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Abstract

Small language models (SLMs) support efficient deployments on
resource-constrained edge devices, but their limited capacity com-
promises inference performance. Retrieval-augmented generation
(RAG) is a promising solution to enhance model performance by in-
tegrating external databases, without requiring intensive on-device
model retraining. However, large-scale public databases and user-
specific private contextual documents are typically located on the
cloud and the device, respectively, while existing RAG implemen-
tations are primarily centralized. To bridge this gap, we propose
DRAGON, a distributed RAG framework to enhance on-device
SLMs through both general and personal knowledge without the
risk of leaking document privacy. Specifically, DRAGON decom-
poses multi-document RAG into multiple parallel token generation
processes performed independently and locally on the cloud and
the device, and employs a newly designed Speculative Aggregation,
a dual-side speculative algorithm to avoid frequent output synchro-
nization between the cloud and device. A new scheduling algorithm
is further introduced to identify the optimal aggregation side based
on real-time network conditions. Evaluations on real-world hard-
ware testbed demonstrate a significant performance improvement
of DRAGON—up to 1.9% greater gains over standalone SLM com-
pared to the centralized RAG, substantial reduction in per-token
latency, and negligible Time to First Token (TTFT) overhead.
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1 Introduction

Although large language models (LLMs) such as GPT-4 [26] and
DeepSeek-V3 [9] have demonstrated remarkable performance in
real-world applications, their substantial deployment costs have
led to predominant cloud-based hosting. As a result, users are re-
quired to upload private context along with their queries, raising
serious privacy concerns. Recently, small language models (SLMs)
such as Phi-4-mini [1] and Qwen2.5-1.5B [34], have emerged as
promising alternatives, offering efficient local deployment on edge
devices. However, although SLMs are notably smaller than cloud-
hosted LLMs—leading to reduced performance on both personal and
general tasks—they still remain too large for resource-constrained
devices to support on-device fine-tuning or training [16] to adapt
to newly generated data and user feedback.

Retrieval-augmented generation (RAG) [21, 29] has demonstrated
effectiveness in boosting the performance of SLMs by incorporat-
ing contextually relevant documents from external databases. The
performance gain increases monotonically with the scale of the
database, showing an opportunity for SLMs to achieve compara-
ble or even better performance than standalone LLMs [8]. More
importantly, by expanding user-specific external database (also
known as the non-parametric memory [21]), model customiza-
tion and knowledge updates can be achieved efficiently without
model training. Typically, large-scale public databases containing
general knowledge are hosted in the cloud, whereas user-specific
private databases are maintained on-device. Since the query con-
text may involve both general and personal data, it is essential for
retrieval-augmented SLMs to support distributed databases located
in the cloud and device. Unfortunately, most existing RAG solu-
tions [4, 21, 29] adopted a centralized architecture. Figure 1 presents
an example of game recommendation. The cloud-only RAG returns
an incorrect game genre, although private documents indicate a
preference for simulation games, while the device-only RAG fails
to retrieve the best-selling game lists without accessing to general
knowledge in the cloud.

An intuitive solution, similar to federated search [32], is to re-
trieve documents from the cloud-side database, merge them with
those retrieved locally on-device, and perform model inference in
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Figure 1: Comparison between different RAG architectures.

a centralized manner. However, this approach may incur substan-
tial latency overhead considering key-value (KV) caching [42], a
fundamental mechanism in language model serving that stores
intermediate attention states to enable efficient reuse of past com-
putations. The KVs of documents are typically pre-computed and
persistently stored in the database to facilitate retrieval, introducing
a data volume several orders of magnitude larger than the origi-
nal text. This leads to a dilemma: when retrieving the raw text of
cloud-side documents, the device must compute their KVs from
scratch, incurring significant computation latency; Conversely, di-
rect retrieval of KVs from the cloud storage introduces substantial
transmission latency, as the data volume can be even larger than the
model parameters, especially as the number of document grows.

To address these issues, we propose DRAGON, a distributed
retrieval-augmented generation framework designed to enhance
the performance of on-device language model inference. Following
the law of total probability, DRAGON first decomposes the multi-
document RAG process into a dual-side workflow by the device and
the cloud, respectively, and then aggregates their output tokens
for the final result. In this workflow, the cloud and device sides
independently execute their own model instances using documents
retrieved from their databases. Document KVs are stored and loaded
locally without transmission or re-computation, thereby reducing
first-token latency and preserving document privacy. Nonetheless,
the output aggregation requires frequent exchange of data packets
between the cloud and device at every token generation step, due
to the auto-regressive nature of language models. This transmis-
sion pattern requires a persistent low-latency network connection,
which is difficult to guarantee in real-world scenarios [24].

To solve this challenge, we draw inspiration from the draft-then-
verify paradigm in Speculative Decoding [20] and propose a new
dual-side speculative algorithm, namely Speculative Aggregation. In
this algorithm, the decoding processes on both sides continuously
generates draft tokens, and an Aggregator on either side (depending
on certain scheduling criteria) asynchronously verifies and aggre-
gates them. Decoding is interrupted and the corresponding KV
states are rolled back for re-computation only when a draft is re-
jected. As our theoretical analysis proves the equivalence between
Speculative Aggregation and the vanilla synchronized version, the
end-to-end latency can be reduced by overlapping transmission
and decoding processes.

We implement a fully-functional distributed RAG workflow and
construct a testbed using real-world hardware. Based on this, we
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evaluate DRAGON against various RAG architectures using repre-
sentative SLMs on large-scale retrieval corpora and datasets. Experi-
mental results on language modeling shows that DRAGON achieves
up to 1.9% greater performance gains over the standalone SLM than
the centralized method. Moreover, DRAGON achieves significant
reduction in per-token latency compared to synchronized meth-
ods, showing strong robustness under various network conditions.
Extensive simulations further verify that the proposed scheduling
algorithm achieves increasing delay reduction as network latency
grows. We summarize the key contributions of this work as follows:

e We propose DRAGON, the first distributed RAG framework that
supports distributed documents retrieval and collaborative out-
put generation between cloud and device. It significantly en-
hances on-device model performance with the integration of
both personal and general knowledge.

e We introduce Speculative Aggregation, a dual-side speculative
algorithm that decouples synchronized aggregation from sequen-
tial decoding by asynchronously verifying the output alignment
between cloud and device, greatly reducing end-to-end latency.

o We further design an adaptive scheduling algorithm to dynami-
cally identify the optimal aggregation side under varying network
conditions, effectively improving decoding efficiency.

e We implement DRAGON in a real-world hardware testbed and
perform comprehensive evaluations using representative SLMs
and large-scale retrieval corpora, demonstrating significant per-
formance improvements of on-device SLMs with negligible over-
head even under high-latency network conditions.

2 Preliminaries

2.1 Retrieval-Augmented Generation

Retrieval-augmented generation [21] integrates off-the-shelf lan-
guage models with documents retrieved from an external database
to capture long-tail knowledge and keep up-to-date with new infor-
mation. In traditional LM inference, given an input token sequence
X<m = {Xo,...,xpm-1} (indices of tokens in vocabulary V) and the
maximum context length N, the output generation process aims to
maximize the probability Hfi ]/11 p(xt|x<¢). In order to incorporate
external documents, we process each document concatenated with
the query separately, and then interpolate the output distributions
(termed as output aggregation [21,31] )!. Following the Law of Total
Probability, we can derive the interpolation as

plxilxa) = ) p(dlxes) - plxld,x<r), ()

where p(d|x<;) denotes the weight of the document d on the output
distribution p(x;|d, x<;). Since p(d|x<;) cannot be directly obtained
in practice, we retrieve d from a sufficiently large corpus O and
only consider top-k documents with the highest relevance score
Rop(d, x<t). Equation (1) offers the opportunity to decompose the
multi-document RAG workflow into parallel generation processes,
enabling device-cloud distributed RAG. This decomposition also
significantly alleviates the limitation of maximum context length
on resource-constraint devices.

The output aggregation is different from context aggregation [29]), where external
documents are concatenated and prepended to the input query x<, all at once.
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2.2 Device-Cloud Distributed RAG

To enhance the performance of on-device language model inference,
we propose a device-cloud distributed RAG framework based on
the above discussed output aggregation paradigm. Given an input
X<, we retrieve personalized documents Ddevice from a device-side
private database and then compute the next-token distributions
Pfe"ice = [ p(x:|d, x<,)] ; < pdevice USINg an on-device language model
Mdeviee I parallel, we employ a similar process in the cloud and
obtain the cloud-side next-token distributions P&, After gath-
ering all documents D = Ddevice y pelovd and their corresponding
output distributions P; = [P;ie"ice, Pfk’“d]T, we sample the next
token according to

x~pi=oP=) o) pldxa), ()

where w; = [w;(d)] ;e p denotes the interpolation weights, which
are computed based on relevance scores R as

oi(d) =expR(d x<)/ Y, expR(d,x<).

We refer to this workflow as the vanilla distributed RAG (VDRAG).

Despite its effectiveness, frequent synchronization over network
between the device and cloud can introduce a substantial latency.
On one hand, the tight data coupling in distributed RAG leads to idle
waiting, especially when decoding latencies significantly differ due
to hardware heterogeneity. During the auto-regressive language
model inference, the output x;_; is expected on both sides as the
input for generating P;. At each token generation step ¢, computing
Equation (2) requires waiting for output distributions on both sides
(P;i“"’ice and Ptdo“d). On the other hand, frequent data transmission
makes VDRAG highly sensitive to network latencies. Transmitted
data packets at each step includes a 2-byte integer representing the
token x; and a float matrix P, encoding the output distributions?.
Due to small data packet size, transmission time is often dominated
by data-independent factors [6, 12], like the connection round-trip
time (RTT). Finally, idle waiting and transmission latency at each
generation step accumulate over a long output sequence, signifi-
cantly amplifying the overall overhead.

2.3 Problem Formulation

We define the language model inference as a distributed process
where the device-side and cloud-side token generation processes,
Fdevice and Feloud executes alternatively. Without loss of gener-
ality, we assume the final output token sequence is generated on-
device by sampling x from the next-token distribution p;. Let A; be
an auxiliary set for transferring information between the device and
the cloud at iteration ¢, which is initially empty. The workflow can
be eXpressed as A;levice, pr — 7_~device(A<t:I_0;1d, Mdevice’Ddevice,x<t)
on the device, and then Agloud — .77c10ud (A;levice’ Mcloud’ Dcloud, x<t)
on the cloud, respectively. Finally, the optimization objective is

1 N * *
min = > (=p(xilxer) log pe(xi bxcr) + 2C(AL ), (3)

where x} represents the optimal token at step ¢ and C denotes the
end-to-end latency per token resulted from the transmission of A,

2The float matrix P; has a size of |V| max(|D%vice|, | D¢loud|) \where the vocabulary
size | V| is typically less than 50,000.
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Figure 2: Overview of the DRAGON framework.

between the device and cloud and the execution of F. The coeffi-
cient A controls the trade-off between performance and efficiency.

3 Overview of DRAGON

To enhance on-device language model inference performance while
minimizing the latency overhead, we propose DRAGON, a device-
cloud distributed RAG framework. In this framework, we sam-
ple tokens from distributions aggregated from the device-side and
cloud-side RAG outputs, enabling an integration of personalized
information and generic knowledge. To mitigate the inherent la-
tency caused by frequent device-cloud synchronizations in VRAG,
we perform distribution aggregation and next-token sampling in
a speculative manner, where draft tokens are generated on both
sides and then verified on either side. Accordingly, as shown in Fig-
ure 2, DRAGON consists of three modules deployed on both sides,
including Decoders, Queues, and Schedulers, and an Aggregator
module on either side.

We organize Decoders, Queues and Aggregator by a producer-
consumer paradigm, enabling asynchronous decoding of draft to-
kens. The Decoder serves as a token producer, and on each side
s € {device, cloud} it decodes draft tokens x; independently based
on locally-aggregated output distributions p{ = (®;)TP{ where
@y = [a)t(d)] ;E ps> similar to Equation (2) but using the retrieved
local documents D* only (@). The draft tokens x5 and their corre-
sponding distribution vectors pj are broadcast to the other side. On
each side, we enqueue x? into Draft Queues (@). The Aggregator, as
a consumer, continuously consumes draft tokens from the front of
local queues and performs aggregation process (€)). Subsequently,
the aggregation results of the draft token are broadcast to Draft
Queues on both sides. For each queue, the first token is dequeued if
accepted, or the entire queue is cleared if rejected. The final target
token output by Aggregator is enqueued into Target Queue on both
sides (@). Although the dependencies between the aggregator and
decoder cannot be eliminated, the data transmission latency can
be overlapped with the decoding time, mitigating the idle waiting.
To accommodate dynamic computing resources on both sides and
network bandwidth between them, we further design Profilers®
and Schedulers to identify the optimal aggregation side.

3Please refer to our technical report [22] for detailed design of the Profiler.
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4 Speculative Aggregation

Inspired by Speculative Decoding [20], we propose Speculative Ag-
gregation to reduce the device-cloud communication latency. Spec-
ulative Decoding adopts a draft-then-verify decoding paradigm to
reduce the number of calls to the resource-intensive LLM. Simi-
larly, Speculative Aggregation utilizes two independent decoding
processes, the device-side and cloud-side Decoders, to draft mul-
tiple candidate future tokens, which are then verified through an
Aggregator. This is equivalent to directly sampling from the dis-
tributions aggregated from the device-side and cloud-side outputs.
As the aggregation involves collecting output distributions over
the network, we expect the speculative algorithm to reduce its
frequency and mitigate data transmission costs. More specifically,
the Aggregator stays in a blocked wait state until both local Draft
Queues are non-empty. Once this condition is met, it retrieves one
token xdevice/xcloud from the front of each queue and fetches cor-
responding locally-aggregated output distributions pdevice/peloud
from the cache. The tokens and the distributions are then provided
as inputs to the aggregation.

4.1 Design of Aggregation Strategy

Since the workflows of the device and cloud sides are designed to be
symmetric, we define {/, r} = {device, cloud} to maintain generality
and avoid repetition. From the perspective of the Aggregator, [ refers
to the local side that performs aggregation, while r denotes the
remote side, which only generates draft tokens.

Target distribution. The objective of speculative aggregation is to
generate tokens that are equivalent to those sampled from the target
distribution p; = w; P; as defined in Equation (2). We partition P,
block-wise, grouping its distribution vectors by generation side,
and have p; = (0!)TP! + (0])TP!. For each s € {I,r}, we have
! = ni&! where ni = h/(hl + B)) and b = ¥4 ps exp R(d, x<;).
As a result, given the locally-aggregated output distributions p and
P}, the target distribution p; can be obtained by an interpolation:

pr=nph+ip;. )

To align with this computation process, on each side s € {I,r}, a
corrected value* of /i is computed and retained during decoding
x;, and then broadcast and stored along with draft tokens and the
locally-aggregated distributions.

Aggregation strategy. To sample x; ~ p;, we instead perform two
independent speculative sampling processes as follows:

e Keep the draft token x! as %! if pl(x!) < p/(x}), and in case
pL(xhy > pl(xl) we reject the sample with probability 77 (1 —
pr (xi) / pi (xf)) and re-sample )?f from an adjusted distribution
f)f‘ = norm(max(0, p} — pi)).

e Keep the draft token x as &/ if p}(x}) < pl(x}), and in case
ph(xr) > pl(x) we reject the sample with probability nl(1 -
pf‘ (x7) / p;(x})) and re-sample x7 from an adjusted distribution
P} = norm(max(0, pﬁ -p))).

! or %] as x; with uniform probability. Finally,

each draft token xi and xj is accepted if it matches the target token

Next, we select either X'

4We adopt the log-sum-exp trick to maintain numerical stability. Details are included
in our technical report [22].
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Algorithm 1: SpeculativeAggregation

Input: Draft tokens x}, locally-aggregated distributions p3,
and aggregation weights A}, for s € {I,r}

Output: Target token x;, acceptance status S’ and S”
Function Sample(x, p%, pb, n):

X «—x,0%~U(0,1);

if p*(x) > p¥(x), 0“ < n(1 - p®(x) / p*(x)) then

‘ % ~ norm(max(0, p® — p?));

return x;
M b/ (b + 1), o — 1=
x| « Sample(x}, p}, p}, n}), X « Sample(x], p}, p}. n});
o ~U(0,1), x; & 555 “1g<o5 + X - 1550.5;
S! <—xf =%, 8" x] = x4;

return x;, S, S”;

x;; otherwise, it is rejected. The aggregation strategy at each step ¢
is summarized in Algorithm 1.

Theorem 1. During each generation step t, the target token x;
produced by the speculative aggregation strategy follows a distribution
identical to that output by VDRAG.

Proof . Since the output distribution p; in Equation (4) is mathemat-
ically equivalent to that of VDRAG in Equation (2) through proper
matrix partitioning, the theorem can be reformulated as follows: For
any pair of locally-aggregated distributions p! and p}, the target
token x, is sampled from the convex combination p; = n'p! +n7 p.
Notice that for s € {, r}, the mixture coefficients n; are computed
asn; = hi/ (hf‘ + h}) (see § 4.1 Target distribution), which naturally
satisfies the condition ! + 7 = 1.

First, we show that the intermediate outputs %! and %/ from the
two independent speculative sampling processes are indeed drawn
from p;. For side [, the probability to reject a draft token is

P(rejected) = E,_1 (1~ min(1,n; + nf p} (x)/ pi(x)))
=1 > (ph(x) - min(p} (x), p} (x))).

The adjusted distribution, from which we sample after the draft
token is rejected, can be expressed as

i (x) — min(p}(x), pf (%))
S (pf(x') = min(p}(x'), P} (x")))
P(rejected, x = %!), the probability that %/ is re-sampled after re-
jecting xf, is

pi(x) =

P(rejected) pr(%;) = n; (p} (%;) — min(p; (%), i ())))-
Consequently, the sampled token %! is drawn from the distribution

P(x = fi) = P(accepted, x = ig) + P(rejected, x = 9?5)

= pi (&) min(L,ng + 17 P} (52) / p1(51)) + 17} (P} (%1)

= min(p; (), P} (%1))) = 1Pt () + n pi () = pe(5)-
As a result, %! is distributed identically to tokens sampled from p;.
Since the correctness proof for the other side r is symmetric, we can
conclude straightforwardly that x] ~ p;. Finally, the aggregation

strategy randomly select either %! or &7 as the target token x,, with
a uniform probability. Obviously, x; ~ 0.5p; + 0.5p; = p;. O
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To conclude, Speculative Aggregation fundamentally reorders
the processing pipeline of VDRAG from aggregate-then-sample to
sample-then-aggregate. It first samples from local distributions p'
and p} and then aggregates the outputs via a conditional sampling
from adjusted distributions followed by the final resampling. This
sampling-based aggregation is theoretically necessary to ensure
the generated token x; properly follows the target distribution p;.
In contrast, naive binary selection between x! and x/ fails to pre-
serve this property. A canonical counterexample occurs in greedy
sampling when arg max p; ¢ {arg max p!, arg max p}.
Multi-step aggregation. We now present a general procedure for
sampling multiple consecutive tokens. At each step t, the following
workflow is executed:

1) The Aggregator waits until both Draft Queues are non-empty,
then dequeues x; from the local ones and retrieves auxiliary
variables p; and hf from the local cache, for each s € {I,r}.

2) The Aggregator performs aggregation as defined in Algorithm 1.
The outputs, including the target token x; and the acceptance
status of each draft token, are broadcast to notify both sides.

3) Upon receiving the message, each side checks the acceptance
status of both x! and x7. If a token is accepted, it is dequeued
from the corresponding Draft Queue and step 5) is executed;
otherwise, step 4) is executed.

4) If xj is rejected, its corresponding Draft Queues on both sides are
cleared and the side s rolls back its KV cache and re-computes
the next draft token x} ; using the target token x; as input.

5) Update step t «— t + 1, and go back to step 1).

4.2 Analysis of Acceptance Rate

We now analyze the factors that influence the acceptance rate of
draft tokens on both the device and the cloud sides.

Definition 1. Fors € {I,r}, the acceptance rate 3}, is the probability
of accepting x; ~ pi = X geps Wi (d) p(x:|d, x<;) by the aggregation
strategy, given a prefix x<;.

First, we consider [-side as an example. The acceptance of the draft
token x!, sampled from p! by the Decoder, can be classified into two
cases: 1) it is accepted during the speculative sampling of 321{ and 2)
the draft token x] = xi is accepted or X} = xi is sampled from p;}
during the speculative sampling of #/. Let y* and y" = 1—y' denote
weights assigned to %! and %/ in the random selection following
these sampling processes. We adopt the definition of divergence
from [20], given by § = Drx(pl, pf) = 1 — 3, min(p(x), p (x)).
The expected acceptance rate af =E, () ( ﬁﬁ) is computed as

a =y (1=njd) +y ), pl)pi(x). s)

where the two terms represent the acceptance probability of the two
cases above, respectively. These terms are mutually exclusive and
their contributions are weighted by the mixture weights y and y"
(both empirically set to 0.5 in our implementation for simplicity®).

Theorem 2. The expected acceptance rate is influenced by the degree
of overlap between the draft distributions on the two sides.’

SPlease refer to our technical report [22] for design details on random selection weight.
®For a detailed analysis of how draft distribution overlap affects acceptance rates,
please refer to our technical report [22].
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xi_l X, Waiting Time for xf and x}
rejected accepted max(cfiec, @(Chee + Clrans))
accepted  rejected max(tp(clec), Cirans T Chec + Clrans)
accepted  accepted  max(¢(cy,.), P(ch.. t Clrans))
rejected  rejected  max(cy,., Cirans + Clrans T Chec)

Table 1: Waiting time for the next pair of draft tokens x! and

x; under different acceptance scenarios of the previous draft

1

.
+_, and x

tokens x [y
This characteristic provides insight into the principle behind Spec-
ulative Aggregation: we assume that the device-side and cloud-side
RAG workflows generate similar results by default, allowing them
to asynchronously decode the next tokens without aggregation.
Only when they disagree with each other, the acceptance is ad-

justed by their aggregation weights ! and 5.

5 Greedy Scheduling

To further minimize the latency C(A;, ¥) in Equation (3), We adap-
tively schedule which side performs the next aggregation after the
current one is completed. The principle behind this is to maximize
the overlap between the device-side and cloud-side decoding and
transmission processes, jointly considering dynamic computing re-
sources, network bandwidth, and acceptance of draft tokens. Since
predicting future acceptance is challenging due to dynamic docu-
ment relevance and model outputs, we employ a greedy strategy,
where at each step, we minimize the expected latency per token
based on current observations.

The latency per token, denoted as Z;, is computed as the average
duration between two consecutive aggregations. It can be viewed
as the waiting time for the next pair of draft tokens, x%° and
xtd"“d, including both decoding and transmission delays, as the ag-
gregation duration is negligible. For each side s € {device, cloud},
let c5,. denote the decoding delay of a draft token x7, and ¢f,,; de-
note the transmission delay of this token and its auxiliary variables
from s to the other side. Since the decoding and transmission pro-
cesses are asynchronous, they may still be ongoing when the sched-
uling algorithm is executed. Therefore, we define ¢(Tiora(u)) =
max (0, Total (#) + Thegin(#) — Thow) as a function that estimates the
remaining time of the total duration Tiota1 to complete the process
u, where Thegin and Tpow are the beginning and current timestamps,
respectively. Let [ be the side that currently performs aggregation
and r be the other one. The best side is then selected as

* _ . S 1 1 r r
§ = argminge {Lr} Zt ((P, Cdec’ Ctrans» Cdec’ Ctruns)’ (6)

where Z; denotes the latency per token when s continuously per-
forms the aggregations in the future.

Next, we present the calculation of Z;. Table 1 illustrates the
waiting time for the next pair of draft tokens after a previous aggre-
gation. To estimate an averaged Z; over multiple future steps, rather
than enumerating all possible combinations of acceptance scenar-
ios, we assume each acceptance scenario repeats continuously’ and
occurs with an expected probability given by the acceptance rate.
Therefore, the waiting time in Table 1 can be simplified to eliminate
the function ¢. First, assuming that draft tokens from r are always
accepted, the decoding process for consecutive draft tokens will be

7Please refer to our technical report [22] for pipeline illustrations of different cases.
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continuous on r. In other words, the decoding of x] begins exactly
when x;_, is decoded and ready for transmission. Therefore, we
have (.. + frans) = (Toegin + Clrans — Tnow) + €l = Cheo Moreover,
since the aggregation process can exhaustively consume the token
pairs in the Draft Queues, (p(cfiec) < céec holds only when the wait-

ing time for x] dominates. Hence, max((p(céec), ) = max(céec, 4.
Finally, Zf is calculated as

I I I !
orf max(Cy,.» Cho) + (1= &) Max(Chees Chee + Crrans + Cirans)-  (7)

Symmetrically, Z] is computed by exchanging [ and r in Equa-
tion (7). Based on this, we can conclude that when the local decod-
ing latency céec cannot cover the waiting time for draft tokens from
the other side, i.e., céec < cgec + cfrans + cfrans, minimizing the overall
latency Z; requires maximizing the acceptance rate a;y.

To decide the optimal side in Equation (6), we calculate the differ-
ence in latencies per token when side [ and r performs aggregation.
The result is presented as a piecewise function,

. 1 roo_
(1 a; )l‘tt, Cdec S Cdec rit
Az = (1- af)j + (od —ap)rtt, -t < céec < Clee ®
;= ) ,
(1-a))j+ (af —aprtt, ¢} < céec < el trtt
1 )
(ay — 1)rtt, Cloe Tt <cy

wherertt = ¢/ +cl_ and jis the difference in decoding latencies,
Clec — Ctliec' Accordingly, we select side r for aggregation when
AZ; > 0, and side | otherwise. Figure 3 shows the influence of
varying acceptance rates on AZ;. As the acceptance rate of draft
tokens from one side increases, the Scheduler tends to favor the
opposite side. Moreover, the relationship between cfiec and c}_ . also
influences the strategy. For instance, when the decoding process
on one side becomes the latency bottleneck, aggregation is always
performed on that side, which is demonstrated by (1 — a7 )rtt > 0
and (&} — 1)rtt < 0. Clearly, our strategy minimizes the likelihood
of repeated bottleneck decoding due to rejection, while maximizing
the overlap between the decoding and transmission processes.

6 Theoretical Analysis

In this section, we present a theoretical analysis to demonstrate
the improvement in wall-time efficiency achieved by DRAGON
over VDRAG described in § 2.2. To facilitate analysis, we assume
the aggregation is always performed on the device in following
discussions and [ = device and r = cloud.

First, we illustrate two boundary conditions of DRAGON using
pipeline graphs: 1) the optimal case where all draft tokens from
both device and cloud sides are accepted (Figure 4a), and 2) the
worst case where all draft tokens are rejected (Figure 4b). For our
case study, device and cloud decoding latencies are 2 s and 1 s,
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ilec’ C(riec
respectively, with asymmetric network delays of 1.5 s (device-to-
cloud) and 1.8 s (cloud-to-device). We assume the two sides start
decoding at the same time. In the optimal case, when the device
and cloud exchange their initial draft tokens at 2.8 s and 3.5 s,
respectively, mutual acceptance occurs. This successful speculation
enables uninterrupted continuous decoding of subsequent tokens,
ultimately achieving a stable end-to-end per-token decoding latency
of 2 s after two synchronization rounds. In the worst case, the
device receives the cloud’s first draft token at 2.8 s, triggering
immediate aggregation with its local draft token followed by target
token sampling. Since both draft tokens are rejected, the system
must abort the ongoing second-token decoding and roll back to
recompute the second token using the initial target token. The cloud
subsequently encounters an identical failure mode at 4.3 s. These
cascading speculation failures ultimately produce a substantially
degraded per-token latency of 4.3 s.

As established in § 4.1, VDRAG yields identical output distri-
butions to DRAGON. It decodes the next token only when the
device-side and cloud-side draft token pair becomes available, in-
herently matching the latency profile of DRAGON’s worst-case
scenario®, where continuous decoding with full rollback occurs.
The pipeline diagrams demonstrate that in the optimal case, contin-
uous daft decoding effectively hides transmission latency through
perfect speculation and enables significantly lower end-to-end per-
token latency. This reveals DRAGON’s fundamental advantages
over VDRAG in terms of potential latency reduction.

Building upon these observations, we now present a formal
theoretical analysis to quantify this performance improvement.

Definition 2. Let Z, and Z, be the expected per-token latencies at
step t when using DRAGON and the vanilla distributed RAG, respec-
tively. Define the speedup as S; = Z; | Z;.

8DRAGON yields negligible transmission overhead compared to VDRAG. (See § 7.3)
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Theorem 3. Let! = device andr = cloud denote the local and remote
computing nodes, respectively. The speedup factor can be formally
expressed as a piecewise function of the decoding latencies (Cldec’ e
and the round-trip communication delay rtt, as follows:

al !

I r
1+c;ec/rtt’ Clec = Clec

- = 1—(1—i)a’ " <ch o<em o+, ©

St c‘rieCJrrtt L dec dec = “dec >

1, +rit < c‘li
ec

>
Clec

Proof. Z; is computed according to Equation (7). By substituting
al = & = 0 and we obtain Z, = max(c)_,c] . + rtt). The result
then follows from a simple case-by-case analysis. o

Figure 5 illustrates the theoretical speedup characterized in The-
orem 3. The speedup achieves its maximum when the device-side
decoding latency is minimal and maintains saturated until it sur-
passes that of the cloud. Thereafter, the speedup decreases inversely

with céec, gradually approaching 1 and eventually stabilizing at 1

I
dec

Corollary 1. DRAGON is particularly effective when the decod-
ing latency gap between the device and the cloud is small and the
transmission cost becomes the primary bottleneck.

once ¢y, exceeds ¢}, + rtt. Finally, we have following corollaries:

This characteristic extends DRAGON’s applicability to distributed
computing paradigms with balanced computational capabilities
across nodes, while making it particularly suitable when network
communication becomes the dominant performance constraint
requiring optimization.

Corollary 2. DRAGON’s improvement in wall time can be substan-
tially amplified when the cloud-side acceptance rate is high.

DRAGON introduces speculative execution by sampling draft to-
kens directly from locally-aggregated output distributions, rather
than waiting for device-cloud aggregated target tokens. This en-
ables uninterrupted auto-regressive decoding by immediately using
the sampled draft token as input for subsequent generation. The
draft sampling introduces negligible computation and communica-
tion overhead, enabling DRAGON to maintain strict latency parity
with VDRAG in the worst case. In typical cases where draft tokens
are accepted, DRAGON achieves significantly lower end-to-end
latency, which has been verified in our experiments in § 7.3. More-
over, prior work [41] shows that most attention focuses on a critical
token subset whose modification substantially alters outputs. We
observe draft discrepancies mainly arise from this subset, while
context-independent tokens (stop words, punctuation, common
terms) achieve high acceptance rates due to their shared nature.

7 Experiments

7.1 Implementation

We implemented DRAGON for distributed RAG workflow compris-
ing ~3,000 lines of Python code.’ The System consists of two sym-
metric processes, the device-side and cloud-side ones, each utilizing
eight threads for core functionalities (e.g., decoding, aggregation
and transmission) along with a memory-resident service process for
document retrieval. We implemented information synchronization

?Our code is available at GitHub [22]. Please refer to our technical report for more
implementation details.
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between threads using multi-producer, multi-consumer queues, and
between processes using socket-based communication.

7.2 Experiment Setups

Testbed. We evaluated our framework and baseline methods using
a high-performance computer as the cloud server and a MacBook
Pro as the edge device. The server is equipped with an Intel Xeon
Silver 4210R CPU, 64GB of memory, and a GeForce RTX 3090 GPU,
while the MacBook Pro features an Intel Core i7 CPU, 16GB of
memory, and no dedicated GPU. The cloud and the device are
connected via a 2.4 GHz Wi-Fi local-area network, with latency
and jitter measured by sockperf as 2ms and 6ms, respectively. To
simulate network jitter, we replay a predefined random latency
trace by adjusting the network interface controller (NIC) latency
using the traffic control tool, tc.

Datasets and metrics. We evaluated the long-sequence generation
performance of DRAGON on the large-scale language modeling
dataset WikiText [25], which comprises over 100 million tokens ex-
tracted from verified Good and Featured articles on Wikipedia. We
constructed retrieval corpora from the training sets of two different-
scale versions, WikiText2 and WikiText103. During evaluation, we
applied rolling windows of 1024 and 512 tokens, respectively, over
their test sets, using the first 1/8 of each window as the query for
retrieval and the remaining tokens for perplexity evaluation. To
further assess the efficiency of our method, we measure the time
to first token (TTFT) and per-token latency. In this measurement,
we used the retrieval corpus and index pre-built by Facebook from
a Wikipedia dump dated December 20, 2018, which contains 21
million documents.

Models and baselines. We used OPT-1.3B [40] and Qwen2.5-
1.5B [34], with vocabulary sizes of 151,936 and 50,272, respectively.
For language modeling and latency measurement, we adopted Con-
triever [14] and DPR [17] as the retrievers, respectively. Addition-
ally, we employed ms-marco-MiniLM-L6-v2 [30] for document re-
ranking. We compare DRAGON with four baseline methods:

e CRCG, centralized generation augmented with centralized re-
trieval from local corpus, using the context-aggregation strategy,
which represents most existing RAG methods [15, 23, 29].

e DRCG, on-device generation augmented with documents re-
trieved from a distributed corpus spanning both the device and
the cloud, using the context-aggregation strategy.

e DRDG/TW, distributed RAG using the output aggregation strat-
egy and token-wise synchronization, namely VDRAG, as dis-
cussed in § 2.2. The target tokens are collected and aggregated
on the device side.

e DRDG/SW, distributed RAG using the output aggregation strat-
egy and sequence-wise synchronization, i.e., one-time aggrega-
tion of the independently generated output sequences from the
device and the cloud. This baseline is implemented by extend-
ing the official REPLUG [31] implementation and Facebook’s
RAG-Sequence model [21] with distributed support.

To simulate insufficient but complementary corpus in the cloud and

device sides, we constrain the on-cloud and on-device retrieval by

selecting the first and second halves of the top-k documents from
the same corpus, respectively. Moreover, to study the overhead of

DRCG, we evaluate two variants: DRCG/Text retrieves raw text and



MobiHoc ’25, October 27-30, 2025, Houston, TX, USA

=»-w/o Retrieval CRCG/Cloud -+ CRCG/Device -+ DRCG -* DRAGON

1081 * 15.01 *

> >

Z106 : z 148

[} Q

s 5 14.6

[0) [5

o 104 o 14.4 —
10.2 14.

0 2 4 6 8 1012 14 16
Number of Retrieved Documents Number of Retrieved Documents

(a) Qwen2.5-1.5B/WikiText2. (b) OPT-1.3B/WikiText103.
Figure 6: Performance on WikiText.

0 2 4 6 8 1012 14 16

--- CRCG/Device — CRCG/Cloud -~ DRDG/SW ~-DRDG/TW -+ DRAGON
@ 500 @

£ £ 300

8 400 § 250

8300 oty +—— " ' | S200

g 200 g 150

B > 100

S 100 S 50

5 &

'} .}

0 50 100 150 200 250 300
Extra Network Latency (ms) Extra Network Latency (ms)

(a) Qwen2.5-1.5B. (b) OPT-1.3B.
Figure 7: Per-token latency in various network conditions.

prefill KV cache from scratch and DRCG/KYV retrieves and reuses
the KV cache of documents directly.
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7.3 Overall Performance and Efficiency

We first present the overall performance and efficiency of DRAGON
in comparison to the baselines. In the following experiments, we
set the maximum context length to 256 tokens on both the device
and cloud sides, with each retrieved document limited to 64 tokens.
Performance. We linearly increase the number of retrieved doc-
uments on both sides from 0 to 16 and report the corresponding
language modeling perplexity on WikiText. As shown in Figure 6,
DRAGON matches or outperforms all baseline methods across
all settings. As more documents are integrated, the performance
gap between DRAGON and the baseline methods widens. Finally,
DRAGON achieves 1.9x and 1.4X improvements over the non-RAG
method, compared to the second-best RAG baselines, for Qwen and
OPT, respectively. In contrast, CRCG methods perform poorly due
to an insufficient number of retrieved documents, which indicates
incomplete knowledge for the given context. Additionally, the per-
formance of DRCG quickly saturates once the amount of retrieved
text reaches the context budget limit. However, we observe a gap
between DRCG and our method prior to the saturation, suggesting
that output aggregation may inherently outperform context aggre-
gation. The results of DRDG methods are omitted, as they produce
identical outputs to DRAGON under the language modeling setting.
Efficiency. We inject additional latency to the server’s NIC, ranging
from 0 to 300 ms, along with a jitter equal to 1/5 of the corresponding
latency value. We sample prompts from 10k_prompts_ranked [13],
a collection of synthetic and human-generated prompts with asso-
ciated ranking, and report the average end-to-end decoding latency
over 20 output tokens'’. Figure 7 presents the per-token latency

ODespite averaging, the results still exhibits fluctuations due to varying CPU load and
network jitter, but do not affect the overall conclusion.
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Figure 9: Comparison of different scheduling strategies.

when incorporating the top-2 relevant documents for the RAG pro-
cess on each side. As shown in the figure, DRAGON demonstrates
strong robustness under different network conditions compared to
other distributed baseline methods. Specifically, DRAGON achieves
latency reduction of 49.5% and 42.4% when using OPT-1.3B com-
pared to the sequence-wise and token-wise DRDG methods, re-
spectively. In contrast, the per-token latency of DRDG methods
fluctuates significantly and tends to increase under higher network
latency conditions. Sequence-wise DRDG collects output distribu-
tions of all tokens once after generation completes, resulting in
a one-time large data transmission and increased sensitivity to
network latency. Token-wise DRDG amortizes data transmission
over the entire generation process, partially hiding latency within
decoding. However, it still under-performs compared to DRAGON
due to frequent output synchronizations. Additionally, DRCG meth-
ods yields the same per-token latency with corresponding CRCG
methods, because they do not involve cooperation between the
device and the cloud. Although DRAGON incurs an average la-
tency overhead of 15.6%-20.3% compared to device-only methods,
it effectively supports tasks that require both personal and general
knowledge, where device-only or cloud-only methods may fail.
We further compare the TTFT of DRAGON with that of the
baseline methods under identical network conditions. TTFT typi-
cally includes the time for document retrieval and the latency of
the prefill stage, during which the key-value (KV) activations for
the concatenation of retrieved documents and the input query are
either computed from scratch in parallel or loaded from cache. As
shown in Figure 8, DRAGON incurs negligible TTFT overhead com-
pared to the device-only CRCG method. In contrast, as KV cache
is hosted on the same side with the corpus, DRCG/Text performs
prefill from scratch, resulting in high computation latency and 8.6x
TTFT on average compared to DRAGON. DRCG/KYV directly fetches
KV activations from the server, leading to increased transmission
time under higher network latency and yielding over 15.3x TTFT
compared to DRAGON, rendering it entirely impractical. Notably,
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DRCG/Text incurs larger prefill latency when using Qwen2.5-1.5B
compared to OPT-1.3B, due to its larger number of parameters. In
contrast, DRCG/KV exhibits higher TTFT on OPT-1.3B, as Qwen2.5-
1.5B employs Grouped-Query Attention [2] to reduce the size of KV
activations. The transmission data size in DRCG/KV is 114 MB/16
MB for OPT-1.3B/Qwen2.5-1.5B when retrieving 2 documents of 64
tokens each. Local document retrieval latency is measured at 52.6
ms, while latency for remote raw-text retrieval ranges from 107.2
ms to 745.2 ms as extra network latency increases from 0 to 300 ms.

7.4 Effectiveness of Scheduling

To thoroughly evaluate the effectiveness of scheduling, we imple-
mented a simulator to run DRAGON repeatedly using different
scheduling strategies under consistent settings. We compare our
scheduling strategy with three baseline methods: (1) Cloud and (2)
Device, where aggregation is statically performed in the cloud and
the device, respectively, and (3) Random, which randomly selects
the side for aggregation. To implement the simulation, we record
and replay the acceptance decisions of the Aggregator, and use
real-world measurements of decoding latency on each side. We
simulate varying network conditions by adding an extra latency
and a sinusoidal jitter to the measured base latency. The period of
the jitter is set to 20;r seconds with its amplitude set to 1/5 of the
corresponding latency, consistent with the settings in § 7.3.

Figure 9 presents the total time required to generate 100 tokens
under varying network conditions, each averaged over 50 different
acceptance decision sequences. The results show that DRAGON’s
scheduling strategy matches or outperforms all baselines across all
settings, with the efficiency gains increasing as the extra latency
grows. Due to the substantial gap in decoding latencies between the
device and the cloud (as shown in Figure 7), performing aggregation
on the device naturally hides cloud-side decoding and transmis-
sion within device-side decoding. When network latency is low,
Cloud and Random tend to incur higher latency while DRAGON
consistently selects the device side for aggregation. As network
latency grows and transmission becomes the bottleneck, DRAGON
dynamically selects the side with higher acceptance rate to mini-
mize transmission resulted from draft rejection. Finally, we argue
that when device-side and cloud-side decoding latencies become
closer in value, the overall generation time will be more sensitive
to the network latency. In that case, our scheduling strategy will
achieve greater improvement compared to these baseline methods.
Case study. To illustrate DRAGON’s detailed scheduling process,
we present a 15-token snapshot of a random simulation with the
extra latency set to 500 ms. Figure 10 shows, from top to bottom,
the cloud-side and device-side generation pipelines, the instanta-
neous RTT, the estimation score AZ as defined in Equation (8), and
the accumulated acceptance rates. The pipeline graph comprises
vertically arranged bars representing decoding and different trans-
mission tasks (including transmission of draft tokens, target tokens
and instruction signals for switching aggregation place).

Initially, the Aggregator resides on the device by default. From
the perspective of the device, ¢}, < céec < cl.. t rtt consistently
holds and AZ is computed as the sum of two terms, A = (1 —
ap) (e, —cfiec) andB = (aﬁ —aj)rtt. After the first aggregation at 0.5
s, the acceptance rates are updated to oc(l) =land qf = 0. Asaresult,
the positive term B dominates and AZ > 0. The Scheduler decides
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Figure 10: A random snapshot of the generation pipeline and
scheduling decisions of DRAGON.

to switch the Aggregator to the cloud, sending the switching signal
along with the target token. It then shifts to the cloud’s perspective
and reverses the sign of AZ. Subsequently, since the accumulated
cloud-side acceptance rate remains lower, the Scheduler continues
to estimating AZ < 0, indicating that cloud-side aggregation is
more efficient. This case shows that DRAGON’s scheduling strategy
dynamically minimizes decoding and transmission costs on the side
with a lower acceptance rate, which is consistent with our analysis
in § 5 and the results shown in Figure 9.

7.5 Overhead Analysis

DRAGON introduces an additional sampling operation at each
decoding step. However, as illustrated by the Sample function in Al-
gorithm 1, the overhead is minimal, involving only two scalar-level
random generations, subtractions, multiplications, and compar-
isons, along with one vector-level subtraction, comparison, and
normalization. Taking Qwen2.5-1.5B (the model used in our evalu-
ation with an output vocabulary size of 151,936) as an example, the
extra computational cost of sampling is less than 3 x 10° multiply-
accumulate operations (MACs), which takes ~1 us and is negligible
compared to the >10° MACs required for decoding a single token.

Regarding communication overhead, our efficient data compres-
sion strategy [22] ensures that transmitting the output distributions
incurs less than 0.5 KB of extra data per token. Under a 100 Mbps
local-area Wi-Fi network, this translates to <40 us of transmission
latency, which is also negligible.

8 Related Works

RAG with Multiple Documents. Existing approaches aggregate
retrieved documents via either output aggregation (effective for
encoder-only and seq2seq models [11, 21] and adapted to decoder-
only LLMs [31]) or context aggregation (prepend the concatenation
of all documents to the input for simplicity [15, 23, 29]). Our frame-
work leverages output aggregation to facilitate the decomposition
of the multi-document RAG workflow across the device and the
cloud, whereas existing works adopt a centralized architecture.

Device-Cloud Collaborative Inference. While prior work [3,
19, 39] established device-cloud collaborative inference for conven-
tional neural networks, recent extensions to LLMs [27, 28] remain
limited in privacy-preserving RAG. Hybrid-RACA [36] retrieves
and compresses cloud documents for on-device SLMs, while [10]
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enhances kNN-LMs [18] using cloud interaction history. Both ap-
proaches prioritize availability over privacy by processing single-
source LLM outputs. In contrast, DRAGON leverages databases
on both the device and cloud sides, enabling model collaboration
without compromising document privacy.

Speculative Decoding. First proposed in [35], this technique em-
ploys a SLM to draft multiple future tokens for parallel verification
by the target LLM. Variants include Speculative Sampling [7, 20] for
diverse sampling strategies, and approaches like Medusa [5] and
Blockwise Decoding [33] that use modified Transformer decoders
for parallel drafting. Other work [37, 38] implements drafting via
early exiting. In contrast to speculative decoding, where a single
drafter fast predicts the output of the target LLM, speculative ag-
gregation in DRAGON verifies the consistency between outputs
generated by two distinct LLMs.

9 Conclusion

To address privacy risks of cloud LLMs and limited capabilities of on-
device SLMs, we propose DRAGON, a distributed RAG framework
that enhances on-device SLMs using both personal and general
knowledge without raw document transmission between the device
and the cloud. DRAGON partitions the RAG workflow across device
and cloud, using Speculative Aggregation to minimize output syn-
chronization overhead. Experimental results show that DRAGON
notably improves generation quality while maintaining low latency.
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