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Abstract—In the area of energy-efficient (EE) resource alloca-
tion, only limited work has been done on joint consideration of
transmitter and receiver energy consumption. In this paper, we
propose a novel EE resource allocation scheme for orthogonal
frequency division multiple access (OFDMA) networks, where
both transmitter energy consumption and receiver energy con-
sumption are considered. In addition, different quality of service
(QoS) requirements including minimum-rate guarantee service
and best-effort service are taken into account. The time slot,
sub-carrier (frequency) and power allocation policies are jointly
considered to optimize system energy efficiency. With all these
considerations, the EE resource allocation problem is formulated
as a mixed combinatorial and non-convex optimization problem,
which is extremely difficult to solve. To reduce the computational
complexity, we tackle this problem with three steps. First, for
given power allocation, we obtain the time-frequency resource
unit (RU) allocation policy via binary quantum-behaved particle
swarm optimization (BQPSO) algorithm. Second, under the
assumption of known RU allocation, we transform the original
optimization problem into an equivalent concave optimization
problem and obtain the optimal power allocation policy through
the Lagrange dual approach. Third, an iteration algorithm is
developed to obtain the joint time-frequency-power resource
allocation strategy. We validate the convergence and effectiveness
of the proposed scheme by extensive simulations.

Index Terms—Energy efficiency, resource allocation, heteroge-
neous service, OFDMA network, mixed combinatorial and non-
convex optimization.

I. INTRODUCTION

W ITH the explosive growth of high-data-rate applica-
tions, more and more energy is consumed in wireless

networks. Due to limited energy supply and the need of
environmental-friendly transmission behaviors [1]–[5], energy-
efficient (EE) wireless communication is drawing increasing
attention. Several international research projects dedicated to
EE wireless communication are being carried out, such as
Green Radio, EARTH, OPERA-Net, eWIN, and so on [1].
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EE wireless communication includes many research areas,
such as low-power circuit design, high-efficiency power am-
plifier and digital signal processing (DSP) technologies, EE
resource management, EE network architecture and planning,
adequate EE metric and energy consumption model, adaptive
traffic pattern and load variation algorithm, as well as advanced
cooling systems [1]–[3]. As an important aspect of EE re-
source management, EE resource allocation is very significant
for enhancing energy efficiency performance [6]–[8].

Lots of EE resource allocation algorithms have been pro-
posed to maximize energy efficiency for different fading
channels, such as frequency-selective fading channel, flat
fading channel, et al. [9]–[11]. And it has been shown that
a unique global maximum energy efficiency exists and can be
obtained by the proposed algorithms [8]–[11]. Besides, some
efficient resource allocation algorithms have been proposed
to optimize the tradeoff between spectrum efficiency (SE)
and energy efficiency [12]–[14], bandwidth consumption and
energy consumption [15], [16], as well as delay performance
and energy consumption [17], [18]. However, almost all the
aforementioned algorithms only optimize base station (BS)
energy consumption and do not consider user equipment (UE)
receiver circuit energy consumption that used to receive and
process downlink traffic, which can significantly increase the
UE receiver circuit energy consumption [19] and result in low
energy efficiency. Therefore, the proposed algorithms are not
energy efficiency from the system perspective.

Energy supply of UE is limited. Discontinuous reception
(DRX) technology is always used to save the circuit ener-
gy consumption of UE, because circuit energy consumption
increases with data transmission time [20], [21]. With the
inspiration of DRX, some resource allocation algorithms have
been proposed [7], [22]. In orthogonal frequency division
multiple access (OFDMA) systems, traffic to one UE can
be scheduled into fewer time slots to reduce the energy
consumption, then the authors in [7] propose a green resource
allocation algorithm to minimize the total receiving energy
consumption of UEs. The authors in [22] propose a DRX-
aware scheduling method where DRX parameters are used for
scheduling, so as to reduce packet loss rate and UE energy
consumption. However, these researches only optimize UE
energy consumption, which imposes a strict restriction on
resource allocation, causes services not able to use the most
suitable resource, and may result in low energy efficiency.

Energy efficiency enhancement at the system level can be
achieved only if energy consumption of the entire communica-
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tion chains are considered [19]. However, if UE circuit energy
consumption and BS transmission energy consumption are not
comparable, it is unnecessary to jointly consider transmitter
and receiver for designing EE resource allocation algorithm.
In traditional macro cellular scenarios, when transmission
distance is large, circuit energy consumption of UE receiver
is always much lower than BS transmission energy consump-
tion. However, in many short-range wireless communication
systems (e.g., femtocell, wireless sensor networks (WSN)), the
circuit energy consumption of receiver becomes comparable
to or even exceeds the transmission energy consumption [3],
[20], [23]. Therefore, when designing EE resource allocation
algorithms for short-range communication situations, it is
feasible and even necessary to jointly consider transmitter and
receiver energy consumption.

So far, few works have jointly considered transmitter and
receiver energy consumption when designing EE resource allo-
cation algorithms. Authors in [19] propose a packet scheduling
algorithm that can minimize both BS transmission and UE
circuit energy consumption, while meeting service quality of
service (QoS) requirement. However, this work has several
weaknesses. First, with the objective of minimizing BS trans-
mission energy and UE circuit energy consumption, it is not
necessarily energy efficiency [8], [23]. Second, to decrease
UE circuit energy consumption, at the beginning of each
scheduling period only a fraction of time is allowed to transmit
data, which induces low resource utilization efficiency. Third,
energy efficiency can be further improved, for it does not con-
sider BS circuit energy consumption. Moreover, [24] proposes
an end-to-end EE resource allocation algorithm, however, only
heuristic method is used to solve the formulation problem.

In this paper, we investigate the performance optimization
of energy efficiency for downlink communications in OFDMA
networks from a systematic perspective, where the BS trans-
mission, BS circuit and UE circuit energy consumption are all
taken into account. The resource allocation problem is formu-
lated as a mixed combinatorial and non-convex optimization
problem, where the time slot, sub-carrier (frequency) and
power allocation policies are considered together to optimize
energy efficiency. To reduce the computational complexity of
the formulated problem, we tackle this problem with three
steps. Step 1, for given power allocation, we obtain the time-
frequency resource unit (RU) allocation policy via binary
quantum-behaved particle swarm optimization (BQPSO) al-
gorithm [25]; Step 2, under the assumption of known RU
allocation, we transform the original optimization problem to
an equivalent concave optimization problem and obtain the
optimal power allocation policy through the Lagrange dual
approach; Step 3, based on step 1 and step 2, an iteration
algorithm is developed to obtain the time-frequency-power
resource allocation strategy. We validate the convergence and
effectiveness of the proposed scheme by extensive simulations.
The distinct features of this paper are summarized as follows:

• Different from most existing works, we consider EE
resource allocation from a systematic perspective. In the
problem formulation, the BS transmission, BS circuit and
UE energy consumption are jointly considered, which can
achieve better performance of energy efficiency.

• Heterogeneous services including minimum-rate guaran-
tee service and best-effort service are supported by our
proposed resource allocation scheme, which is realistic,
for heterogeneous services may simultaneously request
system resource.

• Since the time slot, sub-carrier and power resource are
jointly considered in our problem formulation, the pro-
posed scheme can be regarded as a multi-dimensional
resource allocation scheme. The more resource dimen-
sions we consider, the harder it is to solve the formulated
problem. In fact, only few works have been done in multi-
dimensional resource allocation.

The remainder of the paper is organized as follows. Section
II gives the system model and problem formulation. In Sec-
tion III, the Time-Frequency RU Allocation for Given Power
Allocation is discussed. In Section IV the Power Allocation
for Given RU Allocation is presented. The Time-Frequency-
Power Resource Allocation is developed in Section V. The
performance analysis and discussions are given in Section VI.
Finally, we conclude this paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and formu-
late the problem of EE resource allocation. To make the rest
of this paper easy to follow, we list some frequently used
notations in TABLE I.

TABLE I: Some Notations Used in This Paper

N number of sub-carriers
M number of time slots in each scheduling period
K number of users
K1 number of users with minimum-rate guarantee service
W bandwidth of each sub-carrier
T duration of one time slot
ΩA set of users with minimum-rate guarantee service
ΩB set of users with best-effort service
Rmin

k minimum rate threshold for user k, k ∈ ΩA

ηk proportional-fairness factor for user k, k ∈ ΩB

Rtot total transmitted data during one scheduling period
Ptot total energy consumption
Pmax transmission power budget of BS
Rk transmitted data of user k
Rn,m,k transmitted data of user k on the RU (n,m)
γn,m,k SNR of unit transmission power, i.e., CNR
an,m,k Boolean variable indicating the RU allocation
pn,m,k transmission power of user k on RU (n,m)
A RU allocation policy with the element am,n,k

P power allocation strategy with the element pm,n,k

Ak set composed of RUs that are allocated to user k
Pc circuit power of BS
Prk circuit power of UE k at receiving mode
Pnrk circuit power of UE k at non-receiving mode
D particle position in BQPSO algorithm
U(·, ·) fitness function in BQPSO algorithm
Mbe(·) mean best position of all particles
Bbe

i (·) best position of the i-th particle
Gbe(·) global best position of all particles
Li(·) local attractor for particle i

A. System Model
A single cell OFDMA network with K users and N

sub-carriers is considered. Assume that these K users have
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heterogeneous service requirements and can be classified into
two classes: users with minimum-rate guarantee service and
users with best-effort service [26]. The corresponding sets of
these two user classes are denoted as ΩA = {1, · · · ,K1} and
ΩB = {K1+1, · · · ,K}, respectively. Assume each sub-carrier
has a bandwidth of W and can be modeled as Rayleigh block
fading. We further assume that the channel state information
(CSI) can be estimated perfectly. A RU represents one sub-
carrier in one time slot with duration T , and one scheduling
period contains M time slots. At each beginning of scheduling
period, the BS is responsible for allocating all the N×M RUs
and power resource among the K users.

B. Problem Formulation

The classical performance metric of energy efficiency “bits-
per-Joule” [4], i.e., the number of delivered bits per consuming
unit energy, is adopted in the paper. This means that energy
efficiency is defined as the amount of system transmitted data
Rtot divided by the total energy consumption Ptot.

The amount of system transmitted data Rtot during one
scheduling period is given as

Rtot =
K∑

k=1

Rk, (1)

where, Rk is the amount of transmitted data of user k during
one scheduling period, which can be expressed as

Rk =
M∑

m=1

N∑
n=1

TW log2(1 + an,m,kγn,m,kpn,m,k), (2)

where, an,m,k is the RU allocation indicator. an,m,k = 1
denotes that RU (n,m) is allocated to user k; otherwise,
an,m,k = 0. γn,m,k = |hn,m,k|2/N0W is the signal to noise
ratio (SNR) of unit transmission power, i.e., channel gain to
noise ratio (CNR). hn,m,k denotes the channel gain of user
k on RU (n,m), and N0 represents single-sided noise power
spectral density. pn,m,k ≥ 0 denotes the transmission power
of user k on RU (n,m).

The total energy consumption Ptot of transmitting Rtot bits
information can be calculated as following. The total number
of time slots where there are data for user k can formulated
as Mrk(Ak) =

∑M
m=1 f(

∑N
n=1 an,m,k), where Ak is a set

composed of RUs that are allocated to user k. If we know the
A we can obtain the set Ak easily. f(x) is an integer step
function, where f(x) = 0 when x = 0, and f(x) = 1 when
x ∈ {1, · · · , N}. To simply the analysis, assuming there are
only two work modes of UE in downlink transmission, i.e.,
receiving mode and non-receiving mode. The circuit power of
UE k at receiving mode and non-receiving mode are Prk and
Pnrk , respectively. Assuming the circuit power of BS is always
Pc. Thus the total energy consumption Ptot can be given as

Ptot =T
[ K∑
k=1

M∑
m=1

N∑
n=1

pn,m,k +
K∑

k=1

PrkMrk(Ak)

+
K∑

k=1

(M −Mrk(Ak))Pnrk) + PcM
]
.

(3)

Then the resource allocation problem formulation from the
systematic perspective can be given as:

max
A,P

Rtot(A,P)

Ptot(A,P)

s.t. C1 : an,m,k ∈ {0, 1}, ∀n,m, k,

C2 :
K∑

k=1

an,m,k ≤ 1, ∀n,m,

C3 :

K∑
k=1

N∑
n=1

pn,m,k ≤ Pmax, ∀m,

C4 : Rk ≥ Rmin
k , ∀k ∈ ΩA,

C5 :
Rk∑K

k=K1+1 Rk

= ηk, ∀k ∈ ΩB ,

(4)

where, A with element am,n,k and P with element pm,n,k are
RU allocation policy and power allocation strategy, respective-
ly. They both are N × M × K matrix. The constraint (C) 1
and C2 are RU allocation constraints. C2 means that one RU
can only be assigned to one user at most. The C3 is power
allocation constraint which gives the maximum transmission
power of BS, and Pmax is transmission power threshold. The
C4 is used to guarantee the minimum-rate of user k in ΩA,
and Rmin

k is the minimum rate threshold. The C5 can ensure
the fairness of user k in ΩB , and ηk are proportional-fairness
factors which are predetermined values.

The optimal resource allocation problem in (4) is a mixed
combinatorial and non-convex optimization problem. The
combinatorial nature comes from the RU allocation con-
straints C1 and C2. The non-convexity feature is caused
by the proportional-fairness constraint C5 and the fractional
form of the objective function. Furthermore, the UE re-
ceiver energy consumption is considered and formulated as
T (

∑K
k=1 PrkMrk(Ak)+

∑K
k=1(M−Mrk(Ak))Pnrk), which is

non-differential for arguments am,n,k. Therefore, the resource
allocation problem is very difficult to solve. In this paper, to
solve the problem and obtain the resource allocation policies,
we develop the following three algorithms: Time-Frequency
RU Allocation for Given Power Allocation, Power Allocation
for Given RU Allocation, and Time-Frequency-Power Resource
Allocation.

III. TIME-FREQUENCY RU ALLOCATION FOR GIVEN
POWER ALLOCATION

In this section, for given power allocation, we present a RU
allocation algorithm, which is based on BQPSO. BQPSO is a
novel simulated evolvement algorithm, which can effectively
solve complicated combinatorial optimization problem with
desirable performance of finding global optimal solution [25].
First, we introduce the BQPSO algorithm, and then we present
the BQPSO based RU allocation algorithm.

The BQPSO algorithm has three important parts, i.e., par-
ticle position, fitness function and evolution equation. The
position of each particle represents the possible solution of
the optimization problem. In this paper, the position of each
particle represents the possible RU allocation policy, i.e.,
decides how to assign N ×M RUs to K users. Therefore, the
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N ×M RUs are regarded as N ×M decision variables, and
each decision variable with ⌈log2 K⌉ bits, where ⌈·⌉ means
rounding up the value. The particle position is defined as (5),
which is a binary string with the length of N×M×⌈log2 K⌉.
The bits D1 = (d1,1,1, · · · , d1,1,⌈log2 K⌉) in D belong to the
first decision variable, i.e., the RU (1, 1).

D = (d1,1,1, · · · , d1,1,⌈log2 K⌉, · · · , dN,M,⌈log2 K⌉). (5)

According to the position D, we can get the RU allocation
policy A. For example, the n ×M +mth decision variable,
i.e., the RU (n,M), should be allocated to user kk, kk =
dn,m,12

⌈log2 K⌉−1+dn,m,22
⌈log2 K⌉−2+· · ·+dn,m,⌈log2 K⌉2

0+
1. That means, an,m,k = 0 if k ̸= kk and an,m,k = 1 if
k = kk.

The fitness function is used to evaluate the quality of
the obtained solution, which is constructed by the original
optimization problem. Assume the power allocation policy is
given as Pt. Then using the method of penalty function, the
fitness function is given as

U(A,Pt) = F (A,Pt)− αFp(A,Pt), (6)

where F (A,Pt) = Rtot(A,Pt)/Ptot(A,Pt) is the objective
function, α is penalty factor, and Fp(A,Pt) represents penalty
function that consists of constraints related to am,n,k. The
particle position in BQPSO is a binary string, and each RU is
regarded as a decision variable allocated to one user at most,
hence C1 and C2 in (4) have been included. Then the penalty
function can be written as:

Fp(A,Pt) =

K1∑
k=1

[max(0, Rmin
k −Rk)]

2

+
K∑

k=K1+1

(ηk

K∑
k=K1+1

Rk −Rk)
2,

(7)

where max(·, ·) returns a larger value of the two variables.
Directly describing the evolution equation of BQPSO may

be difficult to understand. Hence, firstly the evolution equation
of quantum-behaved particle swarm optimization (QPSO) is
introduced. Assume there are I particles in search space. The
evolution equation of particle i (i = 1, · · · , I) in the QPSO
algorithm is given as following [25], [27]:{
Di(l + 1) = Li(l) + υ|Mbe(l)−Di(l)| · ln( 1u ) if r ≥ 0.5

Di(l + 1) = Li(l)− υ|Mbe(l)−Di(l)| · ln( 1u ) if r < 0.5,
(8)

where l denotes the iteration time, υ is the contraction-
expansion coefficient which can be used to control algorithm
convergence rate, u and r are both random variables between
0 and 1. The Mbe(l) is the mean best position of all particles
in the l-th iteration, which can be obtained by

Mbe(l) =
1

I

I∑
i=1

Bbe
i (l), (9)

where Bbe
i (l) is the best position of the i-th particle in the l-th

iteration. The Li(l) in (8) is called local attractor for particle
i in the l-th iteration, which can be given as

Li(l) = θBbe
i (l) + (1− θ)Gbe(l), (10)

( )be

i
lB

( )be
lG

( )l′L

( )
i
l′′L

Fig. 1: Li(l) producing process through single-point crossover.

where θ is a random variable between 0 and 1, Gbe(l) denotes
the global best position of all particles in the l-th iteration.

The particle location in BQPSO is a binary string, therefore
the evolution equation is different from that of QPSO. In
BQPSO, the iterative equation (8) is replaced by the procedure
of inversing the value of each bit in Li(l) with a probability.
All bits in the same decision variable have the same inverse
probability. Specifically, the bits in Li(l) belong to the g-
th decision variable, i.e., Lg

i (l), are inversed with probability
pgi (l) to obtain Dg

i (l + 1). The pgi (l) can be obtained as

bgi (l) = υ · dH(Mg
be(l),D

g
i (l)) · ln(1/u), (11)

pgi (l) =

{
bgi (l)/⌈log2K⌉ if bgi (l)/⌈log2K⌉ < 1

1 otherwise,
(12)

where, Mg
be(l) and Dg

i (l) are the mean best position bits
and position bits belonging to the g-th decision variable,
respectively. The dH(·, ·) is a function that can obtain the
Hamming distance of two input binary strings. In BQPSO,
the j-th bit of the Mbe(l), i.e., M j

be(l), is determined by the
states of the j-th bit of all Bbe

i (l). If more particles take on
1, the M j

be(l) will be 1; otherwise it is 0.
The local attractor Li(l) in BQPSO can be obtained after

single-point crossover or multipoint crossover process. Fig. 1
shows how to obtain the local attractor from Bbe

i (l) and Gbe(l)
through single-point crossover process. First, randomly select
a number between 1 and N ×M × ⌈log2K⌉, and regard it as
the crossover point. Then L

′

i(l) and L
′′

i (l) are obtained from
the offsprings of Bbe

i (l) and Gbe(l). Finally, L
′

i(l) and L
′′

i (l)
are selected randomly as the Li(l).

Based on the BQPSO, the RU allocation algorithm is
developed. The detail steps are given in Algorithm 1.

IV. POWER ALLOCATION FOR GIVEN RU ALLOCATION

In this section, under the assumption of known RU al-
location, we transform the original non-convex optimization
problem to an equivalent concave optimization problem, and
obtain the optimal power allocation policy by the Lagrange
dual approach.

A. The Problem Transformation

Assuming that the RU allocation policy At is known, then
the BS only needs to do the power allocation for different
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Algorithm 1 RU Allocation for Given Power Allocation
1: Initialization:

a) Set population size I , the maximum iteration times LBQPSO
iteration,

and iteration index l = 1.
b) Initialize the RU allocation policy Ai(1), and obtain Di(1)
according to the relationship between Ai(1) and Di(1).
c) Set Bbe

i (1) = Di(1), and according to the fitness function
choose a best position from Bbe

i (1) as the Gbe(1);
2: for l = 1, · · · , LBQPSO

iteration do
3: Calculates Mbe(l) and Li(l) according to the related rules;
4: for i = 1, · · · , I do
5: Obtain Di(l + 1) according to the rules aforementioned;
6: Get the updated RU allocation policy Ai(l+ 1) according

to Di(l + 1);
7: Get the individual best RU allocation policy Aibe

i (l) ac-
cording to Bbe

i (l);
8: if U [Ai(l+1),Pt] > U [Aibe

i (l),Pt], then BS sets Bbe
i (l+

1) = Di(l + 1); else sets Bbe
i (l + 1) = Bbe

i (l); endif;
9: Get the individual best RU allocation policy Aibe

i (l + 1)
according to Bbe

i (l + 1);
10: Get the global best RU allocation policy Agbe(l) according

to Gbe(l);
11: if U [Aibe

i (l + 1),Pt] > U [Agbe(l),Pt], then BS sets
Gbe(l + 1) = Bbe

i (l + 1); else sets Gbe(l + 1) = Gbe(l);
endif;

12: i = i+ 1
13: end for
14: l = l + 1
15: end for
16: Obtain the RU allocation policy At according to Gbe(l).

users. Therefore, the resource allocation problem in (4) can
be reduced to:

max
A,P

Rtot(A,P)

Ptot(A,P)

s.t. C3, C4, C5

(13)

Unfortunately, the optimization problem in (13) is still
a non-convex optimization problem due to the C5 and the
fractional form of the objective function. In order to develop an
efficient resource allocation algorithm, several transformations
are needed to eliminate the non-convexity and to make the
problem more tractable. In the following, we first tackle the
C5 by changing the independent variable, and then the original
objective function is transformed to an equivalent form which
is concave with respect to the new independent variable.

The C5 makes the feasible set non-convex. In general, to
solve the problem efficiently one need to linearize the C5. We
introduce a new independent variable Rn,m,k = WT log 2(1+
γn,m,kpn,m,k) to the problem (13), which can decouple the
proportional rate constraints. After introducing Rn,m,k, C5 can
be rewritten as C5’:

∑
(n,m)∈At

k

Rn,m,k =
ηk

ηK1+1

∑
(n,m)∈At

K1+1

Rn,m,K1+1, ∀k ∈ ΩB.

(14)

Similarly, C3 and C4 can be rewritten as:

C3′ :
K∑

k=1

N∑
n=1

2
Rn,m,k

WT − 1

γn,m,k
≤ Pmax, ∀m,

C4′ :
∑

(n,m)∈At
k

Rn,m,k ≥ Rmin
k , ∀k ∈ ΩA,

(15)

Since Rn,m,k is a non-negative variable, it is necessary to
add a new constraint C6: Rn,m,k ≥ 0. Furthermore, it easy
to verify that the C3’ and C4’ are also concave functions or
affine functions with respect to Rn,m,k. Therefore, the feasible
set is a convex set after the transformation.

With a convex feasible set, [28] and [29] show that the frac-
tional program problem in (13) can be transformed to a easily
solvable form. We define the maximum energy efficiency qt

of the considered system as

qt =
Rtot(A

t,Pt)

Ptot(At,Pt)
= max

P

Rtot(A
t,P)

Ptot(At,P)
. (16)

Then, we can use the following theorem which had been
proved in [28] and [29].

Theorem 1. The maximum energy efficiency qt is achieved if
and only if

max
P

Rtot(A
t,P)− qtPtot(A

t,P)

=Rtot(A
t,Pt)− qtPtot(A

t,Pt) = 0,
(17)

for Rtot(A
t,P) ≥ 0 and Ptot(A

t,P) > 0.

Theorem 1 states that: for an optimization problem with a
fractional form objective function, there exists an equivalent
objective function in subtractive form, e.g., Rtot(A

t,Pt) −
qtPtot(A

t,Pt). When the RU allocation policy is known
pconst =

∑K
k=1 PrkMrk(Ak)+

∑K
k=1(M−Mrk(Ak))Pnrk)+

PcM is a constant. Then the objective function can be trans-
formed with the independent variable Rn,m,k as:

Ueff (R) =

K∑
k=1

∑
(n,m)∈At

k

Rn,m,k − qT
[
P const

+
K∑

k=1

∑
(n,m)∈At

k

2
Rn,m,k

WT − 1

γn,m,k

] (18)

It is easily to verify that Ueff (R) is a concave function
with respect to Rn,m,k. As a result, the transformed problem
in (19) is a concave optimization problem. Hence, we can first
solve the (19), and then we can use iterative algorithms, such
as the Dinkelbach method [28] to solve the (13).

max
R

U(R)eff

s.t.C3′, C4′, C5′, C6.
(19)

In this paper, Dinkelbach method is adopted to design the
power allocation algorithm which is described in Algorithm 2.
The proposed algorithm can converges to the optimal energy
efficiency, which is proved in the Appendix. Furthermore,
since ql+1 = Rtot(A

t,Pl, R
l
be)/Ptot(A

t,Pl, R
l
be), the al-

gorithm converges to the optimal energy efficiency with a
superlinear convergence rate [9].
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L(Rm,n,k, λm, βk, ξk) =

K∑
k=1

∑
(n,m)∈At

k

Rn,m,k − qT
[
P const +

K∑
k=1

∑
(n,m)∈At

k

2
Rn,m,k

WT − 1

γn,m,k

]
+

K1∑
k=1

βk

( ∑
(n,m)∈At

k

Rn,m,k

−Rmin
k

)
+

M∑
m=1

λm

(
Pmax −

K∑
k=1

N∑
n=1

2
Rn,m,k

WT − 1

γn,m,k

)
+

K∑
k=K1+2

ξk

( ∑
(n,m)∈At

k

Rn,m,k − ηk
ηK1+1

∑
(n,m)∈At

K1+1

Rn,m,K1+1

)
,

(20)

Algorithm 2 Power Allocation for Given RU Allocation
1: Initialization:

a) Set the maximum iteration times LDinkelbach
iteration , and the maxi-

mum tolerance ϵ;
b) Initialize the optimal energy efficiency q1 = 0 and iteration
index l = 1.

2: for l = 1, · · · , LDinkelbach
iteration do

3: For given ql the BS solves the problem in (19), and obtains
resource allocation policy {At,Pl};

4: if |Rtot(A
t,Pl)− qlPtot(A

t,Pl)| < ϵ, then the BS obtains
the power allocation policy Pt = Pl;

5: else BS sets ql+1 = Rtot(A
t,Pl)

Ptot(At,Pl)
and l = l + 1; endif;

6: end for
7: Output the optimal power allocation policy Pt = Pl.

B. Power Allocation for Transformed Problem

Since the optimization problem in (19) is a concave opti-
mization problem. Thus, under some mild conditions, it can
be shown that strong duality holds and the duality gap is
equal to zero [30]. In other words, solving the optimization
problem in (19) is equivalent to solve the Lagrange dual
problem. The Lagrange function of the transformed problem
is given as (20) on the top of the page, where λm ≥ 0
(m = 1, · · · ,M ), βk ≥ 0 (k = 1, · · · ,K1), and ξk ≥ 0
(k = K1 + 2, · · · ,K) are the Lagrangian multipliers. When
deriving the power allocation policy, the boundary constraints
pn,m,k ≥ 0 and Rn,m,k ≥ 0 will be absorbed into the Karush-
Kuhn-Tucker (KKT) conditions. Thus, the dual problem of
(19) is as follows:

min
λm,βk,ξk

max
Rm,n,k

L(Rm,n,k, λm, βk, ξk). (21)

In the following, we solve the dual problem iteratively by
decomposing it into two layers: layer 1 subproblem - power
allocation for fixed set of Lagrange multipliers; layer 2 master
problem - obtaining the Lagrange multipliers with the gradient
method.

1) Solution for Layer 1: By dual decomposition, the BS
first solves the following Layer 1 subproblem

max
Rm,n,k

L(Rm,n,k, λm, βk, ξk), (22)

with a given parameter q and a fixed set of Lagrange mul-
tipliers {λm, βk, ξk}. Using standard optimization techniques
and the KKT conditions, the power allocation policy pn,m,k

is obtained as

[
(1+βk)TW

(qT+λm) ln 2 − 1
γn,m,k

]+
∀k ∈ ΩA[ (1−

∑K
K1+2

ξkηk
ηK1+1

)TW

(qT+λm) ln 2 − 1
γn,m,k

]+
k = K1 + 1[

(1+ξk)TW
(qT+λm) ln 2 − 1

γn,m,k

]+
∀k ∈ ΩB , k ̸= K1 + 1.

(23)

where [x]+ = max{0, x}. The power allocation has the
form of multi-level water-filling. It can be observed that the
energy efficiency variable q ≥ 0 prevents energy inefficient
transmission by truncating the water-levels.

2) Solution for Layer 2: The dual function is differen-
tiable with respect to optimization variables Rn,m,k (pn,m,k).
Therefore, using the solutions of the Layer 1 subproblems, the
gradient method [29] can be used to solve the Layer 2 master
problem, which leads to

λl+1
m =

[
λl
m − νlm × (Pmax −

K∑
k=1

N∑
n=1

pn,m,k)
]+

, ∀m, (24)

βl+1
k =

[
βl
k − ϑl

k × (
∑

(n,m)∈At
k

TW log2(1+

γn,m,kpn,m,k)−Rmin
k )

]+
, ∀k ∈ ΩA,

(25)

ξl+1
k =

[
ξlk + υl

k × (Rbeηk −
∑

(n,m)∈At
k

TW log2(1+

γn,m,kpn,m,k))
]+

, ∀k ∈ ΩB , k ̸= K1 + 1

(26)

where index l ≥ 0 is the iteration index, νlm, ϑl
k and υl

k are
positive step sizes. Rbe is the total transmission data of all
best-effort service.

Rbe =
∑
k∈ΩB

∑
(n,m)∈Ak

TW log2(1 + γn,m,kpn,m,k), (27)

Therefore, for each set of Lagrange multipliers {λm, βk, ξk},
we can obtain the optimized power allocation pn,m,k and Rbe

from (23) and (27), respectively. After obtaining pn,m,k and
Rbe, we can use (24)-(26) to update the Lagrange multipliers.
The process is repeated until convergence is achieved. Since
the transformed problem in (19) is concave in nature, if the
chosen step sizes satisfy the general conditions stated in [30],
then the iteration between Layer 1 and Layer 2 will converge
to the optimal solution of (19).
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V. TIME-FREQUENCY-POWER RESOURCE ALLOCATION

Based on the aforementioned works, first a joint time-
frequency-power resource allocation scheme is developed, and
then the complexity of the proposed scheme is analyzed.

A. Time-Frequency-Power Resource Allocation
As discussed above, firstly, when the transmission power in

each RU is known, the RU allocation policy can be obtained by
using the Algorithm 1. Secondly, based on the achieved RU
allocation results, the optimal power allocation can be obtained
by using the Algorithm 2. In the third step, we substitute the
power allocation results obtained in the second step into the
first step and calculate the RU allocation again. The third step
is shown in Algorithm 3. This iteration runs repeatedly until
the results converge. The initial power allocation P1 is uniform
among all RUs.

B. Analysis of Complexity and Feasibility
In this subsection, we analyze the time complexity of the

proposed time-frequency-power resource allocation scheme.
First, we analyze the time complexity of the RU allocation,
i.e., Algorithm 1. The complexity of the RU allocation is
O(LBQPSO

iteration×I×M×N×⌈log2K⌉) [25]. Second, we analyze
the time complexity of the power allocation, i.e. Algorithm 2.
Since the original optimization problem has been transformed
to a concave problem with respect to Rm,n,k, and dual
decomposition is used to obtain the power allocation policy.
Therefore, similar to the analysis in [31], the complexity of the
power allocation is O(LDinkelbach

iteration ×LPower
iteration×M×N×K),

where LPower
iteration is the iteration time of the gradient method

used to solve the Lagrange dual problem. Hence, the total
complexity of the proposed resource allocation scheme is
O([LJTFPR

iteration × M × N × (LBQPSO
iteration × I × ⌈log2K⌉ +

LDinkelbach
iteration ×LPower

iteration ×K)]). We find that the complexity
of the proposed scheme is linear with respect to the number of
time slots, users, sub-carriers and the iteration times. There-
fore, if the proposed scheme has good convergence property,
the time complexity of the proposed scheme is acceptable.
In Section VI, the convergence performance of the proposed
scheme is evaluated through the method of simulation, and we
can find that it is acceptable.

VI. PERFORMANCE EVALUATION AND DISCUSSIONS

The simulation parameters are set as following. The total
bandwidth, 1.08 MHz, is equally divided into N = 72 orthog-
onal sub-carriers. The scheduling period includes M = 10
time slots and each time slot with a duration T = 0.5 ms.
Assume that there are K = 5 UEs unless otherwise noted.
UE 1 and UE 2 are users with the minimum-rate requirement
of 500 kbps and 750 kbps, respectively. UE 3, UE 4 and UE 5
are users with best-effort service. The channel of the kth UE
is modeled as Rayleigh fading with an average CNR of γk. In
our simulation results, the average CNR in the horizontal axis
represents the CNR of the lowest CNR UE. Unless specifically
noted, I = 3000, γ1 = 10γ2 = γ3 = 10γ4 = 5γ5,
η3 = η4 = η5 = 1/3, Pmax = 40.00 dBm, Pc = 36.99
dBm, Prk = [31.14, 31.46, 30.79, 31.14, 31.46] dBm, and
Pnrk = [20.00, 23.01, 20.00, 23.01, 23.01].

Algorithm 3 Time-Frequency-Power Resource Allocation
1: Initialization:

a) Each UE estimates the hn,m,k, and sends hn,m,k, energy
consumption Prk and Pnrk to the BS;
b) Set the maximum iteration times T JTFPR

iteration, and the maximum
tolerance ε;
c) The BS initializes the time-frequency RU allocation policy
A1, the power allocation policy P1, and iteration index t = 1.

2: for t = 1, · · · , T JTFPR
iteration do

3: For given power allocation policy Pt, the BS obtains time-
frequency RU allocation policy At+1 via Algorithm 1;

4: After getting the RU allocation policy At+1, the BS calculates
the power allocation policy Pt+1 by Algorithm 2;

5: if |pt+1
n,m,k − ptn,m,k| ≤ ε, ∀n,m, k, then the BS obtains the

resource allocation policy {A∗,P∗} = {At,Pt};
6: else t = t+ 1; endif
7: end for
8: Output the resource allocation policy {A∗,P∗} = {At,Pt}.
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Fig. 2: Convergence of Algorithm 1.

A. Convergence of the Proposed Resource Allocation Scheme

Fig. 2 illustrates convergence of the proposed RU allocation
algorithm for given power allocation. The given power alloca-
tion policy are P1 and P2. The results in Fig. 2 were averaged
over 500 adaptation processes. It can be seen that no matter
which power allocation policy and channel condition are given,
the proposed RU allocation algorithm always converges to
90% of the upper bound performance within LBQPSO

iteration = 700.
Fig. 3 illustrates convergence of the gradient method used

to solve the Lagrange dual problem in power allocation. γ2 =
15dB, the RU allocation policy is A1 with LBQPSO

iteration = 1000
and q = 0.1Mbit/J . LBQPSO

iteration = 1000 can ensure the
RU allocation algorithm convergence. It can be seen that the
gradient method has fast convergence rate, it converges to 90%
of the upper bound performance within 5 iterations.

Fig. 4 illustrates convergence of the proposed power al-
location algorithm for given RU allocation, i.e., Dinkelbach
method. The RU allocation policy is A1 with LBQPSO

iteration =
1000, LPower

iteration = 10. It can be seen that the Dinkelbach
method has fast convergence rate, it converges to 90% of the
upper bound performance within 6 iterations.

Fig. 5 illustrates convergence of the proposed joint time-
frequency-power resource allocation scheme. LBQPSO

iteration =
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a) Scenario 1.
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c) Scenario 3.

Fig. 6: Energy efficiency of different resource allocation schemes.

1000, LPower
iteration = 10, LDinkelbach

iteration = 10. Similarly, it can be
seen that the proposed scheme has satisfactory convergence
rate, and it converges to 90% of the upper bound performance
within 11 iterations.

From Fig. 2 - 5, we can find that the proposed resource
allocation scheme has good convergence performance.

B. Performance Comparison of Different Resource Allocation
Schemes

In order to show that the proposed scheme is necessary
for some scenarios, the simulation is performed in different
scenarios. The communication scenarios in practical can be
roughly classified into following three scenarios. Scenario
1: The UE circuit power is little compared with BS trans-
mission power, i.e., Pmax = 43.01 dBm, Pc = 40.00
dBm, Prk = [28.45, 29.03, 28.75, 29.03, 28.45] dBm and
Pnrk = [20.00, 23.01, 20.00, 23.01, 20.00] dBm. Scenario
2: The UE circuit power is comparable to BS transmis-
sion power, i.e., Pmax = 40.00 dBm, Pc = 36.99 dBm,
Prk = [31.14, 31.46, 30.79, 31.14, 31.46] dBm and Pnrk =
[20.00, 23.01, 20.00, 23.01, 23.01] dBm. Scenario 3: The UE
circuit power plays an important role in the total energy
consumption, i.e., Pmax = 36.99 dBm, Pc = 33.01 dBm,
Prk = [31.14, 31.76, 30.00, 30.79, 31.46] dBm and Pnrk =
[20.00, 23.01, 20.00, 24.77, 20.00] dBm. Furthermore, to eval-
uate the proposed resource allocation scheme, we compare it
with three traditional resource allocation schemes. Comparison
Scheme 1: Only considers the BS energy consumption as in
[9], [11]. Comparison Scheme 2: Only considers the UE ener-
gy consumption as in [7]. Comparison Scheme 3: Maximize

system transmission data rate, i.e., maximize the SE.
Fig. 6 show the energy efficiency of different resource allo-

cation schemes under the aforementioned three scenarios. Fig.
6 show that the proposed scheme can achieve the best energy
efficiency performance in all the scenarios. Furthermore, the
results show that when the proportion of UE circuit power
to the total power become larger, i.e., from scenario 1 to
scenario 3, the advantage of the proposed scheme increases.
This is because all energy consumption during communication
process are considered when designing the proposed scheme,
which is different from the comparing schemes. Therefore,
better energy efficiency performance is achieved. In the current
and future communication systems, more and more commu-
nications will happen in short-range situations, and circuit
energy consumption in receiver will play an important role in
total energy consumption. Therefore, our work is meaningful.

Fig. 7 shows the energy efficiency of different resource
allocation schemes versus the number of sub-carriers. We find
that the energy efficiency rises up progressively as the number
of sub-carriers increases gradually. The reason is that as the
number of sub-carriers increase, more bandwidth resources are
available, then better energy efficiency can be obtained, which
is a classical conclusion and had obtained in [15], [16]. In
addition, just like Fig. 6, we can also find that the proposed
scheme can achieve the best performance of energy efficiency
among all the resource allocation schemes.

Fig. 8 shows the energy efficiency of different resource
allocation schemes versus the number of UEs. To simply the
presentation, we assume K1 = ⌊0.4 ∗ K⌋, where ⌊·⌋ means
rounding down the value. Rmin

k = 1.25/K1 Mbps, ∀k ∈ ΩA,
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Fig. 7: Energy efficiency of different resource allocation schemes
versus the number of sub-carriers (γ2 = 15 dB).
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Fig. 8: Energy efficiency of different resource allocation schemes
versus the number of UEs.

and ηk = 1/K2, ∀k ∈ ΩB . The channel conditions of different
UEs are independent, and all UEs have the same average
CNR 15 dB. The circuit power of different UE is also set
as the same, Prk = 31.14 dBm and Pnrk = 20.00 dBm
(∀k ∈ [1, · · · ,K]). Furthermore, BS maximum transmission
power and circuit power are set as Pmax = 40.00 dBm,
Pc = 36.99 dBm, respectively. From Fig. 8, we can obtain
the conclusion that the energy efficiency decreases gradually
as the number of UEs increases. Since the UE circuit power
consumption is considered, and the greater the number of UEs,
the more circuit power will be consumed, which results in low
energy efficiency. The conclusion is different from existing
results. When receiver circuit power is not considered, the
nominal energy efficiency will rise gradually as the number of
UEs increases, for the multi-users diversity gain. Furthermore,
Fig. 8 also proves that the proposed scheme can achieve the
best performance of energy efficiency.

C. Capability of the Proposed Resource Allocation Scheme for
Guaranteeing Heterogeneous Service QoS

In this subsection, we discuss the performance of the
proposed resource allocation scheme for guaranteeing hetero-
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Fig. 9: Satisfying the transmission rate requirement of minimum-rate
guarantee service.
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Fig. 10: Guaranteeing the fairness of best-effort service.

geneous QoS requirements. Fig. 9 shows the capability of the
proposed scheme for satisfying the requirement of minimum-
rate guarantee service under different channel conditions.
From Fig. 9, we can see that the proposed scheme can
guarantee users’ minimum-rate requirements under all channel
conditions. Furthermore, under the condition of γ1 = 10γ2 =
γ3 = 10γ4 = 5γ5, we find that the rate of low CNR UE
(UE2) is almost fixed at the minimum-rate requirement, 750
kbps, while the rate of high CNR UE (UE1) increases with the
CNR. This is because, in the proposed scheme more resource
is allocated to the UE with good channel condition to achieve
better energy efficiency.

For the best-effort services, the fairness can be evaluated in
term of fairness index [32], which is defined as

ϕ =
(
∑K

k=K1+1 Rk)
2

(K −K1)
∑K

k=K1+1 R
2
k

. (28)

where ϕ is in the range of [0, 1], and the value of ϕ more
closer to 1, the better fairness performance will be achieved.

Fig. 10 shows the capability of the proposed scheme for
achieving the fairness of best-effort services under different
situations. We see that no matter in what channel conditions,
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the fairness performance of situation η3 = η4 = η5 = 1/3 is
always better than situation η3 = 0.15, η4 = 0.35, η5 = 0.5.
Furthermore, we also find that although the channel con-
ditions of different UEs are very different in the case of
γ1 = 10γ2 = γ3 = 10γ4 = 5γ5, if we set reasonable
ηk (η3 = η4 = η5 = 1/3), the proposed scheme can still
obtain satisfactory fairness performance. Therefore, we have
the following conclusion: the proportional-fairness factor ηk
setting has a big impact on guaranteeing service fairness, and
we can adjust the proportional-fairness factor to achieve the
desirable performance of guaranteeing service fairness.

VII. CONCLUSION

In this paper, we studied the problem of EE resource alloca-
tion for downlink communications in OFDMA networks that
support heterogeneous services. Both the transmitter energy
consumption and receiver energy consumption are considered.
We formulated the problem of EE resource allocation as a
mixed combinatorial and non-convex optimization problem. To
reduce the computational complexity, we solved the problem
with three steps, where techniques such as BQPSO and some
mathematical processes have been used. We run simulations
to evaluate the performance of the proposed scheme. Our
simulation results show the effectiveness of the proposed
scheme. In the future work, we will consider the issues of
how to design EE resource allocation scheme with much lower
computational complexity while maintaining the desirable
system performance; how to evaluate the performance of the
proposed scheme with realistic energy consumption models.

APPENDIX
PROOF OF ALGORITHM 2 CONVERGENCE

A similar approach as in [28] is adopted to prove the
convergence of the iterative algorithm, i.e., Algorithm 2.
First, two propositions are introduced, and then the con-
vergence is demonstrated. To simplify the notational, the
equivalent objective function in (13) is defined as Fe(q

′
) =

maxP{Rtot(A
t,P)− q

′
Ptot(A

t,P)}.
Proposition 1: Fe(q

′
) is a non-negative function in the

domain of definition.
Proof: Assuming {At,P

′} is an arbitrary solution for the
problem and q

′
= Rtot(A

t,P
′
)/Ptot(A

t,P
′
), then

Fe(q
′
) = max

P
{Rtot(A

t,P)− q
′
Ptot(A

t,P)}

≥ Rtot(A
t,P

′
)− q

′
Ptot(A

t,P
′
) = 0.

(29)

Proposition 2: Fe(q
′
) is a strictly monotonic decreasing

function with respect to q
′
, i.e., Fe(q

′′
) > Fe(q

′
) as long as

q
′
> q

′′
.

Proof: Assuming {At,P
′} and {At,P

′′} are two different
optimal policies for Fe(q

′
) and Fe(q

′′
), respectively. Then

Fe(q
′′
) = max

P
{Rtot(A

t,P)− q
′′
Ptot(A

t,P)}

= Rtot(A
t,P

′′
)− q

′′
Ptot(A

t,P
′′
)

> Rtot(A
t,P

′
)− q

′′
Ptot(A

t,P
′
)

≥ Rtot(A
t,P

′
)− q

′
Ptot(A

t,P
′
) = F (q

′
).

(30)

Therefore, the convergence of the Algorithm 2 can be
proved as following. First, we can prove that q increases in
each iteration. Second, we demonstrate that if iteration time is
large enough, q will converge to the optimal solution qt such
that it meets the optimality condition of Theorem 1.

Assuming {At,Pl} is the optimal policy in the l-th it-
eration. And ql(̸= qt) and ql+1(̸= qt) represent the energy
efficiency in iterations l and l + 1, respectively. According to
Theorem 1 and Proposition 1, Fe(ql) > 0 and Fe(ql+1) > 0
must be true. Moreover, Since we calculate ql+1 as ql+1 =
Rtot(A

t,Pl)/Ptot(A
t,Pl), the Fe(ql) can be expressed as

Fe(ql) = Rtot(A
t,Pl)− qlRtot(A

t,Pl)

= Rtot(A
t,Pl)(ql+1 − ql) > 0.

(31)

Since Rtot(A
t,Pl) > 0, then ql+1 > ql.

Therefore, according to Proposition 1, Proposition 2, and
ql+1 > ql, as long as the iteration time is large enough, Fe(ql)
will eventually approach to zero and satisfy the optimality
condition of Theorem 1, i.e., Fe(q

t) = 0.
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