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Abstract—Radio frequency (RF) fingerprinting is a technique
used to identify a wireless device based on its specific and unique
hardware characteristics. In recent years, deep learning has been
utilized for RF fingerprinting due to its superiority in feature
extraction and higher classification accuracy. However, one ma-
jor challenge of deep learning-based RF fingerprinting is that
wireless signals are highly sensitive to environmental conditions,
causing the device fingerprints captured in one environment to
not transfer well to another. Hence, deep learning models are
found to perform well in the same condition but lose their ability
to classify devices in the new condition. In this paper, we examine
three transfer learning techniques to mitigate the domain shift
problem in RF fingerprinting and compare them with two well-
defined baselines. The three RF fingerprinting datasets under
various scenarios are examined to explore how environmental
factors impact RF fingerprinting, such as transmitter locations,
transmitter distance, and device configurations. We identify the
most challenging scenarios and study how environmental factors
lead to model deterioration through t-SNE visualization.

Index Terms—REF fingerprinting, deep learning, transfer learn-
ing, domain adaptation, meta-learning

I. INTRODUCTION

Wireless technology has transformed how we communicate,
access data, and interact with the world. Wireless communi-
cation transmits information from one point (a transmitter) to
another (a receiver) without using any physical connections,
such as wires or cables. Each wireless device introduces vari-
ations in transmitted signals due to hardware imperfections,
creating unique characteristics in the physical layer, which
can be used as fingerprints or signatures for the device [1].
RF fingerprinting [2], [3] is the identification of individual
wireless devices based on these characteristics of the physical
layer without relying on standard identifiers such as MAC or
IP addresses. Given one or more wireless devices, the task of
RF fingerprinting is to uniquely classify each of them based on
the emitted signals captured by a receiver. RF fingerprinting
improves security, identification, and monitoring in wireless
communication systems because hardware-based fingerprints
are difficult to disguise and robust against software modifica-
tions [4]. Hence, RF fingerprinting is actively investigated for
its potential in applications such as intrusion detection [5], [6],
device authentication [7], and user tracking [8].
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Traditional RF fingerprinting methods [1], [2] rely on hand-
crafted physical-layer features, which are manually selected
based on domain expertise. These methods may not capture
all the complexities of real-world RF signals and are not suf-
ficiently robust. Deep learning [9], [10] has achieved success
in solving many big-data problems due to its superior ability
to automatically extract complex features without domain
knowledge. Deep learning methods are adept at benefiting
from large datasets and could classify a large number of
devices [11]. Hence, deep learning algorithms have been
used in RF fingerprinting and have achieved state-of-the-
art accuracy [12]-[14]. Evaluation of deep learning methods
in RF fingerprinting often assumes that the environmental
conditions are stable. Under this assumption, a labeled set for
RF fingerprinting can be randomly split into training and test
sets and a deep learning model can be trained on the training
set and evaluated on the test set.

Despite the success in applying deep learning models for
RF fingerprinting under stable conditions, one major challenge
is that RF fingerprinting is sensitive to changes in wireless
environments or deployment settings [1], [15], [16]. This leads
to performance deterioration when deploying a deep learning
model under a new condition unseen during training. These
environmental factors are often dynamic, unpredictable, and
difficult to control due to the complex nature of wireless
systems and devices. In this work, we specifically focus on
changes in channel conditions. Specifically, channel conditions
[17] relate to changes in the operating environment that
affect signal propagation, such as whether the devices are
deployed in an indoor or outdoor environment, the distance
between the transceiver and the receiver, and the time that
data are collected. When the above factors change conditions
significantly, a deep learning model trained on historical data
could fail to classify the same set of devices under the new
condition [15], [18].

Transfer Learning (TL) [19]-[22] addresses domain shifts
by reusing or fine-tuning a model trained on one domain (the
source), which has plentiful labeled data, for use in a different
but related target domain, which may have few or no labels.
Instead of training from scratch on the target data, whose
distribution often differs due to factors like channel conditions,
TL leverages knowledge encoded in a pre-trained source
model to improve efficiency and performance. Formally, given



a large labeled source dataset and a smaller (or unlabeled)
target dataset, TL seeks a predictor that achieves high accuracy
on both source and target data. In RF fingerprinting, TL
has been applied to mitigate performance degradation caused
by environmental variations, such as changes in deployment
location or time, by adapting a source-trained model to new
channel conditions [18], [23]-[25].

In our work, we focus on a typical setting of TL where very
few labeled data samples are available for the target task since
labeling RF signals for device fingerprinting is labor intensive.
This setting is often called few-shot learning (FSL) [26]. FSL
enables a model to quickly adapt to new tasks or classes with
minimal data, leveraging prior knowledge learned from other
related tasks. Recently, FSL has attracted increasing attention
in RF fingerprinting research [27]-[30].

One type of FSL algorithm is meta-learning [31], also
known as “learning to learn”. It has been widely used to
solve FSL problems because it enables a deep-learning model
to generalize across many tasks with fast adaptation by
identifying patterns in how learning occurs. Meta-learning
approaches can be categorized as optimization-based [32],
metric-based [33], and model-based [34]. In this work, we
focus on metric-based meta-learning methods for several rea-
sons: (1) they achieve strong performance in FSL without
requiring complex training procedures; (2) they offer computa-
tional efficiency through their simple implementation; and (3)
their distance-based classification mechanism is particularly
suitable for RF fingerprinting, where signal similarity in the
feature space often correlates with device identity. Specifically,
we implemented two representative fundamental approaches
in metric-based meta-learning: Prototypical Network (PTN)
[35] and Matching Network [36]. PTN uses class prototypes
for classification, while Matching Networks leverage attention
mechanisms to compare query samples with support examples.
They both provide insights on how to leverage the embedding
space for device identification.

Domain adaptation (DA) [37] addresses the few-shot learn-
ing challenge from a different perspective by focusing on
the domain-shift problem—where marginal and conditional
distributions change between source and target datasets while
the underlying task remains the same. This domain shift
is relevant in RF fingerprinting, where environmental fac-
tors such as channel conditions can significantly alter sig-
nal characteristics while the classification task remains un-
changed. DA focuses on aligning feature distributions be-
tween the source and target domains to minimize the do-
main shift. Depending on how feature alignment is achieved,
DA approaches can be categorized [38] as divergence-based,
adversarial-based, and reconstruction-based. In this work, we
focus on divergence-based DA methods because of three
reasons: (1) they offer a strong theoretical foundation on
transferability across domains; (2) they provide transparent
optimization objectives through explicit distance metrics; and
(3) they achieve competitive performance with significantly
lower computational requirements compared to adversarial
approaches. The core idea of divergence-based DA is to

minimize a statistical distance between source and target
distributions so that the model can perform well in both
domains. Examples of such distance metrics are Maximum
Mean Discrepancy (MMD) [39], Kullback-Leibler divergence,
and Wasserstein distance [40]. In this work, we use MMD as
the distance metric to guide the optimization process since it
provides flexibility in measuring distances in high-dimensional
feature spaces using kernel functions.

However, existing TL studies in RF fingerprinting often
employ different datasets, data-split strategies, and base-
lines—many compare only to zero-shot or fine-tune base-
lines—making it difficult to draw consistent or generalizable
conclusions. Meta-learning works speak in terms of sup-
port/query sets instead of standard training/test splits, so they
rarely evaluate alongside domain-adaptation approaches under
a unified protocol.

We therefore ask: How do metric-based meta-learning
(PTN, MN) and divergence-based DA (MMD) methods com-
pare—alongside zero-shot and fine-tune baselines—in a con-
sistent few-shot evaluation framework for RF fingerprinting?
To answer this, we implement all four approaches, fix datasets,
data splits, and baselines, and benchmark them on three
real-world RF datasets under six domain-shift scenarios.

In summary, our work makes the following contributions:

o Unified evaluation framework. We design a few-shot TL
protocol for RF fingerprinting that fixes datasets, data
splits, and baselines (zero-shot and fine-tune), enabling
apples-to-apples comparisons across methods.

o Empirical benchmarking. We implement and compare
Prototypical Networks, Matching Networks, MMD-based
domain adaptation, and fine-tuning on three public RF
datasets under six realistic domain shifts.

o Representation analysis. We visualize learned embed-
dings via t-SNE and quantify clustering quality using
silhouette scores to reveal how each method mitigates
domain discrepancy.

o Practical guidelines. We distill recommendations on
method choice, shot-count, and evaluation design to help
future RF fingerprinting TL studies achieve fair and
reproducible results.

II. RELATED WORK
A. Deep Learning an RF Fingerprinting

Deep learning methods have been widely used in RF
fingerprinting. Wu et al. [12] used LSTM to capture temporal
dynamics in baseband signals and classify six devices, Cekic et
al. [13] used complex-valued Deep Neural Networks to process
baseband signals, and Shen et al. [14] used CNN with deep
metric learning to distinguish between 60 LoRA devices. Jian
et al. [11] demonstrated that CNN can scale to hundreds of
transmitters.

B. Transfer Learning for RF Fingerprinting

Despite the success of deep learning methods in RF
fingerprinting, many experimental studies [15], [16], [22]
have shown that domain shifts are common in the wireless



environment and deep learning methods are very sensitive
to environmental changes. In these cross-domain settings,
transfer learning [18], [23], [24] has been used to enable
knowledge transfer in RF fingerprinting between historical
and new conditions. Tian et al. [23] fine-tuned a ConvMixer
network under varying SNR conditions, achieving improved
accuracy on 10 devices. Kuzdeba et al. [24] fine-tuned a CNN
across different numbers of devices. Both methods compare
their performance only with zero-shot baselines, leaving open
how fine-tuning performs relative to other TL paradigms.

Domain Adaptation (DA) transfer learning techniques align
feature distributions between source and target domains, of-
ten when target labels are scarce. Elmaghbub et al.’s [29]
adversarial-based domain adaptation algorithm focuses on a
single environmental change scenario and is evaluated solely
against unsupervised baselines. Yang et al. [41] applied KL-
based alignment with adaptive pseudo-labeling for WiFi trans-
mitter shifts, demonstrating improved t-SNE separation but
without comparing with meta-learning benchmarks.

Few-shot learning (FSL) enables rapid adaptation to new
tasks using only a few labeled target examples and have
been popular in RF fingerprinting research [25], [27]-[30],
[41], [42], adopting support/query training episodes. Mackey
et al. [25] applied prototypical networks (PTN) on three RF
fingerprinting datasets, but only compared them with zero-
shot baselines. Zhao et al. [27] enhanced PTN with data
augmentation, but they compared it only with weak and zero-
shot baselines. Wang et al. [28] introduced time-frequency
mask augmentation to improve cross-domain accuracy but
tested only against PTN and fine-tuning. Zhang et al. [42]
proposed a meta-learning scheme using siamese network,
evaluating a single environmental shift and excluding other
meta-learning baselines.

C. Research Gaps

While prior studies demonstrate the potential of TL and
meta-learning to mitigate domain shifts in RF fingerprinting,
they have several limitations. They tend to evaluate on limited
datasets or scenarios and often compare with weak or incon-
sistent baselines. Some studies focus on specific factors, such
as data collection time or receiver impact, without analyzing a
broader impact of diverse environmental factors. Others pro-
pose methods like data augmentation or domain alignment but
lack deeper analysis into how these methods mitigate domain
shift. Terminology mismatches and varied K-shot conventions
further impair reproducibility. Importantly, no prior work pro-
vides an apples-to-apples comparison of zero-shot, fine-tuning,
metric-based meta-learning, and divergence-based DA within
a unified few-shot evaluation framework. Motivated by these
gaps, we aim to establish a standardized and reproducible FSL
evaluation framework for RF fingerprinting.

[II. METHODOLOGY

A. Problem Formulation

RF fingerprinting is a classification problem where the goal
is to identify the transmitter of a received signal based on

transmitter-specific characteristics. A received signal, denoted
as X, is influenced not only by the transmitter identity Y but
also by environmental conditions during the data collection
process represented by Z. Thus, the received signal can be
expressed as a function X = g(Y,Z). The objective is to
approximate the inverse mapping Y = f(X) directly from
data, without explicit access to Z. When Z remains constant
between training and testing, this problem is not exceedingly
challenging and reduces to a standard classification task.
However, in practical scenarios, Z is dynamic, and variations
in conditions lead to a distribution shift between training
and testing environments, making domain shift a fundamental
challenge.

In transfer learning, the source domain Dg =
{Xs, Ps(X,Y)}, where Xg is the input space and Ps(x,y) is
the joint probability distribution over inputs z € Xg and labels
y € )Y, provides labeled signals under specific conditions,
while the target domain Dr = { X7, Pr(X,Y)} represents a
different environment with a shifted signal distribution which
has limited labeled data. Given a large labeled dataset from
the source task {(z%, yg)%\fp and a small labeled set from
the target task {(x7., y7)};Z;, the goal is to learn a predictor
fo(X) that maximizes the accuracy over the target domain
while maintaining high accuracy over source domain. Often,
it is also preferred that the predictor retains its accuracy on
the source domain.

We explore three approaches: Prototypical Networks (PTN)
and Matching Network (MN), two meta-learning methods for
learning robust representations, and Maximum Mean Discrep-
ancy (MMD), a domain adaptation technique to align distri-
butions between the source and target domains. We explain in
detail each stage of our methodology in the next subsections.

B. Evaluation Framework

As mentioned in the introduction, literature on transfer
learning in RF fingerprinting has issues with benchmarking.
One potential reason is that model training in meta-learning
is only based on source data, so it reminds of a zero-
shot scenario. However, meta-learning also requires access to
labeled examples in target data to enable inference. Despite
not fine-tuning a model on target data, meta-learning still
belongs to a class of FSL algorithms and could be compared
to other FSL algorithms. To clarify this issue, we propose
a unified evaluation framework that facilitates comparisons
across different FSL algorithms.

In both source and target domains, we partition the data
into training and test subsets. In FSL, the models are trained
using training examples from both source and target domains.
For target domain, we assume only K labeled examples are
available per class. The models are evaluated separately on test
data from source and target domains. When K is small, the
observed accuracy is sensitive to randomness of that selection.
That is why we repeat each experiment 100 times, each on a
different random selection of target training data.



Algorithm 1 Few-Shot Task Generation For Meta-Learning

1: Input: Dataset D, Labels ), C-classes, K-supports, N-
queries

2: Output: Few-shot tasks 7 = {r;}_,, 7. = (Si, Qi)

3: fori=1to T do

4: C < Sample a subset of C' classes from Y

5 Initialize S;, Q; + 0

6 for each class c € C do

7: D. < All instances of class ¢ in D

8

9

S; < Sample K examples from D,
Q; + Sample N examples from D, \ S;

._
@ 0 x

end for
11: T%TU{(Sl,Ql)}
12: end for

C. Preprocessing

In an RF transmission system, the modulated waveform is
represented as the I component aligned with a reference carrier
signal and the Q component phase-shifted by 90 degrees.
Each raw I/Q signal is represented as (/) and (Q)) vectors
of length L. To provide an input to RF fingerprinting neural
network, we preprocess the signal following the approach used
in [15]: The raw I/Q signal is segmented into fixed-length, non-
overlapping frames consisting of W consecutive I/Q samples.
Each frame is normalized to have unit energy to standardize
signal amplitude across all frames.

D. CNN-based Feature Extraction

We used a CNN-based deep learning model described in
[15] as the backbone for all transfer learning methods, because
they are good in capturing the temporal relationship from the
input frames. The model consists of six convolutional (Conv)
layers, each followed by batch normalization, LeakyReLU
activation, and max pooling. The final convolutional output
is passed through two fully connected (FC) layers for classifi-
cation, followed by a softmax layer that produces probability
distributions over transmitter classes.

E. Meta-learning Methodology

Few-Shot Task Generation For Meta-Learning Algorithms

Training and evaluation of meta-learning algorithms for
FSL is typically based on the process of task generation
[32], [35]. In this process, a model is trained on a series
of small classification tasks, each constructed from a
subset of training data. Each task consists of a support set
and a query set, each containing a few labeled examples
per class for a subset of all classes, as detailed in Algorithm 1.

Prototypical Network

Prototypical Network (PTN) [35], [43] is a FSL meta-
learning algorithm where the goal is to generalize across tasks
by learning robust embeddings for each class. Algorithm 2
outlines the pseudo-code for training PTN. The algorithm
takes as input the labeled source training data. Then, it first
generates a set of few-shot tasks T from source training data

using Algorithm 1. Initially, the CNN model fy is randomly
initialized. In each iteration, a new task 7; is sampled and all
its support and query examples are processed to extract their
embeddings. These embeddings are captured from the output
of the last FC layer, as this representation demonstrated good
performance during our empirical evaluation.

Once the embeddings are computed, the algorithm con-
structs prototype (proto,) for each class by averaging the
embedding of the K support examples belonging to that class
Next, the query examples are classified by computing their
distance to the prototypes using a distance metric J. Softmax
operation is then applied to convert these distances into class
probabilities. The cross-entropy loss is then computed based
on the predicted probabilities and the true labels of examples
in query set. Finally, the CNN parameters # are updated using
gradient descent with a learning rate /3. This methodology is
visualized in Figure 1.

Given a PTN trained on source domain, it can be applied on
target data, assuming each class in target data has K labeled
examples. PTN algorithm then construct class-dependent
prototypes by averaging the embeddings of target labeled
examples of each class. Target test examples are classified
by measuring their distance to the generated prototypes,
typically using Euclidean distance, and assigning the label of
the nearest prototype.

Algorithm 2 Training of Prototypical Network

1: Input: Source training data (Xg,Ys), C, K, N, distance
metric §

2: Output: Optimized CNN model fy

3T = {Ti}?:l — Alg. 1 (Xs,Ys,C, K, N)

4: Initialize 6 randomly for CNN model fy

5. while training not converged do

6: Sample episode 7; = (S;, Q;)

7: Es = {e; = fo(x;)|z; € S;}> Support set embedding
8 Eq ={e; = fo(z:)|z; € Qi} > Query set embedding
9: for each class c € {1,...,N} do

10: Proto, <= % D, yime)c s Ci

11: end for

12: for each query embedding e; € FEg do

13: d; < [0(e;,protoy ), ..., d(e;, protoy )]

14: pj < softmax(—d;)

15: end for

16: L+ _|?1| Z‘j%il log p;[y;] > Cross-entropy
17: Update 6 < 0 — BVyL

18: end while

Matching Network

Matching Network (MN) [36] is similar to PTN. The key
difference lies in how the query examples are classified. PTNs
classify query examples by first computing a prototype for
each class, by averaging the embeddings of its support exam-
ples. Classification is then based on the closest prototype. In
contrast, MNs do not rely on prototypes. Instead, they compare
each query example directly with every support example by
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computing pairwise similarity scores based on distance be-
tween their embeddings. These scores determine the influence
of each support sample on the classification outcome. The final
prediction is derived by computing a weighted sum of the
support labels, where the weights correspond to the calculated
similarity scores.

F. Domain Adaptation Methodology

Maximum Mean Discrepancy

Domain adaptation aims to transfer knowledge from a
labeled source domain to a target domain, which has limited
labeled data, by learning domain-invariant feature represen-
tations. To achieve this, the model aligns the feature distri-
butions of the source and target domains while maintaining
semantic consistency in classification. The Maximum Mean
Discrepancy (MMD) is employed to measure and minimize
the difference between the source and target distributions.
Specifically, following the work in [44], a domain confusion
loss is integrated with the classification loss to train the
CNN. As shown in Figure 2, both the source and target
data pass through a CNN architecture where all parameters
are shared between two domains for all Conv layers and
the first FC layer. To ensure that the feature representations
from the source and target domains are better aligned in the
shared feature space, an adaptation layer is added between
the first and second FC layer, which uses ReLU activation
function, a batch normalization layer, and a dropout layer
with p = 0.5. The MMD loss is computed using the feature
representations produced by this adaptation layer. The training
process optimizes the network using a combination of four

losses:

L=Lc(Xs,y5) +a-Lo(Xr,yr)

+ )\g ’ MMDélobal(Xs’ XT)
N
+)‘CZMMD31ass< g,X%“) (1)

i=1

where Lo(Xg,ys) is the classification loss on the source
domain, which is computed using the cross-entropy loss to
ensure accurate predictions on the labeled source domain data.
Lo(Xr,yr) is the target classification loss on the target do-
main based on cross-entropy on limited labeled target domain
data. The third and fourth terms are the global-level MMD loss
and class-level MMD loss, respectively. Global-level MMD
aligns the overall feature distributions of the entire source and
target domains without considering class-specific structure.
Class-level MMD computes MMD separately for each class
and then sums the MMD losses for all classes, which refines
the alignment at a finer level and prevents misalignment within
individual classes. o, A4, and A. are the hyperparameters to
control the trade-off between these losses. Specifically, MMD
loss is computed using the following equation:

1
MMD(Xs, Xr) = H|Xs Z o(xs) —
z;€Xg

1
XiT mt;(T ¢(71)

where ¢(.) is a kernel function that maps the original data into
a higher-dimensional space if necessary where distributions
can be more easily compared. In this work, we leveraged
linear kernel for simple implementation and fast training.
Linear MMD represents the discrepancy between the mean
embeddings of source and target distributions.

IV. EVALUATION
A. Datasets

We utilized 3 publicly available datasets for our study. The
first dataset, LoRa RF dataset [15], consists of both time-
domain IQ samples from 25 identical Pycom IoT devices,
which encompasses over 16,300 transmissions. This dataset
was collected under seven different scenarios with various
network deployments. In our experiments, we focused on
IQ samples collected from four deployments: different days,
different locations, different configurations, and different dis-
tances. Distance refers to the distance between transmitter and
receiver, and configuration refers to variations in the LoRa
protocol parameters. The details of each scenario setting are
shown in Table I. Under the scenario of different configura-
tions, the varying parameters across four configurations are
spread factor (7, 8, 11, 12) and bit rate (5470, 3125, 537, 293
bps), while other parameters are unchanged. All transmissions
under the same scenario are 1 minute apart from one another.
After data pre-processing with a window size of 8192 samples,
the number of examples per transmission is 1,220, each with
an input shape of (8192, 2).



TABLE I: Specifications of four different scenarios in LoRa dataset

. Number of | Number of | Transmissions | Duration per . .
Scenarios . . o Distances Environment
Devices Days per Device Transmission
Diff Days Indoor 25 5 10 20s Sm Indoor
Diff Locations 25 1 3 20s Sm Room, Office, Outdoor
Diff Distances 25 1 4 20s 5,10,15,20m Outdoor
Diff Configurations 25 1 4 20s Sm Indoor

The second RF dataset, the WiSig dataset [45], [46], was
collected over four days at the Orbit Testbed and contains
1Q signals from 174 WiFi cards captured using 41 USRP re-
ceivers. We followed the same preprocessing step as proposed
in [25] and used the data from a single receiver (“node3-
19”) focusing on the 130 devices that were active across all
four days. The third RF dataset, the CORES dataset [46],
[47], collected at the Orbit Testbed, comprises signals from
163 consumer WiFi cards arranged in a grid. These signals
were recorded using a USRP N210 over four days. In our
experiment, we considered 58 devices that were consistently
present across all sessions.

B. Experimental Design

Given these datasets, we designed 6 domain shift exper-
iments as shown in Table II to compare different transfer
learning algorithms.

TABLE II: Different domain shift experiments

Setting Domain Shift | Dataset | Source Target
LoRa-Day Day LoRa Day 1,2 | Day 3, 4
WiSig-Day Day WiSig Day 1,2 | Day 3, 4
CORES-Day Day CORES | Day 1,3 | Day 2, 4
LoRa-Config Configuration LoRa Config 1 | Config 2
LoRa-Location | Location LoRa Office Outdoor
LoRa-Distance | Distance LoRa 15m 20m

To evaluate the models, we used the evaluation framework
mentioned in methodology. For evaluation on target domain,
we used K =3, N =5 and T' = 100. The following models
were evaluated:

Zero-shot Baseline: A CNN model was trained in a standard
supervised manner on the training subset of the source domain.
During evaluation, the model was not exposed to any labeled
examples from target domain.

Finetune Baseline: The pretrained baseline model was fine-
tuned on K labeled samples per class from target domain for
several epochs.

PTN and MN: The models were trained on source domain
using Algorithm 2. For accuracy evaluation, the models gener-
ate prototypes given K labeled samples per class from target
or source domains.

MMD: The model is trained using source training examples
and K labeled examples per class from the target domain.

To train PTN and MN, we set C' equal to the number of
all classes in a dataset, K = 3, N = 12 and T' = 1,000.
For baselines, PTN, and MN training, we used early stopping
on validation data with a patience of 50 and a learning rate
of 0.001. For MMD, Stochastic Gradient Descent (SGD) was
used as the optimizer with a step decay factor of 0.8 and a step

size of 10. The initial learning rate was 0.01 for the adaptation
layer and last FC layer, and 0.001 for all Conv layers and the
first FC layer, with a patience of 50. After hyperparameter
tuning, we set o = 1, A\; = 0.7, and A\, = 0.1 to compute the
total loss. For all trainings, we used a batch size of 16.

C. Experimental Results on Different PTN’s Hyperparameters

Table III compares PTN’s performance on target task for
three different distance functions (Manhattan, Euclidean, and
Cosine) and two different K-shot values in day-based settings
across three datasets. The results indicate that Euclidean
distance outperforms both Manhattan and Cosine distances.
Also, it reveals that the 3-shot setting (only using 3 labeled
samples from each label) is superior to the 1-shot setting across
all distance metrics and settings. Based on the results, we
selected Euclidean distance and a 3-shot setting as the optimal
configuration, which was used for the remainder of this study.

D. Experimental Results on Different Domain Shift Settings

We compared all FSL algorithms on domain shift settings
outlined in Table II, and the results are presented in Figure
3. Each plot in the figure represents a specific domain shift
setting, showing the average accuracy across 100 experiment
repetitions, with error bars indicating the standard deviation.

PTN and MN are the superior methodologies across all
settings, maintaining high accuracy on the source task while
also achieving strong performance on the target task, thanks
to their ability to learn robust label representations. Following
these, MMD is the next best methodology, demonstrating solid
performance on both tasks. In contrast, the zero-shot baseline
approach suffers a significant drop in target task accuracy,
highlighting the domain shifts between the source and target
task. Similarly, the finetune baseline method, after fine-tuning
on the target task, experiences catastrophic forgetting, leading
to a substantial decline in source task accuracy.

Among the six settings, the LoRa-Config and LoRa-
Location settings stand out as the most challenging. In these
cases, the accuracy on the target tasks are low, suggesting
that these types of domain shifts pose substantial challenges
for transfer learning. In contrast, the WiSig-Day and CORES-
Day settings exhibit smaller gaps between source and target
accuracy, reflecting less severe domain shifts.

E. Analysis of Learned Feature Embeddings

To evaluate the effectiveness of domain adaptation and
understand how well target domain examples are represented
in the feature space, we visualize the learned embeddings
using t-distributed Stochastic Neighbor Embedding (t-SNE).



TABLE III: Comparison of PTN performance across different distance functions and k-shot values for three datasets.

Distance Function LoRa-Day Dataset

WiSig-Day Dataset CORES-Day Dataset

K=1 K=3 K=1 K=3 K=1 K=3
Euclidean Distance 0.742 0.810 0.768 0.898 0.927 0.962
Manhattan Distance 0.721 0.784 0.746 0.881 0.910 0.941
Cosine Distance 0.737 0.792 0.739 0.872 0.932 0.953
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Fig. 3: Comparing accuracy of different methodologies over different domain shift settings

We compare the t-SNE plots of the zero-shot baseline, MMD-
based domain adaptation, PTN, and MN in the target domain.
t-SNE is a widely used nonlinear dimensionality reduction
technique for projecting high-dimensional data into a 2D
space, enabling visual inspection of cluster structures and class
separability.

In our experiments, feature embeddings are extracted from
the output before the final softmax layer of CNN. The vi-
sualization results for the CORES dataset and one scenario
of the LoRa dataset are presented in Fig. 4, respectively. To
ensure fair comparisons, we used the same subset of target
examples across all methods when generating the t-SNE plots.
We evaluate the visualizations based on two factors: the intra-
class compactness, which represents how tightly samples from
the same class cluster together, and inter-class separation,
which represents how distinctly clusters of different classes are
separated in space. It can be seen from Fig. 4 that the MMD,
PTN, and MN approaches all produce more compact intra-
class clusters compared to the zero-shot baseline, indicating
that they encourage the model to group semantically simi-

lar samples more cohesively. Additionally, the distinct class
boundaries are maintained using MMD, PTN and MN.

The zero-shot baseline of Fig. 4 indicates that RF fin-
gerprinting in the LoRa data set is more challenging than
the CORES dataset, as significant class mixing is observed.
Samples from the same class are scattered, and many different
classes overlap in the embedding space. However, with MMD,
PTN, and MN, the visualizations show improved structure:
certain classes (e.g., 0, 3, and 5) exhibit higher intra-class
compactness, and others (e.g., 5 vs. 6 vs. 9, and 0 vs. 3)
demonstrate better inter-class separation. These improvements
suggest that FSL methods enhance the model’s ability to
generalize to the target domain. Additionally, from the results
of PTN and MN in Fig. 4, it can be seen that these two
methods yield less compact clusters but slightly better sep-
aration between clusters compared to MMD. This observation
aligns with their underlying learning objectives: PTN and MN
explicitly maximize the inter-class distance using feature em-
beddings, while MMD focuses on domain alignment without
explicitly optimizing the inter-class separation.
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Fig. 4: t-SNE plots comparing predictions from different methodologies across 10 classes on LoRa dataset (setting: different

locations) and CORES dataset

To better interpret the t-SNE visualizations, we quantize
the cluster compactness and separation of all methods by
computing the silhouette score [48] using feature embeddings
before t-SNE dimensionality reduction. Silhouette score is
scale-invariant measurement on how similar a data point is
to its own cluster compared to other clusters. For a point ¢, it
can be defined as:

b(i) — a(i)
max(a(7),b(7))

where a(i) represents the mean distance between ¢ and all
other points in the same cluster; b(i) represents the mean
distance between 7 and all points in the nearest neighboring
cluster. The overall silhouette score is the mean of s(i) for
all points. A higher silhouette score indicates a better group
clustering performance.

The results of silhouette scores of all methods on 10 classes
have been shown at the top-left corner of each figure. This
additional metric further validates our conclusions on the
success of our methods in mitigating the domain shift in RF
fingerprinting. For example, Fig.4 indicates that FSL methods
achieve higher silhouette scores compared to the baselines.
Specifically, MMD shows the best score for smaller domain
shift scenario, while PTN and MN show the best scores for
larger domain shift scenario.

s(i) = 3)

V. CONCLUSION

In this paper, we proposed a unified framework to evaluate
and compare domain adaptation and meta-learning approaches
for addressing the domain shift challenge in RF fingerprinting.
Specifically, we applied two state-of-the-art meta-learning
methods, Prototypical Networks and Matching Networks,
alongside a domain adaptation approach based on Maximum
Mean Discrepancy (MMD), across three real-world datasets

with varying domain shift settings. Our results demonstrate
that these methodologies outperform baseline models and
we found the meta-learning methodologies superior in our
domain shift settings. Furthermore, we analyzed the embed-
dings learned by these methods and provide visualizations to
illustrate how these methods adapt the target domain within
the feature space.
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