Optimal Cellular Traffic Offloading Through Data Partitioning in Opportunistic Mobile Networks

Ning Wang and Jie Wu Dept. of Computer and Info. Sciences Temple University

Road Map

- Introduction
- Related Work
- New Observation
- Partition Model
- Experiments
- Conclusions

Introduction

Cellular Data Offloading

- Limited cellular network capacity cannot match with increasing user demand (Cisco VNI 2016-2021).
- Offloading through opportunistic mobile networks is a potential solution.

Introduction

Opportunistic contact (store-carry-forward)

- Mobile nodes physically carry data as relays
- No construction fee, wide availability

Commercial: Open Garden, M87, and VANET applications

Introduction

Social Features in Opportunistic Mobile Network

• Each individual with a social feature profile $\{F_1, F_2, ...\}$

 Convert an unstructured and dynamic network to a structured and static network.

Jie Wu and Yunsheng Wang. "Social Feature-based Multi-path Routing in Delay Tolerant Networks", INFOCOM 2014.

Related Work

Feature-based Grouping Example

People come in contact with each other more frequently if they have more social features in common $(P_1 > P_3)$

Related Work

Social Forwarding Path

Social-feature space -> social hypercube

City (3): New York(0), London(1), Paris (2), Shanghai (3)

"311": a female researcher lives in Shanghai

Related Work

Hypercube-routing

Each individual with a social feature profile $\{F_1, F_2, ...\}$

Forwarding based on feature distance in the hypercube

k parallel paths of equal length (k = dist(s, d)).

New Observation

Can data always be fully transferred in one contact? Not always!

There is a decay function $\beta(s)$, s: data size

Partition Model

The Expected Delivery:

- Single path routingP = 0.22
- Split to 3 data chunks
 p = 0.74*0.74*0.74 = 0.41

Data size	S/3	S/2	S
Probability	0.74	0.67	0.22

Partition Model

Path Probability Calculation and Data Partition

 $P_3(s_3) = p_7 p_8 p_9 \beta(s_3)$

Experiments

INFOCOM and SIGCOMM traces

Bluetooth sightings by groups of attendees carrying small devices (iMotes) in IEEE INFOCOM 2006 and ACM SIGCOMM 2009.

Trace information

Removing nodes without social information

Name	Summary			
ivanie	size	contact	social feature	
INFOCOM06	61	337,418	6	
SIGCOMM09	75	285,879	3	

Experiments

Settings

	INFOCOM	SIGCOMM
Min Contact duration	1s	120s
Data Size	12 MB to 84 MB	12MB to 84 MB
Contact bandwidth	100 KBs	100 KBs
Edge contact probability	0.097	0.081

Algorithms

- Hypercube-routing
- Single data without partition algorithm (S-W/O) (1 path)
- Single data with partition algorithm (S-W) (m paths, m: 2.4 on average)
- Replication hypercube algorithm (R-W/O) (m paths)
- Single data probability-based algorithm (P-W/O)
 - Forward data based on the contact probability with destination

Experiments

Data size is small -> Replication-based algorithm is the best. Data size is large -> Partition-based algorithm is the best.

Conclusions

Cellular traffic expansion is a challenging issue Traffic offloading with widely available devices

- Social hypercube-based routing Opportunistic mobile network
- Contact duration decides delivery probability Data partition v.s. data replication

Future work

Comparison with coding, i.e., partition and replication