Cost-Efficient Worker Trajectory Planning Optimization in Spatial Crowdsourcing Platforms

Ning Wang and Jie Wu
Research Background

- **Crowdsourcing and Spatial Crowdsourcing**
 - Crowdsourcing: organizing the crowd (workers) to do tasks which are hard for machines but easy for human.
 - Spatial crowdsourcing: Organizing the crowd (mobile workers) to do spatial tasks by physically moving to other locations.
Research Background

Tasks

- General Spatial Task
 - Inventory identification
 - Placement checking
 - Data collection
 - ...

- Specific spatial task
 - Taxi calling service
 - Food delivery service
 - ...

"Spatial Crowdsourcing: Challenges, Techniques, and Applications", in Proceedings of the 43rd International Conference on Very Large Databases (VLDB 2017), Munich, Germany
Research Background

- Management Mode
 - Worker Selected Tasks (WST)
 - workers actively select tasks
 - Server Assigned Tasks (SAT)
 - workers passively wait for the platform to assign tasks

Worker Selected Tasks

Server Assigned Tasks
Task Assignment: Challenges

- **Quality-control**
 - Different sensors (sampling frequency, reading-accuracy)
 - Different behaviors (e.g., following the instruction strictly or careless)

- **Crowdsourcing Cost**
 - Workers have to go the crowdsourcing locations from their current locations.
 - Different workers have different movement distances.
Network Model

- Multiple workers and crowdsourcing locations
 - Each worker has a certain quality for finishing crowdsourcing tasks.
 - The cost of a worker is proportional to the movement distance, e.g., ridesharing.
 - Each recruited worker generates a round crowdsourcing tour.
Cost-efficient Worker Recruitment Problem

- How to recruit a set of proper workers?
 - Maximize the worker recruitment efficiency
 - different crowdsourcing qualities for different workers
 - different crowdsourcing costs for different workers

 \[\text{System efficiency} = \frac{\sum \text{quality}}{\sum \text{cost}} \]

- Coverage Constraint
 - All the crowdsourcing locations should be covered/reached, e.g., traffic/environment monitoring, route navigation, etc.

- NP-complete in general scenario
 - Reduce to the TSP problem
Cost-efficient Worker Recruitment Problem

- A motivation example
 - Three algorithms:
 - Nearest: each location is assigned to the closest worker
 - Min-Distance: overall crowdsourcing distance is minimized
 - Max-Quality: each location is assigned to the worker with the highest quality

<table>
<thead>
<tr>
<th>Schedule</th>
<th>w_1</th>
<th>w_2</th>
<th>Efficiency Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest</td>
<td>${l_1}$</td>
<td>${l_2, l_3}$</td>
<td>$\frac{3+2}{5+4} = 0.56$</td>
</tr>
<tr>
<td>Min dist.</td>
<td>${}$</td>
<td>${l_1, l_2, l_3}$</td>
<td>$\frac{4.5}{8} = 0.56$</td>
</tr>
<tr>
<td>Max quality</td>
<td>${l_1, l_2, l_3}$</td>
<td>${}$</td>
<td>$\frac{6}{10} = 0.60$</td>
</tr>
<tr>
<td>Optimal</td>
<td>${l_1, l_2}$</td>
<td>${l_3}$</td>
<td>$\frac{1.5 + 4}{2 + 7} = 0.61$</td>
</tr>
</tbody>
</table>
Proposed Problem in 1-D Scenario

- All workers and tasks can be reached via a line, e.g., people/vehicles in highway or main street.

- An example
 - two workers and three crowdsourcing locations
Proposed Solution: Dynamic Programming

Algorithm

- Sort the worker locations and crowdsourcing location separately from one side to another side, e.g., from left to right.
- Define $\text{opt}[i,j]$ as the maximum ratio between first i workers with first j crowdsourcing locations.

 The $\text{opt}[i,j].c$ and $\text{opt}[i,j].q$ are the corresponding total tour(s) length and the total quality.

$$\text{opt}[i,j] = \max \begin{cases} \text{opt}[i-1,j], & \text{if } i > 1, \\ \frac{\text{opt}[i',j',q]}{\text{opt}[i',j',c] + 2(\max\{l_{i'},l_{j'}\} - \min\{l_i,l_j\})} & \forall i',j',i' < i,j' < j. \end{cases}$$
Proposed Solution: Dynamic Programming

❖ A toy example

➢ Dynamic programming (An illustration example: \(q_1 = 0.5 \) and \(q_2 = 1 \))

Calculate \(\text{opt}[2,3] \)

\[
\text{opt}[2,3] = \max \left\{ \frac{\text{opt}[1,0].q + 3 + 1}{\text{opt}[1,0].c + 7 + 2}, \frac{\text{opt}[1,1].q + 2 + 1}{\text{opt}[1,1].c + 4 + 2}, \frac{\text{opt}[1,2].q + 1 + 1}{\text{opt}[1,2].c + 1 + 2}, \text{opt}[1,3] \right\}
\]

\(w_2: \{l_1, l_2, l_3\} \)
\(w_1: \{l_1\} \)
\(w_1: \{l_1, l_2\} \)
\(w_1: \{l_1, l_2, l_3\} \)
\(w_2: \{l_2, l_3\} \)
\(w_2: \{l_3\} \)
Proposed Problem in 2-D Scenario

- Homogenous 2-D scenario (all workers have the same quality)
 - Objective: minimize the overall tour(s) length

- A simple nearest assignment solution
 - Voronoi graph partition

![Diagrams showing nearest and optimal assignment with worker locations and tour paths.](image-url)
Proposed Problem in 2-D Scenario

- Homogenous 2-D scenario
 - Performance Analysis: to minimize the total tour length, the nearest assignment can be as bad as n times of the optimal solution, where n is the total number of workers in the network.
 - an extreme example

![Diagram of Nearest and Optimal Assignment]
Proposed Solution in Homogenous 2-D scenario

- A Minimum-Spanning Tree (MST) based approach
 - Transfer the network into a graph where links are shortest distance between them.
 - Add a dummy node and it has links (zero-weight) with all workers
Proposed Solution in Homogenous 2-D scenario

- A Minimum-Spanning Tree (MST) based approach
 - Find the MST in the new graph
 - Got a spanning forest by removing the dummy nodes and the corresponding link
 - Find the best visiting tour for each selected workers based on the generated spanning tree(s)
Proposed Solution: Analysis

- **Homogenous 2-D scenario**
 - MST can be calculated optimally based on the matroid theory.
 - The MST to the shortest tour transfer has an approximation ratio of 1.5 through greedy algorithm in the metric space.
 - The best shortest tour algorithm achieves an approximation of $1 + \epsilon$ through Fully Polynomial-time approximation scheme (FPTAS) in the Euclidean space.

- **Heterogeneous 2-D scenario**
 - Apply the same solution, further bounded by the maximum quality ratio between workers in the network
 - further optimization is our future work
Performance Evaluation

- Uber pick-up trace from the NYC
 - April 2014, which has 564,516 records.
 - Worker and crowdsourcing locations are randomly generated.
 - 7 different worker qualities

![Trace visualization](image)

Trace visualization Broadway, Manhattan.
Performance Evaluation

- Time complexity (logarithmic axis)
 - The proposed approaches have similar running-time in different scales
Performance Evaluation

- Effectiveness (1-D scenario)
 - DP: Dynamic Programming, NA: Nearest Assignment, ST: Shortest Tour(s), and MQ: Max-Quality

![Graphs showing effectiveness vs task and worker number]
Performance Evaluation

- 2-D scenario
 - MST: proposed approach, NA: Nearest Assignment, and MQ: Max-Quality
Summary

- Work recruitment problem in spatial crowdsourcing is still not well-solved by considering heterogeneous worker qualities.

- We proposed the concept of the System efficiency and proposed solutions in 1-D and 2-D scenario.
 - Optimal solution in 1-D scenario
 - Approximation solution in 2-D scenario

- We demonstrated proposed approaches in Uber NYC traces.
Thanks!

- **Contact**
 - wangn@rowan.edu