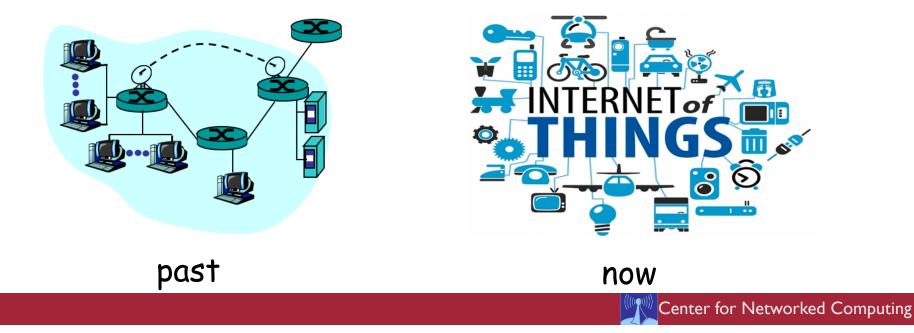
Optimal Data Partitioning and Forwarding in Opportunistic Mobile Networks

ALL THE DESTRICTION OF

Ning Wang and Jie Wu

Dept. Computer and Information Sciences Temple University

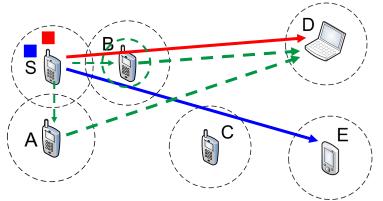
- Introduction
 - Current network trends
 - New opportunities in wireless communication
- Routing Design
 - Related Works
 - Cooperative forwarding
- Experiments
- Conclusion and future works



Current Network Environment

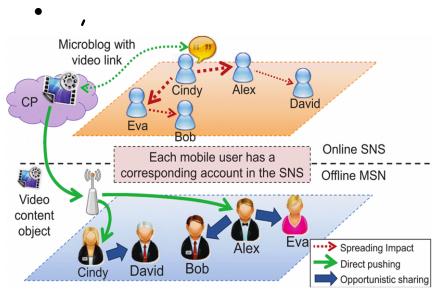
From Internet to Internet of Things

- > Powerful computation, sensing, and communication abilities
 - Smartphones, vehicles, wearable devices, etc.
- > Wide availability of (various) devices
 - 8 billions of mobile-ready devices, 10 times of PCs [Cisco White Paper]


Internet of things, pervasive computing, Ubiquitous computing, edge computing, etc.

Opportunistic Communication

- Store-Carry-Forward (Mobility)
 - Mobile nodes physically carry data as relays
 - Forwarding data upon contacts
 - Forwarding path: path S-B-D and path A-C-E


- Delay-tolerant (location-based) applications:
 - Emails, news, advertisements dissemination
 - Social networks updates

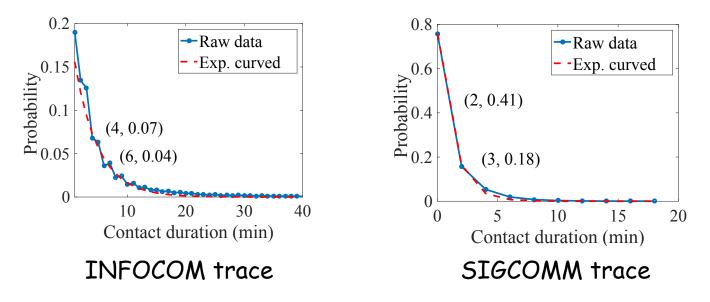
Opportunistic networks

- Applications
 - > Opportunistic mobile social networks
 - Data offloading, disaster communication
 - Vehicular networks
 - Autonomous Driving, intelligence transportation system

Mobile social networks

Vehicular networks

Related Works


- Epidemic
 - > Every node can forward data to every one
 - 2-hop extension: only the data source can copy to others
- Delegation forwarding
 - The relay forwards the message to an encounter with a higher quality than those in all previous nodes seen so far.

Algorithm	delay	Cost (n)	Knowledge
Epidemic	Minimum	N	No
2-hop extension	Moderate	N/2	No
Delegation	Compared to Epidemic	JΝ	Yes

- Can the data always be fully transferred in a contact (a common assumption)?
 - > Not always! We verified through two human traces.

- Observation:
 - > Longer contacts are just a few while short contacts are many.
 - > The contact duration distribution fits the exponential distribution.

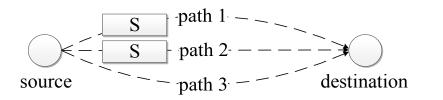
- A better contact model:
 - > Delivery probability is not a constant value, P.
 - > We model the delivery probability of a node as

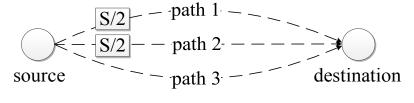
$$P(s)=p\beta(s),$$

All contact opportunities

where $\beta(s)$ is a non-increasing decay function with data size, s.

• Cooperative forwarding:


- Partition original data into small data chunks!
- Cooperative forwarding: maximally improve the probability of data delivery by sending data segments through multiple paths
 - Forwarding path: a sequence of contact



- Distinguish with replication-based routing
 - All previous algorithms (e.g., Epidemic, 2-hop, Delegation forwarding routing).

Original data with size S

S

Replication-based routing

- Success: Data in any path is delivered;
- Data size: original data size.

Cooperative-based routing

- Success: Data in every path is delivered.
- Data size: small data chunk

- A motivation example
 - The expected delivery probability of different strategies:
 - Single path routing
 - P = 0.22
 - With one replication

P = 1 - (1 - 0.22) (1 - 0.22) = 0.39

Split to 2 data chunks

P = 0.67*0.67 = 0.45

Split to 3 data chunks
p = 0.74*0.74*0.74 = 0.41

Data size	S	S/2	S/3
Probability	0.22	0.67	0.74

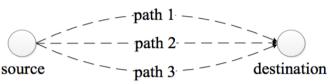
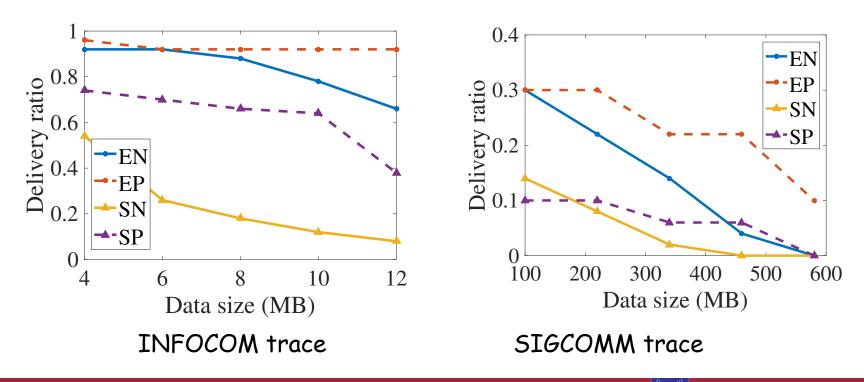


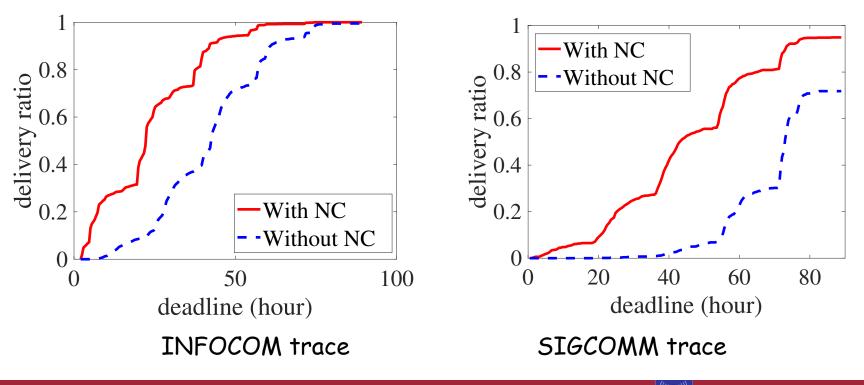
Fig. 2. An illustration of trade-off in the data partitioning.

- Cooperative Data Forwarding
 - > How to determine the optimal partition
 - Good: higher delivery probability for each small data chunk
 - Bad: need to receive data from multiple forwarding paths

Theory: To maximize data delivery probability if nodes' mobility follows the random-waypoint model and $\beta(s)$ is a decreasing function, the optimal data-partitioning strategy within deadline T in the epidemic routing is: $s = -p \frac{d\beta(s)}{ds}T$

> Algorithm


- \circ Calculate the optimal chunk size $s=-ar{p}rac{deta(s)}{ds}T$
- if there exists some chunks that the encountered node does not have
 - Replicate data chunk in a round-robin fashion.


Cooperative Data Forwarding

	Epidemic	Single-copy probability-based
With partition	EP	SP
Without partition	EN	SN

- Extension
 - Disadvantage: if one of the data chunk is missed, the data forwarding fails.
 - Solution: network coding technique!

Conclusion and Future Work

- Opportunistic networks
 - > There are many opportunistic contacts in IoT environment
 - Opportunistic communication (Store-Carry-Forward)
- Routing methods
 - > The contact duration might be insufficient for data transmission
 - Cooperative Data Forwarding
 - Verified through two human traces
- Future works
 - > Try more data traces, e.g, vehicular traces.
 - Try to use network knowledge to optimize routing performance.

Thank you!

ning.wang@temple.edu

