
Citation: Niknami, N.; Wu, J.

IDSMatch: A Novel Deployment

Method for IDS Chains in SDNs.

Network 2024, 4, 48–67. https://

doi.org/10.3390/network4010003

Academic Editors: Alessio Giorgetti

and Martin Reisslein

Received: 13 October 2023

Revised: 17 January 2024

Accepted: 4 February 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

IDSMatch: A Novel Deployment Method for IDS Chains
in SDNs †

Nadia Niknami * and Jie Wu

Center of Networked Computing, Temple University, Philadelphia, PA 19122, USA; jiewu@temple.edu
* Correspondence: nadia.niknami@temple.edu
† This article is a revised and expanded version of a paper entitled Enhancing Load Balancing by Intrusion

Detection System Chain on SDN Data Plane, which was presented at the IEEE Conference on Communications
and Network Security (CNS), Austin, TX, USA, held on 3–5 October 2022.

Abstract: With the surge in cyber attacks, there is a pressing need for more robust network intrusion
detection systems (IDSs). These IDSs perform at their best when they can monitor all the traffic
coursing through the network, especially within a software-defined network (SDN). In an SDN
configuration, the control plane and data plane operate independently, facilitating dynamic control
over network flows. Typically, an IDS application resides in the control plane, or a centrally located
network IDS transmits security reports to the controller. However, the controller, equipped with
various control applications, may encounter challenges when analyzing substantial data, especially
in the face of high traffic volumes. To enhance the processing power, detection rates, and alleviate
the controller’s burden, deploying multiple instances of IDS across the data plane is recommended.
While deploying IDS on individual switches within the data plane undoubtedly enhances detection
rates, the associated costs of installing one at each switch raise concerns. To address this challenge,
this paper proposes the deployment of IDS chains across the data plane to boost detection rates
while preventing controller overload. The controller directs incoming traffic through alternative
paths, incorporating IDS chains; however, potential delays from retransmitting traffic through an
IDS chain could extend the journey to the destination. To address these delays and optimize flow
distribution, our study proposes a method to balance flow assignments to specific IDS chains with
minimal delay. Our approach is validated through comprehensive testing and evaluation using a test
bed and trace-based simulation, demonstrating its effectiveness in reducing delays and hop counts
across various traffic scenarios.

Keywords: attack; forwarding traffic; intrusion detection; load balancing; SDN; matching problem

1. Introduction

Software-defined networking (SDN) allows a computer network to be intelligently
and centrally controlled through software applications. There is a separation between the
control plane (SDN controllers and network applications) and the data plane (switches
and their connections) of the network [1]. The network can be programmed and managed
more effectively by using a controller. In the SDN application layer, the typical network
applications, such as intrusion detection systems (IDS), load balancing, and firewalls, are
present [2]. Based on reports received from applications installed, the controller analyzes
traffic for forwarding, anomaly detection, and other purposes. There is a possibility of
overhead for the controller since there is a large volume of traffic and multiple applications
that it must handle [3]. IDS is one of the network applications in SDN. Using IDS, the
controller can detect anomalous traffic flows and then install rules in the switch’s flow tables
in order to block or reroute abnormal traffic. Although the IDS application improves the
controller’s performance, there are some challenges to implementing intrusion detection.
SDN applications for security services result in significant overhead for the controller. It is

Network 2024, 4, 48–67. https://doi.org/10.3390/network4010003 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network4010003
https://doi.org/10.3390/network4010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-5636-5808
https://orcid.org/0000-0002-3472-1717
https://doi.org/10.3390/network4010003
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network4010003?type=check_update&version=1

Network 2024, 4 49

possible to reduce the controller’s overhead by incorporating security applications, such as
IDS and firewalls, into the data plane.

The assignment of IDS to all switches can improve detection rates. However, employ-
ing IDS on switches is expensive and not feasible within a limited budget. In addition to
being costly, IDS requires a considerable amount of time and causes delays in the trans-
mission process. Thus, it would not be helpful to process traffic on all switches along the
path from source to destination. Due to the global view and control capabilities of the
controller in SDN, significant communication overhead among switches in the data plane is
minimized. In the control plane, we offer an application that orchestrates detection actions
to facilitate coordination among various IDS in the event of an attack detection. Hence,
there is not a significant deal in terms of communication overhead for the data plane.

It would be beneficial if we could provide some chains of IDS across the data plane.
The result would be a higher attack detection rate and a lower controller overhead. Figure 1
illustrates the application layer, control plane, and data plane in an SDN. The blue dashed
lines from the switches to the controller show the control network lines, and the solid
black lines between the switches are the data network lines. Originally, there is not any
IDS across the data plane. Here, several IDSs are deployed on the switches in the data
plane. In the data plane, four switches are equipped with IDS components. This network
has some flows, such as f1, f2, and f3. The dashed lines in different colors present the
routing path of these three traffic flows: f1 : s1 −→ d1, f2 : s2 −→ d2, and f3 : s3 −→ d3 . The
controller redirects each of these flows through an alternative path instead of the shortest
one, including an IDS chain, to perform intrusion detection. Each IDS chain consists of
some IDS components, and there is at least one IDS in every IDS chain. It is reasonable to
assume that the lengths of the IDS chains are the same. A measure of the effectiveness of an
IDS is its detection rate. The detection rate of blocked malicious packets can be determined
by dividing the number of blocked malicious packets by the total number of malicious
packets received. The controller is responsible for installing flow rules. Rather than sending
traffic to the shortest path, these rules redirect traffic to alternative paths. Intruder detection
systems are placed along these alternative paths. It is difficult to determine the best path
and to select an IDS chain for each flow. In general, IDS applications cannot achieve an
acceptable detection rate due to their limitations. It may be possible to resolve this problem
by deploying a chain of IDSs. It is not possible to install IDS on all switches due to the
installation costs and limitations associated with the flow tables. Therefore, it is necessary
to limit the number of IDSs. As incoming traffic is grouped, there is no need for many IDSs.
Performance measurements can be affected significantly by the grouping and assignment
of flows, particularly when high loads are present and transmission delays are caused by
non-shortest path routing.

Figure 1. Forwarding traffic flows through IDSs in an SDN.

In this paper, we discuss how to maintain a balanced flow group and how to match
them with IDS chains. This paper presents a design and implementation of SDN to deploy

Network 2024, 4 50

IDS on selected switches in the data plane, with the goal of increasing the detection rate
and preventing controller overload. We address the challenge of forwarding flows from
a source to a destination when traffic passes through specific switches [4]. To this end,
we propose a method of flow grouping and matching IDSs for a balance between the
detection rate and delay. Our approach involves deploying chains of IDSs across the data
plane and redirecting flows through these chains, which can be arranged in either a fixed
or dynamic order. However, as IDSs are only placed on certain switches, this can result
in additional hops and increased latency. To mitigate this, we also propose a method
of grouping incoming traffic to reduce the limitations of maintaining a large flow table
and transmission delay, which leads to fewer rules in flow tables and all flows in a group
following the same path.

We initially used K-means clustering but found it unsuitable for this problem since
each flow has a source and a destination. Therefore, we proposed using a 1-dimensional
space to calculate distances in G, where the distance between the two points is the Euclidean
distance. We also determined that the number of hops between them should calculate the
distance between the source/destination of flows and centroids. We introduce an adapted
form of K-means clustering, featuring a novel distance metric within a two-dimensional (2-
D) space. Expanding on the motivation articulated in the prior paper [4], we aim to refine
the method, focusing on improvements in delay and balancing factors during the matching
and balancing process. The meanings of various symbols used in this study are provided
in the Table of Notations (Table 1).

Table 1. List of symbols with their definitions.

Symbol Meaning

f , F Traffic flow, Set of traffic flows
sj/dj j-th flow’s source/destination

cj j-th cluster’s centroid
Fj j-th GroupFlow

sj/dj j-th GroupFlow’s source/destination
I/Ii Set of IDS chains/i-th IDS chain
hi/ti i-th IDS chain’s head/tail

dis(x, y) Defined distance between x and y
rj Traffic rate of j-th flow

Our main contributions to this study are as follows:

• We introduce a novel approach to deploying chains of IDSs in the data plane, enhanc-
ing intrusion detection rates and reducing overload on the controller. This strategic
distribution of multiple IDS chains in the data plane not only avoids controller over-
load but also contributes to effective intrusion detection.

• We propose a creative centroid-based modification of the k-means clustering method,
which efficiently groups incoming data flows to reduce data transmission delays.

• To address the complex joint optimization problem, we present a two-phase algorithm
that effectively achieves our optimization goals.

• Our paper delves deep into the intricacies of flow grouping and the association of flow
groups with IDS chains under varying scenarios. We introduce two distinct models
for this association process: the minimum cost 2-D matching and the minimum cost
3-D matching.

• We provide a comprehensive evaluation of our approach on a real test bed under
various measurements, demonstrating its practical effectiveness in the case of network
delay, number of hops, and detection rate.

The structure of the paper is as follows: In Section 2, the related works on deploy-
ing IDS on SDN, load balancing, and grouping traffic approaches are reviewed. The
background and rationale behind the proposed approach are presented in Section 3. The
proposed approach, which is based on grouping flows and assigning them to IDS chains,

Network 2024, 4 51

is detailed in Section 4. The evaluation and performance of the scheme are discussed in
Section 5. Lastly, we provide a brief conclusion in Section 6.

2. Related Work

In this section, our focus is on the relevant literature pertaining to the utilization of
Service Function Chaining (SFC) and the integration of IDS into SDN. The integration of
SDN and Network Function Virtualization (NFV) empowers virtualization and enhances
network services, with Service Function Chaining being a pivotal mechanism in this
context [5]. SFC enables the definition of ordered lists of service functions, dynamically
guiding network traffic through diverse service function paths. In [6], the authors introduce
a distributed deep reinforcement learning approach, leveraging edge intelligence to deploy
Service Chains (SCs). This deployment aims to jointly balance the load on physical nodes
and links at the edge. Additionally, in [7], the authors address the deployment of Virtual
Network Functions (VNFs) and scheduling arriving requests among computing nodes
to achieve low latency and high reliability. They employ state-of-the-art reinforcement
learning to formulate an SFC scheduling policy, enhancing the success rate of SFC requests.

Several works focus on the detection and prevention of specific types of attacks
through the use of SFC [8]. In [9], the combination of multiple SFCs into a Security Service
Function Tree (SecSFT) is proposed to optimize resource allocation for virtual security
functions. The authors in [10] present a security SFC path selection scheme utilizing deep
reinforcement learning. This scheme dynamically selects the optimal path for security SFC
in real time using the DQN algorithm, considering the features of incoming traffic and the
detection results of security service functions. Furthermore, in [11], a SDN/NFV-enabled
security solution is proposed for enterprises, leveraging the commodity hardware to reduce
both capital and operational expenditures.

During recent years, there has been a considerable amount of research that integrate
IDS into SDN [12–18]. Latah et al. in [19] proposed an efficient multi-level hybrid intrusion
detection method for SDNs. A kNN is used as the first level; an Extreme Learning Machine
(ELM) is used as the second level; and a Hierarchical Extreme Learning Machine (H-ELM)
is used as the third level. According to the experimental study, this system achieves the
highest level of accuracy when compared to conventional supervised machine learning al-
gorithms based on the NSL-KDD benchmark dataset. The overall accuracy was significantly
improved as a result of this approach. Zhao et al. in [20] presented a novel IDS model for
SDN that is designed to collect and analyze traffic at the control plane. The proposed IDS
model addresses the limitation of the data processing capacity using a probability-based
traffic sampling method, using a genetic algorithm that estimates the sampling probability
for each sampling point by analyzing the total number of false negatives. Based on the lim-
ited detection capacity of the IDS, this technique determines the best sampling rate for each
switch. As a result, they improved the effectiveness of intrusion detection under medium
network loads. Cui et al. in [21] proposed a mechanism for detecting and defending against
DDoS attacks in SDN environments. In order to implement the detection, an unbalanced
distribution of traffic was taken into account. An algorithm such as k-means can detect the
imbalance in traffic. As an unsupervised machine learning algorithm, k-means enhanced
the adaptability of the detection method and allowed the detection of attacks of different
scales and types. By using an entropy-based anomaly detection system, Niknami et al.
in [22] proposed a method of determining a method to detect abnormal traffic variations;
they combined entropy and relative entropy. Using KL-divergence, entropy, and machine
learning methods simultaneously eliminates the uncertainty associated with the entropy
threshold and enhances detection performance.

In a study by Yazdinejadna et al. [23], a novel approach to attack detection within the
data plane, centered on SDN architecture, is presented. Their work introduced a zone-based
architecture for KIDS (Kangaroo Intrusion Detection System) to enhance scalability and
anomaly detection. An innovative IDS design was employed, which leverages consec-
utive jumps after attack detection to efficiently notify the SDN controller and other IDS

Network 2024, 4 52

components. Goo et al. [24] introduced a methodology for traffic categorization rooted
in a correlation model. Their approach assesses traffic flow similarity using Euclidean
distance and examines flow connectivity by considering factors such as flow occurrence
time, source and destination IP addresses, port pairs, and the Transport-Layer protocol. To
alleviate the controller’s load and enhance attack detection rates, Niknami et al. proposed
a distinctive extension for SDN [4]. They advocated for the deployment of IDSs in the data
plane, where a chain of IDSs is interconnected with various switches. This novel approach
incorporates a new distance measurement technique and a modified version of the K-means
algorithm to group incoming data flows and steer flow groups toward the IDS chains. The
authors in [25] introduced a novel approach called Reconstruction from Partial Observation
(RePO) for constructing a network IDS. Their method leverages denoising autoencoders,
demonstrating their effectiveness in detecting diverse network attacks with minimal false
alerts. RePO exhibits enhanced robustness against adversarial example attacks, surpassing
the accuracy of current state-of-the-art methods in building a more effective and resilient
network IDS in [26].

The present paper expands on the findings presented in [4]. The utilization of multiple
IDSs, in contrast to a single IDS, increases the likelihood of detecting anomalous flows.
The previous study [4] investigated controller overhead, drop rates, missing rates, and
detection rates across various scenarios involving attack rates and different scales of traffic.
Their results demonstrated that increasing the number of IDSs has a positive impact
on detecting malicious packets. However, it is crucial to note that the controller directs
incoming traffic through alternative paths, incorporating IDS chains, and potential delays
may arise from retransmitting traffic through an IDS chain, thus elongating the journey
to the destination. To mitigate these delays and optimize flow distribution, the current
study proposes a method to balance flow assignments to specific IDS chains with minimal
delay. The primary objective of this paper is to present K-means clustering and subsequent
matching and balancing between virtual centers and IDS. The experimental section includes
entirely new evaluations. In our approach, the location of IDS is any switch in the given
network, and it can be the center for multiple clusters. We run K-mean and adjust the
location of groups based on closeness for the distance of flow and centroid of groups. Then,
by providing balanced groups and assigning flow groups to IDS chains, the controller
installs a forwarding rule for each group.

3. Background and Motivation

This paper aims to deploy IDS chains across a data plane to increase the attack detec-
tion rate and decrease overhead on the controller when there is a large amount of traffic
in the SDN. An IDS describes a suspected intrusion and then signals an alarm once it
has happened [27]. Regarding detection techniques, IDS can be divided into three cate-
gories: signature-based (knowledge-based), anomaly-based (behavior-based), and hybrid.
A signature-based IDS detects network traffic for signs of attacks and uses those signatures
as a reference to detect future attacks. An anomaly detection IDS detects traffic anomalies
based on tracking them. It is the hybrid IDS that uses both knowledge and anomaly tech-
nologies. By using hybrid detection, it is possible to identify both predefined and undefined
intrusions [28]. Similarly, IDSs can be categorized into three types according to their data
collection techniques—host-based, network-based, and hybrid systems, which combine
two approaches [29]. The SDN architecture separates the control plane’s decision-making
from the data plane’s traffic forwarding while logically centralizing decision-making into a
controller whose functionality can be extended via network applications. A centralized
control plane provides a global view in SDN, enabling traffic engineering, security, load
balancing, and other network management strategies to be implemented based on defined
network policies. All switches in the network are monitored by the controller, which sets
rules in the flow tables on each switch. Through the use of OpenFlow [30], a centralized
controller communicates with switches and handles the routing and forwarding of the data
plane. The controller monitors all switches in the network and sets rules for each switch’s

Network 2024, 4 53

flow tables. Switches send packet-in messages to controllers whenever new packets arrive
that do not match entries in the flow table. An SDN-based IDS detects and reports malicious
behavior or attacks to the controller. In SDN, the IDS is currently designed using a machine
learning approach [31]. A machine learning-based IDS can be trained more easily with the
centralization of the SDN [32].

Clustering algorithms are designed to partition the set of nodes into distinct clusters,
and the challenge revolves around choosing the cluster head, often referred to as the
centroid, and effectively managing these clusters. The K-means clustering technique aims
to group similar items into clusters [33]. Each cluster begins with centroids selected at
random, and then the positions of these centroids are optimized iteratively. The centroid of
a cluster represents its central point. In the K-means algorithm, K centroids are determined,
and each data point is assigned to the nearest cluster, with the goal of minimizing the size
of these centroids. K is a hyper-parameter to the K-means algorithm. There is usually
a heuristic approach to determining the number of clusters K. Most strategies involve
running K-means with a variety of K values in order to determine which value is the most
appropriate. In order to solve minimum-cost assignment problems [34], the balanced K-
means algorithm can be implemented using the Munkres algorithm [35] or the Hungarian
algorithm [36].

Matching problems are generally concerned with finding a set of edges whose vertex
belongs to at least one of these edges. Suppose a network G has |V| nodes and a set of
links E between nodes v ∈ V. In the Weighted Matching method, there is weight for the
edges, and the algorithm tries to identify a set of disjoint edges that have the greatest
weight sum. A bipartite graph consists of two vertex sets of equal size [37], and the Perfect
Weighted Matching algorithm is intended to generate an edge set on this graph. The authors
in [38] presented an extension of Weighted Matching called the Weighted 3-D Matching
algorithm by utilizing 3-D hyper-graphs. A general weight 3-D matching problem can be
approximated using the Iterative Round Search technique.

4. IDSMatch: Deploying IDS Chains in SDN

In this paper, we introduce an innovative extension to the data plane within SDNs,
with a specific focus on tackling issues related to anomaly detection and controller over-
load. Within the network infrastructure, IDS applications are commonly integrated into
the control plane layer. However, when the network experiences a substantial influx of
incoming traffic, its ability to effectively identify anomalies becomes constrained. Moreover,
there exists a limited bandwidth for communication between the data plane and the control
plane. Since SDNs rely exclusively on a centralized controller to manage network traffic,
a high volume of incoming traffic can overwhelm the controller, potentially leading to
network failures. Deploying IDSs on specific data plane switches can relieve the SDN
controller’s load, and increasing the number of IDSs enhances attack detection chances in
specific traffic flows. However, deploying IDS on all switches is impractical due to costs and
delays. Our proposal involves strategically placing IDS chains across the data plane and
directing flows through specific paths that include these IDS chains. This routing approach
increases transmission delay compared to the shortest path. To mitigate this delay, we
group incoming flows and route all flows within a group through the same path. A classifier
categorizes traffic patterns upon entry into the network to assign the most suitable IDS
chain. Grouping is based on the proximity of source and destination flows to the group’s
centroid. The proposed approach organizes incoming flows by measuring the distance
between their source and destination points relative to a central reference point. Flows
sharing the same cluster ID are regarded as part of a cohesive cluster and are subjected to
identical security protocols. Subsequently, each cluster of flows is allocated a dedicated
sequence of IDSs. To direct packet flow within each group through the designated IDS
chain, the controller establishes rules. The task of assigning each group to an appropriate
IDS chain is known to be NP-hard, and to address this complexity, we propose a modified
version of the k-means algorithm as an approximate solution.

Network 2024, 4 54

Theorem 1. The complexity of the flow grouping problem being NP-hard implies that the likelihood
of discovering highly efficient algorithms to achieve optimal solutions is quite low.

Proof. The demonstration of this fact has been presented in two notable references, namely, [39],
which utilizes Exact Cover by 3-Sets, and [40], where a reduction from Planar 3-SAT is
employed.

The overall strategy involves clustering flows and defining a set of rules applicable
to each cluster. Flow categorization hinges on the proximity of source and destination
hosts to the cluster’s centroid. Subsequently, the task is to allocate each cluster to an
IDS chain, which can be likened to solving a matching problem. Following this, the
controller configures flow rules that reroute packets from flows within each cluster through
a predetermined sequence of IDSs within the assigned chain. The conventional K-means
algorithm typically relies on assessing the distance between data points and their respective
centroids. Nevertheless, in our specific problem, we encounter a distinct challenge that
necessitates a different similarity metric than the standard K-means approach. We must
devise a unique grouping strategy and similarity measurement. In our context, the data
points represent flows with distinct source (sj) and destination (dj) attributes. To adapt the
K-means clustering to our scenario, we apply it to pairs (sj, dj). The distance measurement
employed is dis(sj, sk) + dis(dj, dk), where sk and dk denote the centroids of a cluster with
center c. Here, we present formal definitions for flow grouping, distance measurement,
and the process of matching IDS, inspired by the concepts introduced in [4].

Definition 1 (Grouping strategy and GroupFlow). Grouping strategy ∆ partitions the incoming
traffic flow based on the similarity of specific features, such as the same source or same destination.
The total number of groups K is a predefined parameter. Fj ⊆ F is the j-th group or j-th GroupFlow,
including multiple flows with similar features. All flows in Fj are routed through the same path and
passed through some specific IDSs.

Definition 2 (Distance). The distance measurement is the summation of the distance of each
source sj to the cluster centroid ck’s source, and the distance of each destination dj to the cluster
centroid ck’s destination. Distance value dis(sj, sk) + dis(dj, dk) is used to find the nearest cluster
centroid for each GroupFlow [4].

Definition 3 (Matching GroupFlow with IDS Chain). For a specific GroupFlow Fj, an IDS
chain I is assigned by matching the centroid ck of that GroupFlow with the head of an IDS chain.
The assignment is based on the weight of the link between the source of the cluster and the head or
tail of the IDS chain [4].

Figure 2 illustrates an example for three clusters and three IDS chains. h represents
the head of the IDS chain, while t signifies the tail of this IDS chain. Figure 2a shows the
shortest path method, which calculates the distance between sources and destinations of
flows and initial centroids. We have the distance measurement dis(sj, sk) + dis(dj, dk), and
flows would be divided into three clusters with centroids {c1, c2, c3}. The GroupFlows
would be assigned to the IDS chain based on the shortest hop count. f1(s1, d1), f2(s2, d2),
and f5(s5, d5) are assigned to the first IDS chain based on the shortest path. f3(s3, d3) is
assigned to the second IDS chain. f4(s4, d4) and f6(s6, d6) are assigned to the third IDS chain.
Figure 2b illustrates the balanced grouping method. After grouping the flows, groups
will have different numbers of members. Balanced clustering aims to achieve an equitable
distribution of data points within each cluster, ensuring an equal workload for each cluster.
Our approach is different from common techniques. Instead of relying on the count of
group members to assess balance, we determine balance by considering the total data rate
of the groups. For this example, Figure 2a shows that the first cluster has three members,
the second one has only one member, and the third one has two members. In order to create
balance for the amount of processing on each IDS chain, we make a balance for the total

Network 2024, 4 55

amount of traffic in each group. The weight of a group can be defined as Wi = ∑ f∈Fi
ni.w f .

For this example, we assume that the data rate of flow is the same; therefore, balancing
would be based on the total number of members in each group. Figure 2b shows the
balanced groups.

(a) (b) (c)

Figure 2. Different methods of assigning IDS chain to incoming traffic. (a) Shortest path. (b) Balancing.
(c) Perfect matching.

Utilizing a perfect matching algorithm, each balanced GroupFlow is assigned to a head
and tail based on the shortest path, which encompasses the sum of hops from the source to
the chain’s head, the hops between the head and tail, and the hops between the tail and the
destination. In Figure 2c, you can observe the allocation of IDS chain heads and tails to the
source and destination of the centroids. Every cluster K has a virtual center, comprising
both the source sk and the destination dk. The matching process involves connecting sk to
hi and associating dk with tj, where hi and tj correspond to the head and tail of two distinct
IDS chains. This arrangement results in interconnections between IDS chains. In the real
test bed, we consider network delay, which is based on the number of hops and congestion
on links. Table 2 shows the hop counts and the assigned IDS chain for each method.

Table 2. Fixed IDS chain for each flow.

Shortest Path Balanced Matching

Flow Group IDS Group IDS Group IDS

f1 (c1, 6) (h1, t1) (c1, 6) (h1, t1) (c1, 6) (h1, t1)

f2 (c1, 6) (h1, t1) (c2, 8) (h2, t2) (c2, 7) (h2, t3)

f3 (c2, 6) (h2, t2) (c2, 6) (h2, t2) (c2, 5) (h2, t3)

f4 (c3, 5) (h3, t3) (c3, 6) (h3, t3) (c3, 5) (h3, t2)

f5 (c1, 6) (h1, t1) (c1, 6) (h1, t1) (c1, 6) (h1, t1)

f6 (c3, 5) (h3, t3) (c3, 6) (h3, t3) (c3, 5) (h3, t2)

Total 34 38 34

We summarize the steps of the proposed approach as follows:

• Perform clustering for the pair (sj, dj) using a distance metric defined as the sum of
distances from sj to the center sk and from dj to the center dk within a cluster with its
central point at ck. The distance between each host and the cluster center is computed
as the cumulative number of hops.

• Find balanced GroupFlows based on the amount of traffic for each group.
• Employ the standard perfect matching technique to establish pairs between cluster

centers and IDS chain configurations. Note that the connections between IDS chain
heads and tails are not fixed and can be reconfigured as needed.

The process of grouping flows is achieved by employing a modified variant of the K-
means clustering technique. In Algorithms 1 and 2, the procedures for grouping incoming
traffic into K clusters, creating balanced groups, and then matching the GroupFlows to the
IDS chains are delineated. The initial step involves the random initialization of K cluster
centroids. Subsequently, in the second step, the distances between each pair (sj, dj) and

Network 2024, 4 56

the centroid ck are computed, and flows are assigned to their respective clusters based
on these distances. Once all the flows have been clustered, the centroids are updated by
identifying new centroids in a way that minimizes the sum of the shortest path distances
from all flows in the cluster j to the new centroid. This iterative process continues until it
reaches a stable state. When using any clustering method, it is important to ensure that the
algorithm is converging in a meaningful way. To answer this question, we need to define a
related optimization problem and make the concept of convergence more precise as per
the reference [41]. Convergence in this context means that the algorithm has successfully
completed the clustering or grouping of data points into K clusters. The algorithm will
be deemed to have correctly grouped the data points if the difference in the values of the
last two iterations is less than a specified threshold. The classical K-means algorithm is
designed for the Euclidean distance, which is known to satisfy the triangle inequality as
per reference [42].

Algorithm 1 Balanced flow grouping.

Require: Flow set F
1: Initialize the K cluster centroids
2: Shortest Path
3: repeat
4: for each (s f , d f) of flow f ∈ F do
5: for each centroid ck do
6: sk ← source of ck,
7: dk ← destination of ck
8: j←k {dis(s f , sk) + dis(d f , dk)}
9: Fj ← Fj ∪ f

10: until Convergence
11: Balanced Clustering
12: for each cluster Fj do
13: Calculate number of members Mj = |Fj|
14: Calculate average number of members M
15: for each cluster Fj do
16: Change the membership if Mj is not the same as M
17: Find c′j as a new centroid based on new members
18: Perfect Minimum Bipartite Matching
19: Call Algorithm 2
20: return List of clusters assigned to IDS chains

Algorithm 2 Perfect minimum bipartite matching.

Require: IDS chains I and set of K balanced clusters
1: for each unmatched centroid ck do
2: sk ← source of ck
3: dk ← destination of ck
4: for each IDS chain i ∈ I do
5: hi ← head of i
6: ti ← tail of i
7: i∗ ←i {dis(sk, hi) + dis(dk, ti)}
8: Assign sk to hi∗

9: Assign dk to ti∗

10: return List of matched IDS chains and clusters

In order to avoid redundant distance calculations, it is necessary to use triangle in-
equality in order to determine the bounds. Since most distance calculations using standard
k-means are redundant, the optimized algorithm uses a more efficient calculation method.
The distance between a point and a center does not need to be calculated in order to deter-

Network 2024, 4 57

mine that the point should not be assigned to that center if it is far from the center. It is not
necessary to calculate the exact distance to determine that a point should be assigned to the
first center if a point is substantially closer to it than to any other [43,44].

In order to have balanced GroupFlows, there is some transferring of flows between
GroupFlows, resulting in an even number of flows in each group. Eventually, there would
be an equal number of flows in each GroupFlow. In the experiment section, we consider the
number of flows and traffic rate r f for balancing groups. The perfect matching method is
performed based on the hop count between the GroupFlows and the heads and tails of the
IDS chains. There is not any fixed connection between heads and tails. Perfect matching
makes some cross-connection between heads and tails based on finding the best chain for
GroupFlows. This algorithm returns a list of balanced groups and their matched IDS chain.

This problem is NP-hard. To address it, we take an approach that relies on an approxi-
mation technique involving the reconfiguration of incoming flows using a modified version
of the K-means clustering algorithm. We formulate the problem of grouping incoming traf-
fic as an optimization problem with the primary aim of reducing overhead or minimizing
costs. This issue is divided into two sub-problems: one involving the grouping of incoming
traffic, and the other focused on IDS assignment. They can be formulated as follows.

Problem 1. The first objective is to group incoming traffic in a balanced manner to
reduce transmission delay. Factors that should be considered when determining the
appropriate grouping include the distance of flows to the cluster’s centroid and the total
amount of traffic flows in each cluster:

minimize ∑Fj∈F Cost(Fj)

subject to Cost(Fj) = |Fj| ·∑ f∈Fj
r f

(1)

Here, Cost(Fj) represents the cost of clustering incoming traffic. This cost represents
the overhead of the controller due to the additional work required for grouping the incom-
ing traffic. The cost is based on the total number of traffic flows and total traffic rate r f in
each cluster Fj. For the purpose of simplification, we can assume that the value of r f is
equal to 1 in our calculations.

Problem 2. The secondary goal is to allocate an IDS chain to each GroupFlow Fj in
a manner that reduces the overall count of malicious packets while guaranteeing that all
traffic passes through an IDS chain prior to reaching its final destination. Given that the
positions of IDS chains are pre-established, the problem can be formulated as follows:

minimize ∑i∈I Cost(I)

subject to Cost(I) = ∑Mj,i=1 Rj ∗min(dis(Fj, Ii))

Rj = ∑ f∈Fj
r f

1 ≤ |Ii|.

(2)

Here, we evaluate the cost associated with assigning a GroupFlow Fj to an IDS chain Ii,
denoted as Cost(I). This cost is determined by considering the cumulative traffic rate of
each GroupFlow and the distance between the GroupFlow’s centroid and the IDS chain.
The traffic rate of the j-th GroupFlow is represented as Rj, and the data rate of a flow f is
denoted as r f . The distance between the IDS chain I and the GroupFlow Fj is quantified
as dis(Fj, Ii), which signifies the number of hops between the cluster’s head sj and hi. The
matrix Mj, i is employed to indicate the assignment of each GroupFlow Fj to a specific IDS
chain Ii.

Theorem 2. The proposed approach is a 3-approximation algorithm [45] for flows with different
sources to different destinations in a network with some IDS chains.

Network 2024, 4 58

Proof. The calculation of the 3-approximation ratio is based on the triangle inequality
and the optimality of each matching stage. For each head node h ∈ V, there is a cor-
responding tail node t ∈ V, which is assigned in the first round of approach. In addi-
tion, the pair (h, t) is matched to a group of flows Fi with source si and destination di in
the second round of the approach. We assume that in the optimal solution, the node h
should be paired with node t∗, and the pair (h, s∗) should be balanced by the GroupFlow
Fi whose source and destination are s∗i and d∗i , respectively. The relation among these
nodes is shown in Figures 3 and 4, which is a geometric graph. The total distance gener-
ated by our algorithm is ∑h∈V (dis(si, h) + dis(h, t) + dis(t, di)), and the optimal value is
∑h∈V (dis(s∗i , h) + dis(h, t∗) + dis(t∗, d∗i)).

Figure 3. Relationship between assignment and OPT.

(a) (b)

Figure 4. Procedures of the matching algorithm. (a) First step. (b) Second step.

Based on the triangle inequality theorem, it can be deduced that dis(t, t∗) ≤ dis(h, t) +
dis(h, t∗) and dis(t, d∗i) ≤ dis(t, t∗) + dis(t∗, d∗i) for each h ∈ V. Based on the optimality
of the first round of matching, it can be inferred that ∑h∈V dis(h, t) ≤ ∑h∈V dis(h, t∗).
Furthermore, the optimality of the second round of matching ensures that:

∑
h∈V

(dis(si, h) + dis(t, di)) ≤ ∑
h∈V

(dis(s∗i , h) + dis(t, d∗i))

Combining these inequity relationships:

∑
h∈V

(dis(si, h) + dis(t, di)) ≤ ∑
h∈V

(dis(s∗i , h) + dis(t, d∗i))

≤ ∑
h∈V

(dis(s∗i , h) + dis(t, t∗) + dis(t∗, d∗i))

≤ ∑
h∈V

(dis(s∗i , h) + dis(h, t) + dis(h, t∗) + dis(t∗, d∗i))

≤ ∑
h∈V

(dis(s∗i , h) + 2dis(h, t∗) + dis(t∗, d∗i)).

Network 2024, 4 59

Therefore,

∑
h∈V

(dis(si, h) + dis(h, t) + dis(t, d))

= ∑
h∈V

(dis(si, h) + dis(t, d)) + ∑
h∈V

dis(h, t)

≤ ∑
h∈V

(dis(s∗i , h) + 2dis(h, t∗) + dis(t∗, d∗))

+ ∑
h∈V

dis(h, t∗)

≤ 3 ∑
h∈V

(dis(s∗i , h) + dis(h, t∗) + dis(t∗, d∗)) = 3OPT.

5. Evaluation

In order to validate our proposed method, we conduct real-world experiments on our
test bed network. This network includes gateway nodes, SDN switches, and servers that
serve as sources and destinations. The topology of the network is arranged in a perfect tree
with four layers. The network is equipped with 32 servers, 15 SDN switches, and some
regular L2 switches. The structure of the data center is illustrated in Figure 5a. The servers,
except for the gateway, are equipped with dual-core processors running at 2.4 GHz, 4 GB of
RAM, and a 500 GB hard disk drive [46]. The topology is arranged in a three-level complete
binary tree. Each server is equipped with at least two-gigabit Ethernet ports. The dotted
lines in the star topology in Figure 5a indicate the control network. Our setup includes a
control network and a data network. The control network connects all management ports
of the SDN switches (Pica8 p-3922) and the SDN controller through an L2 switch. The SDN
switches are configured as out-of-band controllers, which separate the control and data
planes. There are two types of SDN switches: the root switch and the leaf switch, for the
gateway. There is a connection between the gateway and the root SDN switch, and there is
a connection between the servers and the leaf SDN switch.

(a) (b) (c)

Figure 5. Topologies. (a) Data center topology. (b) 24-node USNET topology. (c) 75-node CORONET
topology.

The controller used in our experiment is a Dell 3248 PowerEdge server running
the ONOS software [47]. We installed some default applications over ONOS and one
customized application which we named CustomRouting. Default applications include
LLDP Link Provider, Host Location Provider, OpenFlow Provider Suite, OpenFlow Base
Provider, and FWD. In the CustomRouting application, there is an input text file that allows
us to set paths between any source and destination using the index of the switch, input
port, and output port for each switch. The index of switches is associated with the ID of
each switch in the network. Additionally, there are time parameters in the input file for the
start of installing customized rules and the time of changing the rule to the new one. By
running ONOS, the customized rules will be installed on the switches, and traffic will be
directed through the customized path, including the IDS chain.

For simulation purposes, we evaluate the performance of our approach over 75-node
CORONET and 24-node USNET network topologies as shown in Figure 5b,c, respectively.

Network 2024, 4 60

For the test bed, the performance measurement is the network delay, based on hops and
link congestion, whereas in the simulation, the performance measurement is hop counts.

In our network, IDSs are installed on servers associated with each switch. The con-
troller is aware of the links, their utilization, and the SDN switches, allowing for a global
perspective of the network. After configuring the network and flow settings, we analyze the
results from various perspectives to provide insight into the performance of the proposed
algorithm. To demonstrate its feasibility and efficiency, we conduct experiments on a real
test bed using Snortas the IDS. Legitimate traffic is generated using the Ostinatotraffic
generator in normal and burst modes, while malicious traffic is generated using Kali Linux.
Deploying IDSs into the network leads to an increase in transmission delay as packets are
redirected to the server for detection before being sent back to the network to continue their
path. There is also constant background traffic between all servers, with 64-byte packets
and randomly selected sources and destinations.

In the original paper [4], it is evident that deploying more IDSs enhances detection
rates. Multiple IDSs can introduce slightly higher delays due to using alternative paths,
but this delay is not significant. Higher attack rates boost detection rates and reduce
missed detections, as more samples improve detection probability. Surprisingly, attack
rates have little impact on dropping rates, mainly influenced by switch capacity rather
than attack ratios. Increased attack rates lead to higher delays, as switches need to alert
the controller before taking action. Consequently, with more attack samples, detection
rates, missed detection rates, and dropping rates all rise. In this study, we evaluate our
approach using measurements of network delay in the real test bed and the number of
hops in the simulation.

5.1. Network Delay under Different Scale of Incoming Traffic

In this analysis, we delve into the impact of incoming traffic scale on network delay.
Our investigation encompasses three distinct scales of incoming traffic—small, medium,
and large—classified based on the production of the number of flows and the weight
assigned to each flow. The traffic scenarios are categorized into three sizes: small (500 flows),
medium (2000 flows), and large (4000 flows). These scenarios are tailored for different
network topologies, each characterized by unique sparsity levels. Sparsity, defined as the
ratio of the number of direct connections between servers to the total number of possible
direct connections, is a crucial parameter influencing network behavior. Figures 6–8 serve
as visual representations of the network delay under varying scales of incoming traffic and
different sparsity. For our experiments, we consider three specific scenarios:

• One IDS in the Chain: A single intrusion detection system (IDS) integrated into the
service chain.

• Three Fixed IDSs in the Chain: Three fixed IDSs strategically placed within the ser-
vice chain.

• Five IDSs in the Chain: A more extensive deployment with five IDSs integrated into
the service chain.

(a) (b) (c)

Figure 6. Detection time for topology 1 (Sparsity = 15%). (a) Delay with one IDS. (b) Delay with fixed
two IDS. (c) Delay with long IDS chain.

Network 2024, 4 61

(a) (b) (c)

Figure 7. Detection time for topology 2 (Sparsity = 35%). (a) Delay with one IDS. (b) Delay with fixed
two IDS. (c) Delay with fixed two IDS.

(a) (b) (c)

Figure 8. Detection time for topology 3 (Sparsity = 55%). (a) Delay with one IDS. (b) Delay with fixed
two IDS. (c) Delay with long IDS chain.

Figure 6 (sparsity 15%): The results reveal that even for a large scale of traffic, perfect
matching mitigates network delay. However, despite the potential for a higher detection
rate with a longer IDS chain, Figure 6c demonstrates an increase in network delay. This
suggests a trade-off between detection efficiency and network performance. Figure 7
(sparsity 35%): Similar trends are observed for a topology with increased sparsity. The
impact of sparsity on network delay is apparent, and the trade-off between detection
capabilities and network efficiency persists. Figure 8 (sparsity 55%): In a topology with
higher sparsity, the network delay is notably higher compared to a topology with lower
sparsity (15%). This emphasizes the influence of network topology on delay, with denser
connections resulting in improved performance.

These findings underscore the intricate relationship between the incoming traffic
scale, IDS deployment strategy, and network delay across diverse sparsity levels. The
trade-offs revealed in the experiments provide valuable insights for optimizing network
configurations based on specific traffic characteristics and security requirements.

5.2. Number of Hops under Different Scales of Incoming Traffic

In the investigation of the number of hops under varying scales of incoming traffic,
Figure 9 serves as a visual representation of the measurements. The results for the topology
with a sparsity of 15% highlight a notable contrast between the perfect matching and the
balanced group method. Specifically, perfect matching demonstrates a smaller number of
hops in comparison to the balanced group method. Expanding our analysis to different
network scenarios, Figures 10 and 11 present the results for networks with sparsity levels
of 35% and 55%, respectively. In the case of the sparse network with 35% sparsity, there is a
substantial difference in the number of hops between the perfect matching and balanced
methods. This discrepancy underscores the impact of network topology on the efficiency
of these routing strategies. As the number of flows increases, the IDSs integrated into
the service chain experience a heightened load. In response to this increased load, there
arises a necessity for load balancing, resulting in an augmented number of hops. This
phenomenon is particularly evident in the perfect matching method, where the load
balancing is not as inherently managed as in the balanced group method. The escalation
in the number of hops contributes to an increased delay in both the detection process and
overall data transmission.

This analysis sheds light on the intricate relationship between the traffic scale, IDS
deployment strategies, and network efficiency in terms of the number of hops. The observed

Network 2024, 4 62

trends emphasize the importance of considering both the network topology and load-
balancing mechanisms for optimizing the performance of service chains under diverse
traffic scenarios.

(a) (b) (c)

Figure 9. Number of hops for topology 1 (Sparsity = 15%). (a) Number of hops with one chain.
(b) Number of hops with fixed chain. (c) Number of hops with long chain.

(a) (b) (c)

Figure 10. Number of hops for topology 2 (Sparsity = 35%). (a) Number of hops with one chain.
(b) Number of hops with fixed chain. (c) Number of hops with long chain.

(a) (b) (c)

Figure 11. Number of hops for topology 3 (Sparsity = 55%). (a) Number of hops with one chain.
(b) Number of hops with fixed chain. (c) Number of hops with long chain.

5.3. Network Delay under Varying Weights and Varying Number of Flows

The findings reported in [4] emphasize the crucial role of incoming traffic volume as a
key metric in evaluating the efficacy of IDS deployment within the data plane. Additionally,
the quantity of IDSs within each chain is highlighted as a significant factor influencing
all recorded metrics. To delve further into these dynamics, we conducted experiments to
explore the impact of both the weight of flows and the number of flows in incoming traffic
on network delay. In Figure 12, the network delay is depicted when there is a fixed amount
of incoming traffic and a varying weight, ranging from 10 to 300. The results, considering
the flow numbers of 100, 300, and 500, indicate that a higher rate of traffic correlates
with an increase in network delay. This observation underscores the direct relationship
between traffic volume and delay, with larger flow rates contributing to heightened delays
in network transmission and processing.

Network 2024, 4 63

(a) (b) (c)

Figure 12. Network delay for different flow weights. (a) Number of flows = 100. (b) Number of
flows = 300. (c) Number of flows = 500.

According to Figure 13, the network delay is illustrated for varying amounts of
incoming traffic, ranging from 100 to 500, while maintaining fixed flow weights of 100,
200, and 300. Notably, the results reveal that, although a larger volume of incoming traffic
does lead to an increase in network delay, the impact of the weight of flows surpasses
that of the traffic volume. This suggests that the characteristics of individual flows, as
represented by their weights, exert a more pronounced influence on network delay than the
overall volume of traffic. As a result, optimizing the weight assignment for flows emerges
as a critical consideration for mitigating network delays. These experiments contribute
valuable insights into the nuanced interplay between traffic characteristics and network
delay, shedding light on factors that can be strategically managed to enhance the overall
efficiency of IDS deployment within the SDN data plane.

(a) (b) (c)

Figure 13. Network delay for the different number of flows. (a) Weight of flows = 100. (b) Weight of
flows = 200. (c) Weight of flows = 200.

5.4. Detection Rate under Varying Topology

In Figure 14, the detection rate of the IDS is visually presented, showcasing the perfor-
mance under various deployment methods. The three deployment strategies examined are
as follows:

• Centered IDS: This method involves placing an IDS in the SDN architecture. The NIDS
monitors all switches and subsequently sends a comprehensive security report to the
SDN controller.

• IDS App: In this scenario, an IDS application is integrated into the control plane
of the SDN. Collaborating with other monitoring applications, it analyzes network
traffic and assists the controller in establishing appropriate rules on switches for
enhanced security.

• IDSMatch: This represents the proposed method, which deploys a set of IDS chains
on the data plane of the SDN. IDSMatch aims to optimize intrusion detection by
strategically distributing IDSs in the data plane to efficiently analyze and mitigate
potential security threats.

The results indicate that, under different topologies and even in the case of a large-scale
traffic scenario, IDSMatch outperforms other methods in terms of detection rate. This supe-
rior performance underscores the effectiveness of strategically deploying IDS chains on the
data plane, providing enhanced capabilities for identifying and mitigating security threats
within the SDN environment. These findings contribute valuable insights for selecting an
optimal intrusion detection deployment strategy tailored to specific network requirements.

Network 2024, 4 64

(a) (b) (c)

Figure 14. Comparison of different strategies for IDS based on detection rate. (a) Data center topology.
(b) 4-node USNET topology. (c) 75-node CORONET topology.

5.5. The Ratios of Redundant Packet Inspection

With the proposed SDN-based IDS architecture, a crucial aspect we examined is the
prevalence of redundant packet inspection across varying numbers of deployed IDSs. Re-
dundant packet inspection refers to the scenario where network traffic traverses multiple
IDSs in a chain, leading to duplicated efforts in packet analysis. We conducted a series of
simulations to quantify the ratios of redundant packet inspection under different configu-
rations, considering both the fixed and dynamically adjusted numbers of IDSs within the
detection chain. The goal is to discern how the system’s capacity limitations on individual
IDS units may contribute to an increase in redundant inspections, particularly in situations
of high network flow.

To present our simulation results, we have compiled Table 3, detailing the impact of
redundant packet inspection across different scenarios. The table includes the number
of deployed IDSs in each chain, the corresponding volume of network traffic, and the
resultant ratios of redundant packet inspection. This analysis aims to provide insights into
the trade-offs between increased accuracy through multiple IDS layers and the associated
costs in terms of redundant packet inspection, aiding in the optimization of the proposed
SDN-based IDS architecture for real-world deployment. The table below summarizes the
key findings:

Table 3. Impact of redundant packet inspection with different numbers of IDSs and different network
traffic volume.

Number of IDSs Network Traffic Volume Redundant Packet Inspection Ratio

2
Low 0.15

Medium 0.20
High 0.25

4
Low 0.18

Medium 0.23
High 0.28

6
Low 0.21

Medium 0.26
High 0.32

8
Low 0.25

Medium 0.30
High 0.35

Table 3 contains the calculated ratios of redundant packet inspection for each com-
bination of IDSs and traffic volumes. The ratio reflects the proportion of packets that
undergo redundant inspection as they traverse multiple IDSs in the detection chain. These
results highlight the dynamic nature of redundant packet inspection in relation to the
IDS deployment strategy and network conditions, providing valuable insights for system
optimization and resource allocation in SDN environments. For example, in the cell at the
intersection of “6 IDSs” and “Moderate Traffic Volume,” the value of 0.26 suggests that,
under these conditions, approximately 26% of the packets undergo redundant inspection.

Network 2024, 4 65

5.6. Unbalancing Factor

In evaluating the assignment process of IDS chains within the SDN data plane, assess-
ing the balancing factor becomes crucial after allocating the GroupFlow of the network.
This factor serves as a metric to gauge the extent to which the data are balanced among
the IDS chains, providing insights into the effectiveness of the assignment process. In this
context, balance is achieved when there is an equitable distribution of traffic among the IDS
chains, ensuring that each chain handles a comparable amount of data. Table 4 presents
the balancing factor for three distinct methods: shortest path, balancing, and matching.
The experiment is conducted on the topology depicted in Figure 5c, offering a practical
scenario for assessing the balancing of IDS chains. A higher balancing factor indicates a
more uneven distribution of traffic among the IDS chains.

These unbalancing factors shed light on the effectiveness of different assignment
methods in achieving a balanced distribution of traffic among IDS chains. Analyzing
these factors provides valuable insights into the robustness and efficiency of the IDS chain
assignment process, facilitating informed decisions for optimizing network performance
and security.

Table 4. Unbalancing factor.

Flows Shortest Path Balancing Matching

IDS Chain 1 13.4 10.5 3.2
IDS Chain 2 9.3 7.03 4.3
IDS Chain 3 11.1 6.4 4.0

6. Conclusions

It is necessary to have a chain of IDSs on a large and busy network, as a single IDS may
be susceptible to packet loss. Further, a centralized controller is responsible for handling
all underlying network packets for security services, which results in significant overhead.
As an alternative, security services can be deployed as network functions on switches
within the data plane. By creating an approximation model, we propose a novel method of
detecting attacks in the data plane. We developed a novel method for grouping incoming
flows intuitively. Each group consists of a number of flows that are processed into an IDS
chain. As a result of assigning flows to IDS chains, grouped flows are diverted on a longer
path and processed by the assigned IDS chain. To evaluate our approach, we discussed
several factors, including the detection rate, hop count, and delay time. Under different
scenarios, the proposed approach meets these measurements. Future work will focus on
grouping flows based on the common K links in their path to the destinations. The flows
with the same K sub-path would be assigned to the same group.

Author Contributions: Conceptualization, N.N. and J.W.; methodology, N.N.; writing—original draft
preparation, N.N.; review and editing, J.W.; supervision, J.W.; funding acquisition, J.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSF grants CNS 2214940, CPS 2128378, CNS 2107014, CNS
2150152, CNS 1824440, and CNS 1828363.

Data Availability Statement: Derived data of this study are available from the corresponding author
on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Network 2024, 4 66

References
1. Cox, J.H.; Chung, J.; Donovan, S.; Ivey, J.; Clark, R.J.; Riley, G.; Owen, H.L. Advancing software-defined networks: A survey.

IEEE Access 2017, 5, 25487–25526. [CrossRef]
2. Hakiri, A.; Gokhale, A.; Berthou, P.; Schmidt, D.C.; Gayraud, T. Software-defined networking: Challenges and research

opportunities for future internet. Comput. Netw. 2014, 75, 453–471. [CrossRef]
3. Yoon, C.; Park, T.; Lee, S.; Kang, H.; Shin, S.; Zhang, Z. Enabling security functions with SDN: A feasibility study. Comput. Netw.

2015, 85, 19–35. [CrossRef]
4. Niknami, N.; Wu, J. Enhancing Load Balancing by Intrusion Detection System Chain on SDN Data Plane. In Proceedings of the

2022 IEEE Conference on Communications and Network Security (CNS), Austin, TX, USA, 3–5 October 2022.
5. Mostafavi, S.; Hakami, V.; Sanaei, M. Quality of service provisioning in network function virtualization: A survey. Computing

2021, 103, 917–991. [CrossRef]
6. Khoshkholghi, M.A.; Mahmoodi, T. Edge intelligence for service function chain deployment in NFV-enabled networks. Comput.

Netw. 2022, 219, 109451. [CrossRef]
7. Jia, J.; Yang, L.; Cao, J. Reliability-aware dynamic service chain scheduling in 5g networks based on reinforcement learning. In

Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May
2021; pp. 1–10.

8. Phan, T.V.; Park, M. Efficient distributed denial-of-service attack defense in SDN-based cloud. IEEE Access 2019, 7, 18701–18714.
[CrossRef]

9. Luo, J.L.; Yu, S.Z.; Peng, S.J. SDN/NFV-based security service function tree for cloud. IEEE Access 2020, 8, 38538–38545. [CrossRef]
10. Deng, S.; Li, M.; Guo, Q.; Zhou, H. Security SFC Path Selection Using Deep Reinforcement Learning. In Proceedings of the

International Symposium on Mobile Internet Security, Jeju Island, Republic of Korea, 15–17 December 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 97–107.

11. Saeed, R.; Qureshi, S.; Farooq, M.U.; Zeeshan, M. SDN/NFV Enabled Security for an Enterprise Network using Commodity
Hardware. In Proceedings of the IEEE International Conference on Computing, Electronics & Communications Engineering
(iCCECE), Southend, UK, 17–18 August 2022; pp. 25–30.

12. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep recurrent neural network for intrusion detection in
sdn-based networks. In Proceedings of the 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal,
QC, Canada, 25–29 June 2018; pp. 202–206.

13. Shipulin, K. We need to talk about IDS signatures. Netw. Secur. 2018, 2018, 8–13. [CrossRef]
14. Zwane, S.; Tarwireyi, P.; Adigun, M. Ensemble learning approach for flow-based intrusion detection system. In Proceedings of

the 2019 IEEE AFRICON, Accra, Ghana, 25–27 September 2019; pp. 1–8.
15. Sultana, N.; Chilamkurti, N.; Peng, W.; Alhadad, R. Survey on SDN based network intrusion detection system using machine

learning approaches. Peer-Peer Netw. Appl. 2019, 12, 493–501. [CrossRef]
16. Alzahrani, A.O.; Alenazi, M.J. Designing a network intrusion detection system based on machine learning for software defined

networks. Future Internet 2021, 13, 111. [CrossRef]
17. Muthamil Sudar, K.; Deepalakshmi, P. An intelligent flow-based and signature-based IDS for SDNs using ensemble feature

selection and a multi-layer machine learning-based classifier. J. Intell. Fuzzy Syst. 2021, 40, 4237–4256. [CrossRef]
18. Niknami, N.; Inkrott, E.; Wu, J. Towards Analysis of the Performance of IDSs in Software-Defined Networks. In Proceedings of

the 19th IEEE International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 19–23 October 2022.
19. Latah, M.; Toker, L. An efficient flow-based multi-level hybrid intrusion detection system for software-defined networks. CCF

Trans. Netw. 2020, 3, 261–271. [CrossRef]
20. Zhao, X.; Su, H.; Sun, Z. An Intrusion Detection System Based on Genetic Algorithm for Software-Defined Networks. Mathematics

2022, 10, 3941. [CrossRef]
21. Cui, J.; Zhang, J.; He, J.; Zhong, H.; Lu, Y. DDoS detection and defense mechanism for SDN controllers with K-Means. In

Proceedings of the IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7–10
December 2020; pp. 394–401.

22. Niknami, N.; Wu, J. Entropy-KL-ML: Enhancing the Entropy-KL-based Anomaly Detection on Software-Defined Networks. IEEE
Trans. Netw. Sci. Eng. 2022, 9, 4458–4467. [CrossRef]

23. Yazdinejadna, A.; Parizi, R.M.; Dehghantanha, A.; Khan, M.S. A kangaroo-based intrusion detection system on software-defined
networks. Comput. Netw. 2021, 184, 107688. [CrossRef]

24. Goo, Y.H.; Lee, S.H.; Choi, S.; Choi, M.J.; Kim, M.S. A traffic grouping method using the correlation model of network flow. In
Proceedings of the IEEE 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Republic of
Korea, 27–29 September 2017; pp. 386–390.

25. Hashemi, M.J.; Keller, E. Enhancing robustness against adversarial examples in network intrusion detection systems. In
Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Leganes,
Spain, 10–12 November 2020; pp. 37–43.

26. Albahar, M.A. Recurrent neural network model based on a new regularization technique for real-time intrusion detection in SDN
environments. Secur. Commun. Netw. 2019, 2019, 8939041. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2762291
http://dx.doi.org/10.1016/j.comnet.2014.10.015
http://dx.doi.org/10.1016/j.comnet.2015.05.005
http://dx.doi.org/10.1007/s00607-021-00925-x
http://dx.doi.org/10.1016/j.comnet.2022.109451
http://dx.doi.org/10.1109/ACCESS.2019.2896783
http://dx.doi.org/10.1109/ACCESS.2020.2974569
http://dx.doi.org/10.1016/S1353-4858(18)30024-2
http://dx.doi.org/10.1007/s12083-017-0630-0
http://dx.doi.org/10.3390/fi13050111
http://dx.doi.org/10.3233/JIFS-200850
http://dx.doi.org/10.1007/s42045-020-00040-z
http://dx.doi.org/10.3390/math10213941
http://dx.doi.org/10.1109/TNSE.2022.3202147
http://dx.doi.org/10.1016/j.comnet.2020.107688
http://dx.doi.org/10.1155/2019/8939041

Network 2024, 4 67

27. Chakraborty, N. Intrusion detection system and intrusion prevention system: A comparative study. Int. J. Comput. Bus. Res.
(IJCBR) 2013, 4, 1–8.

28. Qaddoori, S.L.; Ali, Q.I. An in-depth characterization of intrusion detection systems (IDS). J. Mod. Technol. Eng. 2021, 6, 161–188.
29. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 20. [CrossRef]
30. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
31. Hande, Y.; Muddana, A. A survey on intrusion detection system for software defined networks (SDN). In Research Anthology on

Artificial Intelligence Applications in Security; IGI Global: Hershey, PA, USA 2021; pp. 467–489.
32. Hande, Y.; Muddana, A.; Darade, S. Software-defined network-based intrusion detection system. In Innovations in Electronics and

Communication Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 535–543.
33. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 7 January 1967; Volume 1, pp. 281–297.
34. Malinen, M.I.; Fränti, P. Balanced k-means for clustering. In Proceedings of the International Workshops on Statistical Techniques in

Pattern Recognition and Structural and Syntactic Pattern Recognition, Joensuu, Finland, 20–22 August 2014; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 32–41.

35. Chang, X.; Nie, F.; Ma, Z.; Yang, Y. Balanced k-means and min-cut clustering. arXiv 2014, arXiv:1411.6235.
36. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems: Revised Reprint; SIAM: Philadelphia, PA, USA, 2012.
37. Karp, R.M. An algorithm to solve the m× n assignment problem in expected time O (mn log n). Networks 1980, 10, 143–152.

[CrossRef]
38. Johnson, T.; Wu, J. Improvements to Worker Assignment in Bike Sharing Systems. In Proceedings of the 2021 IEEE 18th

International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 639–644.
39. Vattani, A. The hardness of k-means clustering in the plane. Manuscript 2009, 617. Available online: https://api.semanticscholar.

org/CorpusID:8497124 (accessed on 11 October 2023).
40. Mahajan, M.; Nimbhorkar, P.; Varadarajan, K. The planar k-means problem is NP-hard. In Proceedings of the International

Workshop on Algorithms and Computation, Kolkata, India, 18–20 February 2009; pp. 274–285.
41. Thorpe, M.; Theil, F.; Johansen, A.M.; Cade, N. Convergence of the k-means minimization problem using Γ-convergence. SIAM J.

Appl. Math. 2015, 75, 2444–2474. [CrossRef]
42. Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the 14th

International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223.
43. Elkan, C. Using the triangle inequality to accelerate k-means. In Proceedings of the 20th International Conference on Machine

Learning (ICML), Washington, DC, USA, 21–24 August 2003; pp. 147–153.
44. Hamerly, G. Making k-means even faster. In Proceedings of the International Conference on Data Mining (SIAM), Columbus,

OH, USA, 29 April–1 May 2010; pp. 130–140.
45. Duan, Y.; Wu, J. Spatial-temporal inventory rebalancing for bike sharing systems with worker recruitment. IEEE Trans. Mob.

Comput. 2020, 21, 1081–1095. [CrossRef]
46. Biswas, R. Mitigation of Different Network Attacks and Optimization in Software Defined Network. Ph.D. Thesis, Temple

University, Philadelphia, PA, USA, 2021.
47. Kim, W.; Li, J.; Hong, J.W.K.; Suh, Y.J. OFMon: OpenFlow monitoring system in ONOS controllers. In Proceedings of the 2016

IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Republic of Korea, 6–10 June 2016; pp. 397–402. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1002/net.3230100205
https://api.semanticscholar.org/CorpusID:8497124
https://api.semanticscholar.org/CorpusID:8497124
http://dx.doi.org/10.1137/140974365
http://dx.doi.org/10.1109/TMC.2020.3018469
http://dx.doi.org/10.1109/NETSOFT.2016.7502474

	Introduction
	Related Work
	Background and Motivation
	IDSMatch: Deploying IDS Chains in SDN
	Evaluation
	Network Delay under Different Scale of Incoming Traffic
	Number of Hops under Different Scales of Incoming Traffic
	Network Delay under Varying Weights and Varying Number of Flows
	Detection Rate under Varying Topology
	The Ratios of Redundant Packet Inspection
	Unbalancing Factor

	Conclusions
	References

