆ {v′}∪Mv′ s.t. |S′| ≤ min{k,∆′} do
4: while |S′| < k do
5: Find arg maxv∈V,M ′

v⊆Mv
σ(S′ ∪ {v} ∪M ′v) −

σ(S′) s.t. |S′ ∪ {v} ∪M ′v| ≤ k and M ′v ≤ ∆′.
6: Update S′ = S′ ∪ {v} ∪M ′v .
7: if σ(S′) > σ(S) then
8: Update S = S′.

can be as large as Θ(|V |) in a general hypergraph. However,
Algorithm 2 still has a critical drawback. Although Theorem 5
validates that ∆ ∈ o(|V |) in OSNs, ∆ may still be numerically
large, in terms of the time complexity and the approximation
ratio. As a result, Algorithm 2 may perform poorly in an OSN
with a small γ, especially when γ gets closer to 2.
D. Capped Greedy

Since ∆ has a critical impact on Algorithm 2, we need to
further identify its role in the algorithm design. The key idea
is that, although |Mv| could be large, not all nodes in Mv have
huge impacts on the marginal gain of v for σ(·). Intuitively,
only v’s neighbors, who share hyperedges with large weights,
are important in Mv . Moreover, the optimal set of seed nodes
are not able to include all nodes in Mv if |Mv| > k. Therefore,
capping the number of selected seed nodes in Mv might lead
to a better performance, since low impact nodes in Mv can
be replaced by high impact nodes outside Mv . To find out the
best cap, we can simply exhaust all possible caps.

As a result, Algorithm 3 is proposed as an extension of
Algorithm 2. In line 1, it initializes S = ∅. Line 2 includes a
loop statement to exhaust all possible scenarios, in terms of
the combination of each node v′ ∈ V , each ∆′ from 1 to ∆,
and each set S0 ⊆Mv′ constrained by |S0| = k mod (∆′+1).
Instead of ∆, ∆′ is used as the cap. Lines 3 to 7 are basically
the same as Algorithm 2, except for the cap. This part embeds
Algorithm 2 to search the set of seed nodes in each possible
scenario. The cap is added at the end of line 5 (M ′v ≤ ∆′),
while Algorithm 2 uses M ′v ≤ ∆ by default (∆ = maxv |Mv|
by definition). Lines 8 and 9 record the best set of seed nodes
searched among all possible scenarios (specified by line 2).

The total number of all possible scenarios is O(|V | ·∆ ·2∆).
The time complexity of Algorithm 2 is O(2∆k|V ||E|). Hence,
the time complexity of Algorithm 3 is O(4∆∆k|V |2|E|). But
Algorithm 3 has a better bound than Algorithm 2:

Theorem 7: Algorithm 3 has an approximation ratio of 1−
e−

1
∆+1 to the optimal algorithm.
Proof: Let S∗ denote the optimal set of seed nodes, in terms

of maximizing σ(·). Since Algorithm 3 exhausts all possible
v′, ∆′, and S0 in line 2, there must exist a scenario in which
v′ = arg maxv′ |Mv′ ∩S∗|, ∆′ = |Mv′ ∩S∗|, S0 ⊆Mv′ ∩S∗,
and |S0| = k mod (∆′ + 1). All the following proof is based

6

on the above scenario, although Algorithm 3 picks the best
effort among all scenarios (lines 8 and 9).

In the above scenario, we claim that σ(Si) in each greedy
iteration of Algorithm 2 has a lower bound to σ(S∗):

σ(Si) ≥ (1− 1

k′
)i × σ(S0) + [1− (1− 1

k′
)i]× σ(S∗) (15)

Here, k′ is defined as k − [k mod (∆′ + 1)]. In other words,
k′ is the largest multiple of ∆′ + 1 constrained by k′ ≤ k.
Eq. 15 is proved by induction. It is trivial that Eq. 15 holds
when i = 0, since (1 − 1

k′)
0 = 1. Assume that Eq. 15 holds

for i, and we prove that Eq. 15 holds for i + 1. Since S0 ⊆
(Mv′ ∩ S∗) ⊆ S∗ and |S0| = k mod (∆′ + 1), we have:
|S∗ \ S0| = |S∗| − |S0| = k − [k mod (∆′ + 1)] = k′ (16)

Similarly, let us order nodes of |S∗ \S0| in an arbitrary order
(say v1, v2, ..., vk′), and let S∗j = {v1, v2, ..., vj} for 1 ≤ j ≤
j′ (S∗0 = ∅). Similar to Eq. 11, for each j, we have:

σ(Si ∪ {vj} ∪ (Mvj ∩ S
∗))− σ(Si)

≥σ(Si ∪ {vj} ∪ (Mvj ∩ S
∗
j−1))− σ(Si)

≥σ(Si ∪ {vj} ∪ (Mvj ∩ S
∗
j−1))− σ(Si ∪ (Mvj ∩ S

∗
j−1)))

≥σ(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1) (17)

The first and second inequalities are from the monotonicity in
Theorem 2, since S∗j−1 ⊆ S∗ and Si ⊆ Si ∪ (Mvj ∩ S∗j−1)).
So σ(Si∪{vj}∪ (Mvj ∩S∗)) ≥ σ(Si∪{vj}∪ (Mvj ∩S∗j−1))
and σ(Si) ≤ σ(Si ∪ (Mvj ∩ S∗j−1))). The third inequality is
from the definition of the modularity set, since only nodes in
Mvj can increase the marginal gain of vj (other nodes might
decrease the marginal gain of vj). By accumulating Eq. 17
among j, we have the following inequality:∑k′

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩ S∗))− σ(Si)]

≥
∑k′

j=1
[σ(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1)]

=σ(Si ∪ S∗)− σ(Si) ≥ σ(S∗)− σ(Si) (18)

The first inequality is from Eq. 17. The equality results from
the definition of S∗j , since {vj}∪S∗j−1 = S∗j . Note that, since
S∗k′ ⊆ S∗ \ S0 and S0 ⊆ Si, we have Si ∪ S∗k′ = Si ∪ S∗. We
have Si ∪ S∗0 = Si since S∗0 = ∅. The last inequality is from
the monotonicity, since S∗ ⊆ Si ∪ S∗. We have:

σ(Si+1)− σ(Si) = σ(Si ∪ {v} ∪M ′v)− σ(Si)

=
1

k′

∑k′

j=1
[σ(Si ∪ {v} ∪M ′v)− σ(Si)]

≥ 1

k′

∑k′

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩ S

∗))− σ(Si)]

≥ 1

k′
[σ(S∗)− σ(Si)] (19)

The first inequality is because line 5 in Algorithm 3 always
selects the maximum marginal gain in each greedy iteration.
Mvj ∩S∗ is also constrained by |(Mvj ∩S∗)| ≤ ∆′, since the
scenario sets v′ = arg maxv′ |Mv′ ∩S∗| and ∆′ = |Mv′ ∩S∗|.
The second inequality is from Eq. 18. We rewrite Eq. 19 as:

σ(Si+1) ≥ 1

k′
[σ(S∗)− σ(Si)] + σ(Si)

=
1

k′
× σ(S∗) + (1− 1

k′
)× σ(Si)

≥(1− 1

k′
)i+1 × σ(S0) + [1− (1− 1

k′
)i+1]× σ(S∗) (20)

TABLE I
DATASET STATISTICS.

Forum Board Citation
Number of nodes 899 355 16,726

Number of hyperedges 67,332 2,684 92,462
Maximum hyperdegree 8,577 107 351
Power-law exponent γ 2.36 3.50 3.36

The first equality is from Eq. 19 and the last equality is from
the induction hypothesis (substituting σ(Si) in Eq. 15). As a
result, Eq. 15 is proved by induction.

Since each greedy iteration of Algorithm 3 selects at most
∆′ + 1 seed nodes, Algorithm 3 has at least bk/(∆′ + 1)c =
k′/(∆′ + 1) greedy iterations. If we use i = k′/(∆′ + 1) for
Eq. 15, the proof completes:

σ(S) ≥ σ(Sk′/(∆′+1))

≥(1− 1

k′
)

k′
∆′+1 × σ(S0) + [1− (1− 1

k′
)

k′
∆′+1]× σ(S∗)

≥[1− (1− 1

k′
)

k′
∆′+1]× σ(S∗)

≥(1− e−
1

∆′+1)× σ(S∗) ≥ (1− e−
1

∆+1)× σ(S∗) (21)

The approximation ratio is 1− e−
1

∆′+1 ≥ 1− e−
1

∆+1 . �

E. Time Complexity Reduction

Although Algorithm 3 has a better bound than Algorithm 2,
its time complexity is much larger. However, we claim that
the time complexity of Algorithm 3 can be reduced for
OSNs. This is mainly because we do not need to exhaust all
possible scenarios for practical usage. Rather than exhausting
∆′ from 1 to ∆, we can simply stop at a small constant.
For example, we only exhaust ∆′ from 1 to 3. This is
because only v’s neighbors who share hyperedges with large
weights are important in Mv (people are not likely to have
many close friends). Similarly, we do not need to exhaust
each node v for the initialization of S0. Instead, we can
focus on the largest-hyperdegree nodes (e.g., only the top
100 nodes). This is because the optimal set of seed nodes
is not likely to exclude the largest-hyperdegree nodes. Using
this approach, the time complexity of Algorithm 3 can be
reduced to O(k|V ||E|), which is asymptotically the same as
Algorithm 1. Our experiments demonstrate that this approach
only slightly hurts the performance of Algorithm 3.

VI. EXPERIMENTS

A. Dataset Information and Statistics

Our experiments are based on three datasets (Forum, Board,
and Citation) from Tore Opsahl [25]. Forum records user activ-
ities in a forum with different topics. Board records directors
belonging to the boards of some companies. Citation records
collaborations among paper authors. The dataset statistics are
shown in Table I. The distributions of node hyperdegree (i.e.,
dv) and modularity set cardinality (i.e., |Mv|) are shown in
Fig. 4. For the above three datasets, flags (triangles, circles,
and squares) represent the real distributions by statistics, and
lines (dotted, dashed, and solid) are the fitting curves. Fig. 4 is
plotted in a log-log manner, and the y-axis shows the fraction
of nodes corresponding to the x-axis. Fig. 4(a) validates the

7

10 20 30 40 60 80 100
10

−3

10
−2

10
−1

10
0

Hyperdegree

F

ra
ct

io
n

Fitting Forum
Fitting Boards
Fitting Citation

(a) Distribution of dv among v.

20 40 60 80 120 160 200
10

−3

10
−2

10
−1

10
0

Modularity Set Cardinality

F

ra
ct

io
n

Fitting Forum
Fitting Boards
Fitting Citation

(b) Distribution of |Mv | among v.

Fig. 4. Distribution of dv and |Mv | in three datasets.
TABLE II

RUNNING TIME STATISTICS.

WH NG HG IG CG-2 CG-3 CG
Forum 2s 31m 2d 45m 75m 155m 22h
Board 1s 7m 21h 15m 31m 58m 5h

Citation 18s 85m 28d 114m 169m 423m 5d

power-law distribution. It can be seen that the fraction of nodes
with hyperdegree d is proportional to d−γ in each of these
three dataset. The distribution of modularity set cardinality
also follows power-law, as shown in Fig. 4(b).

B. Comparison Algorithm and Performance

Algorithms 1, 2, and 3 are denoted as NG, IG, and CG,
respectively. Comparison algorithms are:
• Weighted Hyperdegree (WH). It ranks all nodes by their

hyperdegrees and selects the top k nodes as seed nodes.
• Hyperedge-aware Greedy (HG) from Hung et al. [5]. It

iteratively selects the set of nodes that maximizes the ratio
of marginal gain to set cardinality. The greedy iteration
terminates when k nodes are selected. HG is not bounded.

All evaluation results are shown in Fig. 5. Figs. 5(a),
5(b), and 5(c) correspond to the Forum, Board, and Citation
datasets, respectively. A larger result represents a better per-
formance, since seed nodes could eventually influence more
nodes on expectation. Interestingly, Fig. 5 shows that not all
algorithms follow the principal of diminishing return. The
marginal gain of one seed node might not scale down with
respect to the number of existing seed nodes in S. This is
because our SIMP in hypergraphs is not submodular, i.e.,
σ(S)/|S| might be larger than σ(S′)/|S′| for S′ ⊂ S. Among
all the algorithms, CG achieves the best performances in all
these three datasets, while WH has the worst performances.
This is simply because CG considers the impact of crowd
influences while WH does not. Compared to other algorithms,
CG has at least 10%, 5%, and 15% more eventually-influenced
users in Forum, Board, and Citation, respectively (for k = 8).
Compared with NG, the CG achieves 20% more eventually-
influenced users in all three datasets. As for NG, HG, and IG
their performance has different order in different datasets.

HG has the second best performance, although it does not
outperform IG in Citation. This is because NG and IG are
essentially special cases of HG. HG reduces to NG by only
selecting one node in each greedy iteration, and it reduces to
IG by ignoring the set cardinality in each greedy iteration.
CG, HG, IG, and NG become identical when only one seed
node is selected (i.e., k = 1). HG loses to CG, since CG has a
better granularity control through its cap to capture the crowd

influence. Moreover, HG is unbounded and has a larger time
complexity than CG. Finally, we find that the network density
may not significantly change the algorithm performance. Both
Board and Citation are sparse, but their algorithm performance
gaps are not similar. Forum and Citation have different densi-
ties, but their algorithm performance gaps are similar.

C. Running Time and Complexity Reduction
This subsection evaluates the running time of the proposed

algorithms. Codes are implemented in Matlab and are executed
on Dell Inspiron i15RN-3647BK laptop with a 2.5GHz Intel
Core i5 2450M processor. We further introduce two variations
of CG by using different maximum cap sizes. The first one is
CG-2, using 2 as its maximum cap size (∆′ ranges from 1 to
2). In each greedy iteration, CG-2 selects at most 2 nodes into
seed nodes. The second one is CG-3, using 3 as its maximum
cap size. We evaluate the impact of the cap size, in terms of
both performance and running time. k is set to be 8.

We start with the running time, as shown in the above table
(units are seconds, minutes, hours, and days). WH is fastest,
since it is linear and does not evaluate σ(S) for a given S.
As a trade-off, it has the worst performance. Both NG and
IG take minutes. IG runs slower than NG, since IG exhausts
a set of nodes during each greedy iteration. However, IG is
not exponentially slower than NG, since IG has fewer greedy
iterations. The performance gap between NG and IG is limited
in these three datasets. HG and CG have the longest running
times to obtain the best performances. The running times of
both HG and CG grow quickly with respect to the dataset size.
However, if we cap ∆′ at 2 or 3, the running time of CG can
be significantly reduced. CG-2 and CG-3 have asymptotically
the same time complexity as NG. Therefore, the comparison
between CG and NG is fair.

Fig. 6 shows the impact of the cap size for CG in these
three datasets. CG-2, CG-3, and CG have close performances
(CG-2≤CG-3≤CG). in all three datasets, the performance
different between CG-2 and CG-3 is less than 10%. This is
because CG is not likely to select a large set of nodes in each
iteration (people are not likely to have many close friends).
CG-3 has almost the same performance as CG, especially
when seed nodes are few. If we jointly consider the running
time aspect, capping ∆′ to 3 in CG is a practical strategy for
large-scale OSNs.

VII. CONCLUSION
Motivated by the impact of the crowd influence, this paper

studies the Social Influence Maximization Problem (SIMP) in
Online Social Networks (OSNs).The proposed problem turns
out to be NP-hard, monotone, non-submodular, and inapprox-
imable within a ratio of |V |ε−1 for any ε > 0 in a general
hypergraph. However, since user connections in OSNs are not
random, approximations could be obtained by leveraging the
structural properties of OSNs. The supermodularity, ∆, can
measure to what degree our problem violates the submodular-
ity. We prove that the supmodular degree, denoted as ∆, of
most OSNs has the following property lim|V |→∞

∆
O(|V |) = 0,

i.e., ∆ ∈ o(|V |) for most OSNs. Based on the property of

8

1 2 3 4 5 6 7 8
0

150

300

450

600

750

900

Number of seed nodes

N
um

be
r

of
 in

flu
en

ce
d

no
de

s

WH
NG
HG
IG
CG

(a) Forum dataset.

1 2 3 4 5 6 7 8
0

20

40

60

80

Number of seed nodes

N
um

be
r

of
 in

flu
en

ce
d

no
de

s

WH
NG
HG
IG
CG

(b) Board dataset.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of seed nodes

N
um

be
r

of
 in

flu
en

ce
d

no
de

s

WH
NG
HG
IG
CG

(c) Citation dataset.
Fig. 5. Algorithm performance for SIMP in hypergraphs.

(a) Forum dataset. (b) Board dataset. (c) Citation dataset.
Fig. 6. The impact of cap size for CG.

OSNs, two approximation algorithms are applied with ratios of
1

∆+2 and 1−e−1/(∆+1), respectively. Experiments demonstrate
the efficiency and effectiveness of our algorithms, compared
with the traditional naive greedy algorithm.

VIII. ACKNOWLEDGEMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS-
1651947, CNS 1564128.

REFERENCES

[1] H. Nguyen and R. Zheng, “On budgeted influence maximiza-
tion in social networks,” IEEE Journal on Selected Areas in
Communications, 2013.

[2] X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation
in online social networks,” in ACM SIGKDD, 2012.

[3] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of influence through a social network,” in ACM SIGKDD, 2003.

[4] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information
diffusion in online social networks: A survey,” ACM SIGMOD
Record, 2013.

[5] H.-J. Hung et al., “When social influence meets item inference,”
in ACM KDD, 2016.

[6] M. Edelson, T. Sharot, R. J. Dolan, and Y. Dudai, “Following
the crowd: brain substrates of long-term memory conformity,”
Science, 2011.

[7] N. Wang and J. Wu, “Latency minimization through optimal
user matchmaking in multi-party online applications,” in IEEE
WoWMoM, 2018.

[8] H. Zhang, D. T. Nguyen, H. Zhang, and M. T. Thai, “Least
cost influence maximization across multiple social networks,”
IEEE/ACM ToN, 2016.

[9] J. L. Z. Cai, M. Yan, and Y. Li, “Using crowdsourced data in
location-based social networks to explore influence maximiza-
tion,” in IEEE INFOCOM, 2016.

[10] G. Tong, W. Wu, S. Tang, and D.-Z. Du, “Adaptive influence
maximization in dynamic social networks,” IEEE/ACM ToN,
2016.

[11] S. Galhotra, A. Arora, S. Virinchi, and S. Roy, “Asim: A
scalable algorithm for influence maximization under the inde-
pendent cascade model,” in ACM WWW, 2015.

[12] W. Chen et al., “Influence maximization in social networks
when negative opinions may emerge and propagate,” in SDM,
2011.

[13] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based
approach to social influence maximization,” VLDB Endowment,
2011.

[14] J. Tang, X. Tang, and J. Yuan, “Profit maximization for viral
marketing in online social networks: Algorithms and analysis,”
IEEE TKDE, 2017.

[15] M. Feldman and R. Izsak, “Constrained monotone function
maximization and the supermodular degree,” in ACM-SIAM
SODA, 2014.

[16] S. Dughmi, “Algorithmic information structure design: a sur-
vey,” ACM SIGecom Exchanges, 2017.

[17] S. Fujishige and S. Isotani, “A submodular function minimiza-
tion algorithm based on the minimum-norm base,” PJO, 2011.

[18] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approx-
imation for submodular and supermodular optimization with
bounded curvature,” in ACM-SIAM SODA, 2015.

[19] A. Mislove et al., “Measurement and analysis of online social
networks,” in ACM IMC, 2007.

[20] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution
of online social networks,” in Link mining: models, algorithms,
and applications, 2010.

[21] W. Chen, C. Wang, and Y. Wang, “Scalable influence max-
imization for prevalent viral marketing in large-scale social
networks,” in ACM SIGKDD, 2010.

[22] T. Gradowski and A. Krawiecki, “Majority-vote model on scale-
free hypergraphs,” Acta Physica Polonica A, 2015.

[23] M. Molloy and B. Reed, “The size of the giant component of
a random graph with a given degree sequence,” Combinatorics,
probability and computing, vol. 7, no. 3, pp. 295–305, 1998.

[24] U. Feige and R. Izsak, “Welfare maximization and the super-
modular degree,” in ACM ITCS, 2013, pp. 247–256.

[25] https://toreopsahl.com/datasets/#newman2001.

9

