
DRAGON: Enhancing On-Device Model Performance with
Distributed Retrieval-Augmented Generation

Shangyu Liu, Zhenzhe Zheng∗, Xiaoyao Huang†, Fan Wu, Guihai Chen, Jie Wu†★
Shanghai Jiao Tong University, ★Temple University
†Cloud Computing Research Institute, China Telecom

{liushangyu,zhengzhenzhe}@sjtu.edu.cn, huangxy32@chinatelecom.cn,
{fwu, gchen}@cs.sjtu.edu.cn, jiewu@temple.edu

Abstract
Small language models (SLMs) support efficient deployments on
resource-constrained edge devices, but their limited capacity com-
promises inference performance. Retrieval-augmented generation
(RAG) is a promising solution to enhance model performance by in-
tegrating external databases, without requiring intensive on-device
model retraining. However, large-scale public databases and user-
specific private contextual documents are typically located on the
cloud and the device, respectively, while existing RAG implemen-
tations are primarily centralized. To bridge this gap, we propose
DRAGON, a distributed RAG framework to enhance on-device
SLMs through both general and personal knowledge without the
risk of leaking document privacy. Specifically, DRAGON decom-
poses multi-document RAG into multiple parallel token generation
processes performed independently and locally on the cloud and
the device, and employs a newly designed Speculative Aggregation,
a dual-side speculative algorithm to avoid frequent output synchro-
nization between the cloud and device. A new scheduling algorithm
is further introduced to identify the optimal aggregation side based
on real-time network conditions. Evaluations on real-world hard-
ware testbed demonstrate a significant performance improvement
of DRAGON—up to 1.9× greater gains over standalone SLM com-
pared to the centralized RAG, substantial reduction in per-token
latency, and negligible Time to First Token (TTFT) overhead.

CCS Concepts
• Networks→ Network services; • Computing methodologies
→ Distributed computing methodologies.

Keywords
device-cloud collaborative inference, speculative aggregation, large
language model, retrieval-augmented generation
This work was supported in part by National Key R&D Program of China (No.
2023YFB4502400), in part by China NSF grant No. 62322206, 62132018, 62025204,
U2268204, 62272307, 62372296. The opinions, findings, conclusions, and recommenda-
tions expressed in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies or the government.
∗Zhenzhe Zheng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiHoc ’25, October 27–30, 2025, Houston, TX, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1353-8/25/10
https://doi.org/10.1145/3704413.3764419

ACM Reference Format:
Shangyu Liu, Zhenzhe Zheng∗, Xiaoyao Huang†, Fan Wu, Guihai Chen, Jie
Wu†★ . 2025. DRAGON: Enhancing On-Device Model Performance with
Distributed Retrieval-Augmented Generation. In International Symposium
on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks
and Mobile Computing (MobiHoc ’25), October 27–30, 2025, Houston, TX, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3704413.3764419

1 Introduction
Although large language models (LLMs) such as GPT-4 [26] and
DeepSeek-V3 [9] have demonstrated remarkable performance in
real-world applications, their substantial deployment costs have
led to predominant cloud-based hosting. As a result, users are re-
quired to upload private context along with their queries, raising
serious privacy concerns. Recently, small language models (SLMs)
such as Phi-4-mini [1] and Qwen2.5-1.5B [34], have emerged as
promising alternatives, offering efficient local deployment on edge
devices. However, although SLMs are notably smaller than cloud-
hosted LLMs—leading to reduced performance on both personal and
general tasks—they still remain too large for resource-constrained
devices to support on-device fine-tuning or training [16] to adapt
to newly generated data and user feedback.

Retrieval-augmented generation (RAG) [21, 29] has demonstrated
effectiveness in boosting the performance of SLMs by incorporat-
ing contextually relevant documents from external databases. The
performance gain increases monotonically with the scale of the
database, showing an opportunity for SLMs to achieve compara-
ble or even better performance than standalone LLMs [8]. More
importantly, by expanding user-specific external database (also
known as the non-parametric memory [21]), model customiza-
tion and knowledge updates can be achieved efficiently without
model training. Typically, large-scale public databases containing
general knowledge are hosted in the cloud, whereas user-specific
private databases are maintained on-device. Since the query con-
text may involve both general and personal data, it is essential for
retrieval-augmented SLMs to support distributed databases located
in the cloud and device. Unfortunately, most existing RAG solu-
tions [4, 21, 29] adopted a centralized architecture. Figure 1 presents
an example of game recommendation. The cloud-only RAG returns
an incorrect game genre, although private documents indicate a
preference for simulation games, while the device-only RAG fails
to retrieve the best-selling game lists without accessing to general
knowledge in the cloud.

An intuitive solution, similar to federated search [32], is to re-
trieve documents from the cloud-side database, merge them with
those retrieved locally on-device, and perform model inference in

https://doi.org/10.1145/3704413.3764419
https://doi.org/10.1145/3704413.3764419

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu

Distributed
Retrieval

Centralized RAG

++ + ++

Aggregate
Rusty Lake2

simulation1puzzle1
The Sims2

simulation1
Stardew Valley2

long wait

Stardew Valley2
simulation1

Distributed
RAG

Cloud Device

I like games, among which is a hot seller on Steam.① ②

Language models

Cloud-Only Device-Only

Figure 1: Comparison between different RAG architectures.

a centralized manner. However, this approach may incur substan-
tial latency overhead considering key-value (KV) caching [42], a
fundamental mechanism in language model serving that stores
intermediate attention states to enable efficient reuse of past com-
putations. The KVs of documents are typically pre-computed and
persistently stored in the database to facilitate retrieval, introducing
a data volume several orders of magnitude larger than the origi-
nal text. This leads to a dilemma: when retrieving the raw text of
cloud-side documents, the device must compute their KVs from
scratch, incurring significant computation latency; Conversely, di-
rect retrieval of KVs from the cloud storage introduces substantial
transmission latency, as the data volume can be even larger than the
model parameters, especially as the number of document grows.

To address these issues, we propose DRAGON, a distributed
retrieval-augmented generation framework designed to enhance
the performance of on-device language model inference. Following
the law of total probability, DRAGON first decomposes the multi-
document RAG process into a dual-side workflow by the device and
the cloud, respectively, and then aggregates their output tokens
for the final result. In this workflow, the cloud and device sides
independently execute their own model instances using documents
retrieved from their databases. Document KVs are stored and loaded
locally without transmission or re-computation, thereby reducing
first-token latency and preserving document privacy. Nonetheless,
the output aggregation requires frequent exchange of data packets
between the cloud and device at every token generation step, due
to the auto-regressive nature of language models. This transmis-
sion pattern requires a persistent low-latency network connection,
which is difficult to guarantee in real-world scenarios [24].

To solve this challenge, we draw inspiration from the draft-then-
verify paradigm in Speculative Decoding [20] and propose a new
dual-side speculative algorithm, namely Speculative Aggregation. In
this algorithm, the decoding processes on both sides continuously
generates draft tokens, and an Aggregator on either side (depending
on certain scheduling criteria) asynchronously verifies and aggre-
gates them. Decoding is interrupted and the corresponding KV
states are rolled back for re-computation only when a draft is re-
jected. As our theoretical analysis proves the equivalence between
Speculative Aggregation and the vanilla synchronized version, the
end-to-end latency can be reduced by overlapping transmission
and decoding processes.

We implement a fully-functional distributed RAG workflow and
construct a testbed using real-world hardware. Based on this, we

evaluate DRAGON against various RAG architectures using repre-
sentative SLMs on large-scale retrieval corpora and datasets. Experi-
mental results on language modeling shows that DRAGON achieves
up to 1.9× greater performance gains over the standalone SLM than
the centralized method. Moreover, DRAGON achieves significant
reduction in per-token latency compared to synchronized meth-
ods, showing strong robustness under various network conditions.
Extensive simulations further verify that the proposed scheduling
algorithm achieves increasing delay reduction as network latency
grows. We summarize the key contributions of this work as follows:
• We propose DRAGON, the first distributed RAG framework that
supports distributed documents retrieval and collaborative out-
put generation between cloud and device. It significantly en-
hances on-device model performance with the integration of
both personal and general knowledge.
• We introduce Speculative Aggregation, a dual-side speculative
algorithm that decouples synchronized aggregation from sequen-
tial decoding by asynchronously verifying the output alignment
between cloud and device, greatly reducing end-to-end latency.
• We further design an adaptive scheduling algorithm to dynami-
cally identify the optimal aggregation side under varying network
conditions, effectively improving decoding efficiency.
• We implement DRAGON in a real-world hardware testbed and
perform comprehensive evaluations using representative SLMs
and large-scale retrieval corpora, demonstrating significant per-
formance improvements of on-device SLMs with negligible over-
head even under high-latency network conditions.

2 Preliminaries
2.1 Retrieval-Augmented Generation
Retrieval-augmented generation [21] integrates off-the-shelf lan-
guage models with documents retrieved from an external database
to capture long-tail knowledge and keep up-to-date with new infor-
mation. In traditional LM inference, given an input token sequence
𝑥<𝑀 = {𝑥0, . . . , 𝑥𝑀−1} (indices of tokens in vocabulary 𝑉) and the
maximum context length 𝑁 , the output generation process aims to
maximize the probability

∏𝑁−1
𝑡=𝑀 𝑝 (𝑥𝑡 |𝑥<𝑡). In order to incorporate

external documents, we process each document concatenated with
the query separately, and then interpolate the output distributions
(termed as output aggregation [21, 31])1. Following the Law of Total
Probability, we can derive the interpolation as

𝒑(𝑥𝑡 |𝑥<𝑡) =
∑︁

𝑑
𝑝 (𝑑 |𝑥<𝑡) · 𝒑(𝑥𝑡 |𝑑, 𝑥<𝑡), (1)

where 𝑝 (𝑑 |𝑥<𝑡) denotes the weight of the document𝑑 on the output
distribution𝒑(𝑥𝑡 |𝑑, 𝑥<𝑡). Since 𝑝 (𝑑 |𝑥<𝑡) cannot be directly obtained
in practice, we retrieve 𝑑 from a sufficiently large corpus D and
only consider top-𝑘 documents with the highest relevance score
RD (𝑑, 𝑥<𝑡). Equation (1) offers the opportunity to decompose the
multi-document RAG workflow into parallel generation processes,
enabling device-cloud distributed RAG. This decomposition also
significantly alleviates the limitation of maximum context length
on resource-constraint devices.

1The output aggregation is different from context aggregation [29]), where external
documents are concatenated and prepended to the input query 𝑥<𝑡 all at once.

DRAGON: Enhancing On-Device Model Performance with Distributed Retrieval-Augmented Generation MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

2.2 Device-Cloud Distributed RAG
To enhance the performance of on-device language model inference,
we propose a device-cloud distributed RAG framework based on
the above discussed output aggregation paradigm. Given an input
𝑥<𝑡 , we retrieve personalized documents 𝐷device from a device-side
private database and then compute the next-token distributions
𝑷device
𝑡 =

[
𝒑(𝑥𝑡 |𝑑, 𝑥<𝑡)

]⊤
𝑑∈𝐷device using an on-device language model

Mdevice. In parallel, we employ a similar process in the cloud and
obtain the cloud-side next-token distributions 𝑷 cloud

𝑡 . After gath-
ering all documents 𝐷 = 𝐷device ∪ 𝐷cloud and their corresponding
output distributions 𝑷𝑡 =

[
𝑷device
𝑡 , 𝑷 cloud

𝑡

]⊤, we sample the next
token according to

𝑥𝑡 ∼ 𝒑𝑡 = 𝝎⊤𝑡 𝑷𝑡 =
∑︁

𝑑∈𝐷
𝜔𝑡 (𝑑) · 𝒑(𝑥𝑡 |𝑑, 𝑥<𝑡), (2)

where 𝝎𝑡 =
[
𝜔𝑡 (𝑑)

]⊤
𝑑∈𝐷 denotes the interpolation weights, which

are computed based on relevance scores R as

𝜔𝑡 (𝑑) = expR(𝑑, 𝑥<𝑡)/
∑︁

𝑑′∈𝐷
expR(𝑑 ′, 𝑥<𝑡).

We refer to this workflow as the vanilla distributed RAG (VDRAG).
Despite its effectiveness, frequent synchronization over network

between the device and cloud can introduce a substantial latency.
On one hand, the tight data coupling in distributed RAG leads to idle
waiting, especially when decoding latencies significantly differ due
to hardware heterogeneity. During the auto-regressive language
model inference, the output 𝑥𝑡−1 is expected on both sides as the
input for generating 𝑷𝑡 . At each token generation step 𝑡 , computing
Equation (2) requires waiting for output distributions on both sides
(𝑷device
𝑡 and 𝑷 cloud

𝑡). On the other hand, frequent data transmission
makes VDRAG highly sensitive to network latencies. Transmitted
data packets at each step includes a 2-byte integer representing the
token 𝑥𝑡 and a float matrix 𝑷𝑡 encoding the output distributions2.
Due to small data packet size, transmission time is often dominated
by data-independent factors [6, 12], like the connection round-trip
time (RTT). Finally, idle waiting and transmission latency at each
generation step accumulate over a long output sequence, signifi-
cantly amplifying the overall overhead.

2.3 Problem Formulation
We define the language model inference as a distributed process
where the device-side and cloud-side token generation processes,
F device and F cloud, executes alternatively. Without loss of gener-
ality, we assume the final output token sequence is generated on-
device by sampling 𝑥 from the next-token distribution 𝒑𝑡 . Let𝐴𝑡 be
an auxiliary set for transferring information between the device and
the cloud at iteration 𝑡 , which is initially empty. The workflow can
be expressed as 𝐴device

𝑡 ,𝒑𝑡 ← F device (𝐴cloud
𝑡−1 ,Mdevice, 𝐷device, 𝑥<𝑡)

on the device, and then𝐴cloud
𝑡 ← F cloud (𝐴device

𝑡 ,Mcloud, 𝐷cloud, 𝑥<𝑡)
on the cloud, respectively. Finally, the optimization objective is

min
F

1
𝑁

∑︁𝑁

𝑡=1

(
−𝑝 (𝑥∗𝑡 |𝑥<𝑡) log𝒑𝑡 (𝑥∗𝑡 |𝑥<𝑡) + 𝜆𝐶 (𝐴𝑡 , F)

)
, (3)

where 𝑥∗𝑡 represents the optimal token at step 𝑡 and 𝐶 denotes the
end-to-end latency per token resulted from the transmission of 𝐴𝑡

2The float matrix 𝑷𝑡 has a size of |𝑉 |max(|𝐷device |, |𝐷cloud |) , where the vocabulary
size |𝑉 | is typically less than 50,000.

“science” “and” “technology”

“games” “.”

Draft Queues

“I” “love” “computer”

Target Queue

“games”

“science”

“games”

decode()

“.”

Aggregator

+

Scheduler

Decoder

+
❶ ❷

❸

❹❹

Decoder Draft & Target Queues

Transmission Bus

Device

Cloud

Query Target token Acceptance status Draft tokens and output distributions

Figure 2: Overview of the DRAGON framework.

between the device and cloud and the execution of F . The coeffi-
cient 𝜆 controls the trade-off between performance and efficiency.

3 Overview of DRAGON
To enhance on-device language model inference performance while
minimizing the latency overhead, we propose DRAGON, a device-
cloud distributed RAG framework. In this framework, we sam-
ple tokens from distributions aggregated from the device-side and
cloud-side RAG outputs, enabling an integration of personalized
information and generic knowledge. To mitigate the inherent la-
tency caused by frequent device-cloud synchronizations in VRAG,
we perform distribution aggregation and next-token sampling in
a speculative manner, where draft tokens are generated on both
sides and then verified on either side. Accordingly, as shown in Fig-
ure 2, DRAGON consists of three modules deployed on both sides,
including Decoders, Queues, and Schedulers, and an Aggregator
module on either side.

We organize Decoders, Queues and Aggregator by a producer-
consumer paradigm, enabling asynchronous decoding of draft to-
kens. The Decoder serves as a token producer, and on each side
𝑠 ∈ {device, cloud} it decodes draft tokens 𝑥𝑠𝑡 independently based
on locally-aggregated output distributions 𝒑𝑠𝑡 = (𝝎̃𝑠𝑡)⊤𝑷𝑠𝑡 where
𝝎̃𝑡 =

[
𝜔𝑡 (𝑑)

]⊤
𝑑∈𝐷𝑠 , similar to Equation (2) but using the retrieved

local documents 𝐷𝑠 only (1). The draft tokens 𝑥𝑠𝑡 and their corre-
sponding distribution vectors 𝒑𝑠𝑡 are broadcast to the other side. On
each side, we enqueue 𝑥𝑠𝑡 into Draft Queues (2). The Aggregator, as
a consumer, continuously consumes draft tokens from the front of
local queues and performs aggregation process (3). Subsequently,
the aggregation results of the draft token are broadcast to Draft
Queues on both sides. For each queue, the first token is dequeued if
accepted, or the entire queue is cleared if rejected. The final target
token output by Aggregator is enqueued into Target Queue on both
sides (4). Although the dependencies between the aggregator and
decoder cannot be eliminated, the data transmission latency can
be overlapped with the decoding time, mitigating the idle waiting.
To accommodate dynamic computing resources on both sides and
network bandwidth between them, we further design Profilers3
and Schedulers to identify the optimal aggregation side.

3Please refer to our technical report [22] for detailed design of the Profiler.

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu

4 Speculative Aggregation
Inspired by Speculative Decoding [20], we propose Speculative Ag-
gregation to reduce the device-cloud communication latency. Spec-
ulative Decoding adopts a draft-then-verify decoding paradigm to
reduce the number of calls to the resource-intensive LLM. Simi-
larly, Speculative Aggregation utilizes two independent decoding
processes, the device-side and cloud-side Decoders, to draft mul-
tiple candidate future tokens, which are then verified through an
Aggregator. This is equivalent to directly sampling from the dis-
tributions aggregated from the device-side and cloud-side outputs.
As the aggregation involves collecting output distributions over
the network, we expect the speculative algorithm to reduce its
frequency and mitigate data transmission costs. More specifically,
the Aggregator stays in a blocked wait state until both local Draft
Queues are non-empty. Once this condition is met, it retrieves one
token 𝑥device𝑡 /𝑥cloud𝑡 from the front of each queue and fetches cor-
responding locally-aggregated output distributions 𝒑device

𝑡 /𝒑cloud
𝑡

from the cache. The tokens and the distributions are then provided
as inputs to the aggregation.

4.1 Design of Aggregation Strategy
Since the workflows of the device and cloud sides are designed to be
symmetric, we define {𝑙, 𝑟 } = {device, cloud} tomaintain generality
and avoid repetition. From the perspective of the Aggregator, 𝑙 refers
to the local side that performs aggregation, while 𝑟 denotes the
remote side, which only generates draft tokens.
Target distribution. The objective of speculative aggregation is to
generate tokens that are equivalent to those sampled from the target
distribution 𝒑𝑡 = 𝝎⊤𝑡 𝑷𝑡 as defined in Equation (2). We partition 𝑷𝑡
block-wise, grouping its distribution vectors by generation side,
and have 𝒑𝑡 = (𝝎𝑙𝑡)⊤𝑷 𝑙𝑡 + (𝝎𝑟𝑡)⊤𝑷𝑟𝑡 . For each 𝑠 ∈ {𝑙, 𝑟 }, we have
𝝎𝑙𝑡 = 𝜂𝑠𝑡 𝝎̃

𝑙
𝑡 where 𝜂𝑠𝑡 = ℎ𝑠𝑡 /(ℎ𝑙𝑡 + ℎ𝑟𝑡) and ℎ𝑠𝑡 =

∑
𝑑∈𝐷𝑠 expR(𝑑, 𝑥<𝑡).

As a result, given the locally-aggregated output distributions 𝒑𝑙𝑡 and
𝒑𝑟𝑡 , the target distribution 𝒑𝑡 can be obtained by an interpolation:

𝒑𝑡 = 𝜂𝑙𝑡𝒑
𝑙
𝑡 + 𝜂𝑟𝑡𝒑𝑟𝑡 . (4)

To align with this computation process, on each side 𝑠 ∈ {𝑙, 𝑟 }, a
corrected value4 of ℎ𝑠𝑡 is computed and retained during decoding
𝑥𝑠𝑡 , and then broadcast and stored along with draft tokens and the
locally-aggregated distributions.
Aggregation strategy. To sample 𝑥𝑡 ∼ 𝒑𝑡 , we instead perform two
independent speculative sampling processes as follows:
• Keep the draft token 𝑥𝑙𝑡 as 𝑥𝑙𝑡 if 𝒑𝑙𝑡 (𝑥𝑙𝑡) ≤ 𝒑𝑟𝑡 (𝑥𝑙𝑡), and in case
𝒑𝑙𝑡 (𝑥𝑙𝑡) > 𝒑𝑟𝑡 (𝑥𝑙𝑡) we reject the sample with probability 𝜂𝑟𝑡 (1 −
𝒑𝑟𝑡 (𝑥𝑙𝑡) / 𝒑𝑙𝑡 (𝑥𝑙𝑡)) and re-sample 𝑥𝑙𝑡 from an adjusted distribution
𝒑̃𝑙𝑡 = norm(max(0,𝒑𝑟𝑡 − 𝒑𝑙𝑡)).
• Keep the draft token 𝑥𝑟𝑡 as 𝑥𝑟𝑡 if 𝒑𝑟𝑡 (𝑥𝑟𝑡) ≤ 𝒑𝑙𝑡 (𝑥𝑟𝑡), and in case
𝒑𝑟𝑡 (𝑥𝑟𝑡) > 𝒑𝑙𝑡 (𝑥𝑟𝑡) we reject the sample with probability 𝜂𝑙𝑡 (1 −
𝒑𝑙𝑡 (𝑥𝑟𝑡) / 𝒑𝑟𝑡 (𝑥𝑟𝑡)) and re-sample 𝑥𝑟𝑡 from an adjusted distribution
𝒑̃𝑟𝑡 = norm(max(0,𝒑𝑙𝑡 − 𝒑𝑟𝑡)).

Next, we select either 𝑥𝑙𝑡 or 𝑥𝑟𝑡 as 𝑥𝑡 with uniform probability. Finally,
each draft token 𝑥𝑙𝑡 and 𝑥𝑟𝑡 is accepted if it matches the target token

4We adopt the log-sum-exp trick to maintain numerical stability. Details are included
in our technical report [22].

Algorithm 1: SpeculativeAggregation
Input: Draft tokens 𝑥𝑠𝑡 , locally-aggregated distributions 𝒑𝑠𝑡 ,

and aggregation weights ℎ𝑠𝑡 , for 𝑠 ∈ {𝑙, 𝑟 }
Output: Target token 𝑥𝑡 , acceptance status S𝑙 and S𝑟

Function Sample(𝑥 , 𝒑𝑎 , 𝒑𝑏 , 𝜂):
𝑥 ← 𝑥 , 𝜎𝑎 ∼ 𝑈 (0, 1);
if 𝒑𝑎 (𝑥) > 𝒑𝑏 (𝑥), 𝜎𝑎 < 𝜂 (1 − 𝒑𝑏 (𝑥) / 𝒑𝑎 (𝑥)) then

𝑥 ∼ norm(max(0,𝒑𝑏 − 𝒑𝑎));
return 𝑥 ;

𝜂𝑙𝑡 ← ℎ𝑙𝑡/(ℎ𝑙𝑡 + ℎ𝑟𝑡), 𝜂𝑟𝑡 ← 1 − 𝜂𝑙𝑡 ;
𝑥𝑙𝑡 ← Sample(𝑥𝑙𝑡 ,𝒑𝑙𝑡 ,𝒑𝑟𝑡 , 𝜂𝑟𝑡), 𝑥𝑟𝑡 ← Sample(𝑥𝑟𝑡 ,𝒑𝑟𝑡 ,𝒑𝑙𝑡 , 𝜂𝑙𝑡);
𝜎 ∼ 𝑈 (0, 1), 𝑥𝑡 ← 𝑥𝑙𝑡 · 1𝜎≤0.5 + 𝑥𝑟𝑡 · 1𝜎>0.5;
S𝑙 ← 𝑥𝑙𝑡 = 𝑥𝑡 , S𝑟 ← 𝑥𝑟𝑡 = 𝑥𝑡 ;
return 𝑥𝑡 , S𝑙 , S𝑟 ;

𝑥𝑡 ; otherwise, it is rejected. The aggregation strategy at each step 𝑡
is summarized in Algorithm 1.

Theorem 1. During each generation step 𝑡 , the target token 𝑥𝑡
produced by the speculative aggregation strategy follows a distribution
identical to that output by VDRAG.

Proof . Since the output distribution 𝒑𝑡 in Equation (4) is mathemat-
ically equivalent to that of VDRAG in Equation (2) through proper
matrix partitioning, the theorem can be reformulated as follows: For
any pair of locally-aggregated distributions 𝒑𝑙𝑡 and 𝒑𝑟𝑡 , the target
token 𝑥𝑡 is sampled from the convex combination 𝒑𝑡 = 𝜂𝑙𝑡𝒑

𝑙
𝑡 +𝜂𝑟𝑡𝒑𝑟𝑡 .

Notice that for 𝑠 ∈ {𝑙, 𝑟 }, the mixture coefficients 𝜂𝑠𝑡 are computed
as 𝜂𝑠𝑡 = ℎ𝑠𝑡 /(ℎ𝑙𝑡 + ℎ𝑟𝑡) (see § 4.1 Target distribution), which naturally
satisfies the condition 𝜂𝑙𝑡 + 𝜂𝑟𝑡 = 1.

First, we show that the intermediate outputs 𝑥𝑙𝑡 and 𝑥𝑟𝑡 from the
two independent speculative sampling processes are indeed drawn
from 𝒑𝑡 . For side 𝑙 , the probability to reject a draft token is

𝑃 (𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑) = 𝐸
𝑥∼𝒑𝑙𝑡 (𝑥)

(1 −min(1, 𝜂𝑙𝑡 + 𝜂𝑟𝑡𝒑𝑟𝑡 (𝑥)/𝒑𝑙𝑡 (𝑥)))

= 𝜂𝑟𝑡

∑︁
(𝒑𝑙𝑡 (𝑥) −min(𝒑𝑙𝑡 (𝑥),𝒑𝑟𝑡 (𝑥))).

The adjusted distribution, from which we sample after the draft
token is rejected, can be expressed as

𝒑̃𝑙𝑡 (𝑥) =
𝒑𝑟𝑡 (𝑥) −min(𝒑𝑙𝑡 (𝑥),𝒑𝑟𝑡 (𝑥))∑

𝑥 ′ (𝒑𝑟𝑡 (𝑥 ′) −min(𝒑𝑙𝑡 (𝑥 ′),𝒑𝑟𝑡 (𝑥 ′)))
.

𝑃 (𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑, 𝑥 = 𝑥𝑙𝑡), the probability that 𝑥𝑙𝑡 is re-sampled after re-
jecting 𝑥𝑙𝑡 , is

𝑃 (𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑)𝒑̃𝑙𝑡 (𝑥𝑙𝑡) = 𝜂𝑟𝑡 (𝒑𝑟𝑡 (𝑥𝑙𝑡) −min(𝒑𝑙𝑡 (𝑥𝑙𝑡),𝒑𝑟𝑡 (𝑥𝑙𝑡))).

Consequently, the sampled token 𝑥𝑙𝑡 is drawn from the distribution

𝑃 (𝑥 = 𝑥𝑙𝑡) = 𝑃 (𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑, 𝑥 = 𝑥𝑙𝑡) + 𝑃 (𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑, 𝑥 = 𝑥𝑙𝑡)

= 𝒑𝑙𝑡 (𝑥𝑙𝑡)min(1, 𝜂𝑙𝑡 + 𝜂𝑟𝑡𝒑𝑟𝑡 (𝑥𝑙𝑡) / 𝒑𝑙𝑡 (𝑥𝑙𝑡)) + 𝜂𝑟𝑡 (𝒑𝑟𝑡 (𝑥𝑙𝑡)

−min(𝒑𝑙𝑡 (𝑥𝑙𝑡),𝒑𝑟𝑡 (𝑥𝑙𝑡))) = 𝜂𝑙𝑡𝒑
𝑙
𝑡 (𝑥𝑙𝑡) + 𝜂𝑟𝑡𝒑𝑟𝑡 (𝑥𝑙𝑡) = 𝒑𝑡 (𝑥𝑙𝑡).

As a result, 𝑥𝑙𝑡 is distributed identically to tokens sampled from 𝒑𝑡 .
Since the correctness proof for the other side 𝑟 is symmetric, we can
conclude straightforwardly that 𝑥𝑟𝑡 ∼ 𝒑𝑡 . Finally, the aggregation
strategy randomly select either 𝑥𝑙𝑡 or 𝑥𝑟𝑡 as the target token 𝑥𝑡 , with
a uniform probability. Obviously, 𝑥𝑡 ∼ 0.5𝒑𝑡 + 0.5𝒑𝑡 = 𝒑𝑡 . □

DRAGON: Enhancing On-Device Model Performance with Distributed Retrieval-Augmented Generation MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

To conclude, Speculative Aggregation fundamentally reorders
the processing pipeline of VDRAG from aggregate-then-sample to
sample-then-aggregate. It first samples from local distributions 𝒑𝑙𝑡
and 𝒑𝑟𝑡 and then aggregates the outputs via a conditional sampling
from adjusted distributions followed by the final resampling. This
sampling-based aggregation is theoretically necessary to ensure
the generated token 𝑥𝑡 properly follows the target distribution 𝒑𝑡 .
In contrast, naive binary selection between 𝑥𝑙𝑡 and 𝑥𝑟𝑡 fails to pre-
serve this property. A canonical counterexample occurs in greedy
sampling when argmax𝒑𝑡 ∉ {argmax𝒑𝑙𝑡 , argmax𝒑𝑟𝑡 }.
Multi-step aggregation. We now present a general procedure for
sampling multiple consecutive tokens. At each step 𝑡 , the following
workflow is executed:
1) The Aggregator waits until both Draft Queues are non-empty,

then dequeues 𝑥𝑠𝑡 from the local ones and retrieves auxiliary
variables 𝒑𝑠𝑡 and ℎ𝑠𝑡 from the local cache, for each 𝑠 ∈ {𝑙, 𝑟 }.

2) The Aggregator performs aggregation as defined in Algorithm 1.
The outputs, including the target token 𝑥𝑡 and the acceptance
status of each draft token, are broadcast to notify both sides.

3) Upon receiving the message, each side checks the acceptance
status of both 𝑥𝑙𝑡 and 𝑥𝑟𝑡 . If a token is accepted, it is dequeued
from the corresponding Draft Queue and step 5) is executed;
otherwise, step 4) is executed.

4) If 𝑥𝑠𝑡 is rejected, its corresponding Draft Queues on both sides are
cleared and the side 𝑠 rolls back its KV cache and re-computes
the next draft token 𝑥𝑠𝑡+1 using the target token 𝑥𝑡 as input.

5) Update step 𝑡 ← 𝑡 + 1, and go back to step 1).

4.2 Analysis of Acceptance Rate
We now analyze the factors that influence the acceptance rate of
draft tokens on both the device and the cloud sides.

Definition 1. For 𝑠 ∈ {𝑙, 𝑟 }, the acceptance rate 𝛽𝑠𝑡 , is the probability
of accepting 𝑥𝑠𝑡 ∼ 𝒑𝑠𝑡 =

∑
𝑑∈𝐷𝑠 𝜔𝑡 (𝑑)𝒑(𝑥𝑡 |𝑑, 𝑥<𝑡) by the aggregation

strategy, given a prefix 𝑥<𝑡 .

First, we consider 𝑙-side as an example. The acceptance of the draft
token 𝑥𝑙𝑡 , sampled from 𝒑𝑙𝑡 by the Decoder, can be classified into two
cases: 1) it is accepted during the speculative sampling of 𝑥𝑙𝑡 and 2)
the draft token 𝑥𝑟𝑡 = 𝑥𝑙𝑡 is accepted or 𝑥𝑟𝑡 = 𝑥𝑙𝑡 is sampled from 𝒑̃𝑟𝑡
during the speculative sampling of 𝑥𝑟𝑡 . Let 𝛾𝑙 and 𝛾𝑟 = 1−𝛾𝑙 denote
weights assigned to 𝑥𝑙𝑡 and 𝑥𝑟𝑡 in the random selection following
these sampling processes. We adopt the definition of divergence
from [20], given by 𝛿 = 𝐷𝐿𝐾 (𝒑𝑙𝑡 ,𝒑𝑟𝑡) = 1 −∑𝑥 min(𝒑𝑙𝑡 (𝑥),𝒑𝑟𝑡 (𝑥)).
The expected acceptance rate 𝛼𝑙𝑡 = E

𝑥∼𝒑𝑙𝑡 (𝑥)
(𝛽𝑙𝑡) is computed as

𝛼𝑙𝑡 = 𝛾𝑙 (1 − 𝜂𝑟𝑡 𝛿) + 𝛾𝑟
∑︁

𝑥
𝒑𝑙𝑡 (𝑥)𝒑𝑡 (𝑥), (5)

where the two terms represent the acceptance probability of the two
cases above, respectively. These terms are mutually exclusive and
their contributions are weighted by the mixture weights 𝛾𝑙 and 𝛾𝑟
(both empirically set to 0.5 in our implementation for simplicity5).

Theorem 2. The expected acceptance rate is influenced by the degree
of overlap between the draft distributions on the two sides.6

5Please refer to our technical report [22] for design details on random selection weight.
6For a detailed analysis of how draft distribution overlap affects acceptance rates,
please refer to our technical report [22].

𝑥𝑙𝑡−1 𝑥𝑟𝑡−1 Waiting Time for 𝑥𝑙𝑡 and 𝑥𝑟𝑡

rejected accepted max(𝑐𝑙dec, 𝜑 (𝑐
𝑟
dec + 𝑐

𝑟
trans))

accepted rejected max(𝜑 (𝑐𝑙dec), 𝑐
𝑙
trans + 𝑐𝑟dec + 𝑐

𝑟
trans)

accepted accepted max(𝜑 (𝑐𝑙dec), 𝜑 (𝑐
𝑟
dec + 𝑐

𝑟
trans))

rejected rejected max(𝑐𝑙dec, 𝑐
𝑙
trans + 𝑐𝑟trans + 𝑐𝑟dec)

Table 1: Waiting time for the next pair of draft tokens 𝑥𝑙𝑡 and
𝑥𝑟𝑡 under different acceptance scenarios of the previous draft
tokens 𝑥𝑙𝑡−1 and 𝑥𝑟𝑡−1.
This characteristic provides insight into the principle behind Spec-
ulative Aggregation: we assume that the device-side and cloud-side
RAG workflows generate similar results by default, allowing them
to asynchronously decode the next tokens without aggregation.
Only when they disagree with each other, the acceptance is ad-
justed by their aggregation weights 𝜂𝑙𝑡 and 𝜂𝑟𝑡 .

5 Greedy Scheduling
To further minimize the latency𝐶 (𝐴𝑡 , F) in Equation (3), We adap-
tively schedule which side performs the next aggregation after the
current one is completed. The principle behind this is to maximize
the overlap between the device-side and cloud-side decoding and
transmission processes, jointly considering dynamic computing re-
sources, network bandwidth, and acceptance of draft tokens. Since
predicting future acceptance is challenging due to dynamic docu-
ment relevance and model outputs, we employ a greedy strategy,
where at each step, we minimize the expected latency per token
based on current observations.

The latency per token, denoted as 𝑍𝑡 , is computed as the average
duration between two consecutive aggregations. It can be viewed
as the waiting time for the next pair of draft tokens, 𝑥device𝑡 and
𝑥cloud𝑡 , including both decoding and transmission delays, as the ag-
gregation duration is negligible. For each side 𝑠 ∈ {device, cloud},
let 𝑐𝑠dec denote the decoding delay of a draft token 𝑥𝑠𝑡 , and 𝑐𝑠trans de-
note the transmission delay of this token and its auxiliary variables
from 𝑠 to the other side. Since the decoding and transmission pro-
cesses are asynchronous, they may still be ongoing when the sched-
uling algorithm is executed. Therefore, we define 𝜑 (𝑇total (𝑢)) =
max(0,𝑇total (𝑢) +𝑇begin (𝑢) −𝑇now) as a function that estimates the
remaining time of the total duration 𝑇total to complete the process
𝑢, where 𝑇begin and 𝑇now are the beginning and current timestamps,
respectively. Let 𝑙 be the side that currently performs aggregation
and 𝑟 be the other one. The best side is then selected as

𝑠∗ = argmin𝑠∈{𝑙,𝑟 } 𝑍𝑠𝑡 (𝜑, 𝑐𝑙𝑑𝑒𝑐 , 𝑐
𝑙
𝑡𝑟𝑎𝑛𝑠 , 𝑐

𝑟
𝑑𝑒𝑐

, 𝑐𝑟𝑡𝑟𝑎𝑛𝑠), (6)

where 𝑍𝑠𝑡 denotes the latency per token when 𝑠 continuously per-
forms the aggregations in the future.

Next, we present the calculation of 𝑍𝑠𝑡 . Table 1 illustrates the
waiting time for the next pair of draft tokens after a previous aggre-
gation. To estimate an averaged𝑍𝑠𝑡 over multiple future steps, rather
than enumerating all possible combinations of acceptance scenar-
ios, we assume each acceptance scenario repeats continuously7 and
occurs with an expected probability given by the acceptance rate.
Therefore, the waiting time in Table 1 can be simplified to eliminate
the function 𝜑 . First, assuming that draft tokens from 𝑟 are always
accepted, the decoding process for consecutive draft tokens will be
7Please refer to our technical report [22] for pipeline illustrations of different cases.

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu

cr
dec − (c l

trans + cr
trans) cr

dec cr
dec + (c l

trans + cr
trans)

Local Decoding Latency per Token

0

La
te

nc
y

D
iff

er
en

ce

l-side is better

r-side is better

slope = 1 − α l
t

slope = 1 − αr
t

α l
t = 0.5, αr

t = 0.8 α l
t = 0.8, αr

t = 0.5 α l
t = 0.5, αr

t = 0.5

Figure 3: Difference in per-token latencies when side 𝑙 and 𝑟

performs aggregation, versus varying 𝑙-side decoding latency.

continuous on 𝑟 . In other words, the decoding of 𝑥𝑟𝑡 begins exactly
when 𝑥𝑟𝑡−1 is decoded and ready for transmission. Therefore, we
have 𝜑 (𝑐𝑟dec+𝑐

𝑟
trans) = (𝑇begin+𝑐𝑟trans−𝑇now) +𝑐𝑟dec = 𝑐𝑟dec. Moreover,

since the aggregation process can exhaustively consume the token
pairs in the Draft Queues, 𝜑 (𝑐𝑙dec) < 𝑐𝑙dec holds only when the wait-
ing time for 𝑥𝑟𝑡 dominates. Hence, max(𝜑 (𝑐𝑙dec), ·) = max(𝑐𝑙dec, ·).
Finally, 𝑍 𝑙𝑡 is calculated as

𝛼𝑟𝑡 max(𝑐𝑙dec, 𝑐
𝑟
dec) + (1 − 𝛼

𝑟
𝑡)max(𝑐𝑙dec, 𝑐

𝑟
dec + 𝑐

𝑙
trans + 𝑐𝑙trans) . (7)

Symmetrically, 𝑍 𝑟𝑡 is computed by exchanging 𝑙 and 𝑟 in Equa-
tion (7). Based on this, we can conclude that when the local decod-
ing latency 𝑐𝑙dec cannot cover the waiting time for draft tokens from
the other side, i.e., 𝑐𝑙dec < 𝑐𝑟dec+𝑐

𝑙
trans+𝑐𝑙trans, minimizing the overall

latency 𝑍 𝑙𝑡 requires maximizing the acceptance rate 𝛼𝑟𝑡 .
To decide the optimal side in Equation (6), we calculate the differ-

ence in latencies per token when side 𝑙 and 𝑟 performs aggregation.
The result is presented as a piecewise function,

Δ𝑍𝑡 =


(1 − 𝛼𝑟𝑡)rtt, 𝑐𝑙dec ≤ 𝑐

𝑟
dec − rtt

(1 − 𝛼𝑙𝑡) 𝑗 + (𝛼𝑙𝑡 − 𝛼𝑟𝑡)rtt, 𝑐𝑟dec − rtt < 𝑐𝑙dec ≤ 𝑐
𝑟
dec

(1 − 𝛼𝑟𝑡) 𝑗 + (𝛼𝑙𝑡 − 𝛼𝑟𝑡)rtt, 𝑐𝑟dec < 𝑐
𝑙
dec ≤ 𝑐

𝑟
dec + rtt

(𝑎𝑙𝑡 − 1)rtt, 𝑐𝑟dec + rtt < 𝑐
𝑙
dec

, (8)

where rtt = 𝑐𝑙trans+𝑐𝑟trans, and 𝑗 is the difference in decoding latencies,
𝑐𝑟dec − 𝑐𝑙dec. Accordingly, we select side 𝑟 for aggregation when
Δ𝑍𝑡 > 0, and side 𝑙 otherwise. Figure 3 shows the influence of
varying acceptance rates on Δ𝑍𝑡 . As the acceptance rate of draft
tokens from one side increases, the Scheduler tends to favor the
opposite side. Moreover, the relationship between 𝑐𝑙dec and 𝑐

𝑟
dec also

influences the strategy. For instance, when the decoding process
on one side becomes the latency bottleneck, aggregation is always
performed on that side, which is demonstrated by (1 − 𝛼𝑟𝑡)rtt ≥ 0
and (𝛼𝑙𝑡 − 1)rtt ≤ 0. Clearly, our strategy minimizes the likelihood
of repeated bottleneck decoding due to rejection, while maximizing
the overlap between the decoding and transmission processes.

6 Theoretical Analysis
In this section, we present a theoretical analysis to demonstrate
the improvement in wall-time efficiency achieved by DRAGON
over VDRAG described in § 2.2. To facilitate analysis, we assume
the aggregation is always performed on the device in following
discussions and 𝑙 = device and 𝑟 = cloud.

First, we illustrate two boundary conditions of DRAGON using
pipeline graphs: 1) the optimal case where all draft tokens from
both device and cloud sides are accepted (Figure 4a), and 2) the
worst case where all draft tokens are rejected (Figure 4b). For our
case study, device and cloud decoding latencies are 2 s and 1 s,

Dec 1
 2
 3
 4
 5
 6

R
em

ot
e

To
ke

ns

Trans
Dec

Dec
Trans

Dec
Trans

Dec
Trans

Dec
Trans

Trans

Dec

0 1 2 3 4 5 6 7 8
Time (s)

 1
 2
 3
 4
 5
 6

Lo
ca

l T
ok

en
s

Aggr.1Aggr.2 Aggr.3

Dec
Trans

Trans
Dec

Dec
Trans

(a) Accept

Dec 1
 2
 3
 4
 5
 6

R
em

ot
e

To
ke

ns

Dec
Trans

Trans
Dec

Dec
Trans

Trans

Dec Trans
Dec

Dec
Trans

Dec

0 1 2 3 4 5 6 7 8
Time (s)

 1
 2
 3
 4
 5
 6

Lo
ca

l T
ok

en
s

Aggr.1 Aggr.2

Trans
Dec Dec

Trans

Dec
Trans

(b) Reject
Figure 4: Decoding pipelines when the Aggregator continu-
ously accepts/rejects both 𝑥𝑙 and 𝑥𝑟 .

10 30 50 70 90
Decoding Latency c l

dec (ms)
1.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

αr
t = 0.50

10 30 50 70 90
Decoding Latency c l

dec (ms)

5
10
15
20
25

1

αr
t = 0.99

cr
dec=10 ms, rtt=100 ms

cr
dec=10 ms, rtt=300 ms

cr
dec=30 ms, rtt=100 ms

cr
dec=30 ms, rtt=300 ms

Figure 5: Theoretical speedup of DRAGON compared to the
vanilla distributed RAG vs. varying 𝑐𝑙dec, 𝑐

𝑟
dec, rtt and 𝛼𝑟𝑡 .

respectively, with asymmetric network delays of 1.5 s (device-to-
cloud) and 1.8 s (cloud-to-device). We assume the two sides start
decoding at the same time. In the optimal case, when the device
and cloud exchange their initial draft tokens at 2.8 s and 3.5 s,
respectively, mutual acceptance occurs. This successful speculation
enables uninterrupted continuous decoding of subsequent tokens,
ultimately achieving a stable end-to-end per-token decoding latency
of 2 s after two synchronization rounds. In the worst case, the
device receives the cloud’s first draft token at 2.8 s, triggering
immediate aggregation with its local draft token followed by target
token sampling. Since both draft tokens are rejected, the system
must abort the ongoing second-token decoding and roll back to
recompute the second token using the initial target token. The cloud
subsequently encounters an identical failure mode at 4.3 s. These
cascading speculation failures ultimately produce a substantially
degraded per-token latency of 4.3 s.

As established in § 4.1, VDRAG yields identical output distri-
butions to DRAGON. It decodes the next token only when the
device-side and cloud-side draft token pair becomes available, in-
herently matching the latency profile of DRAGON’s worst-case
scenario8, where continuous decoding with full rollback occurs.
The pipeline diagrams demonstrate that in the optimal case, contin-
uous daft decoding effectively hides transmission latency through
perfect speculation and enables significantly lower end-to-end per-
token latency. This reveals DRAGON’s fundamental advantages
over VDRAG in terms of potential latency reduction.

Building upon these observations, we now present a formal
theoretical analysis to quantify this performance improvement.

Definition 2. Let 𝑍𝑡 and 𝑍𝑡 be the expected per-token latencies at
step 𝑡 when using DRAGON and the vanilla distributed RAG, respec-
tively. Define the speedup as 𝑆𝑡 = 𝑍𝑡/𝑍𝑡 .

8DRAGON yields negligible transmission overhead compared to VDRAG. (See § 7.3)

DRAGON: Enhancing On-Device Model Performance with Distributed Retrieval-Augmented Generation MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

Theorem 3. Let 𝑙 = device and 𝑟 = cloud denote the local and remote
computing nodes, respectively. The speedup factor can be formally
expressed as a piecewise function of the decoding latencies (𝑐𝑙dec, 𝑐

𝑟
dec)

and the round-trip communication delay rtt, as follows:

1
𝑆𝑡

=


1 − 𝛼𝑟

𝑡
1+𝑐𝑟dec/rtt

, 𝑐𝑙dec ≤ 𝑐
𝑟
dec,

1 − (1 −
𝑐𝑙dec

𝑐𝑟
𝑑𝑒𝑐
+rtt)𝛼

𝑟
𝑡 , 𝑐𝑟dec < 𝑐

𝑙
dec ≤ 𝑐

𝑟
dec + rtt,

1, 𝑐𝑟dec + rtt < 𝑐
𝑙
dec

(9)

Proof. 𝑍𝑡 is computed according to Equation (7). By substituting
𝛼𝑙𝑡 = 𝛼𝑟𝑡 = 0 and we obtain 𝑍𝑡 = max(𝑐𝑙dec, 𝑐

𝑟
dec + rtt). The result

then follows from a simple case-by-case analysis. □
Figure 5 illustrates the theoretical speedup characterized in The-

orem 3. The speedup achieves its maximum when the device-side
decoding latency is minimal and maintains saturated until it sur-
passes that of the cloud. Thereafter, the speedup decreases inversely
with 𝑐𝑙dec, gradually approaching 1 and eventually stabilizing at 1
once 𝑐𝑙dec exceeds 𝑐

𝑟
dec + rtt. Finally, we have following corollaries:

Corollary 1. DRAGON is particularly effective when the decod-
ing latency gap between the device and the cloud is small and the
transmission cost becomes the primary bottleneck.

This characteristic extends DRAGON’s applicability to distributed
computing paradigms with balanced computational capabilities
across nodes, while making it particularly suitable when network
communication becomes the dominant performance constraint
requiring optimization.

Corollary 2. DRAGON’s improvement in wall time can be substan-
tially amplified when the cloud-side acceptance rate is high.

DRAGON introduces speculative execution by sampling draft to-
kens directly from locally-aggregated output distributions, rather
than waiting for device-cloud aggregated target tokens. This en-
ables uninterrupted auto-regressive decoding by immediately using
the sampled draft token as input for subsequent generation. The
draft sampling introduces negligible computation and communica-
tion overhead, enabling DRAGON to maintain strict latency parity
with VDRAG in the worst case. In typical cases where draft tokens
are accepted, DRAGON achieves significantly lower end-to-end
latency, which has been verified in our experiments in § 7.3. More-
over, prior work [41] shows that most attention focuses on a critical
token subset whose modification substantially alters outputs. We
observe draft discrepancies mainly arise from this subset, while
context-independent tokens (stop words, punctuation, common
terms) achieve high acceptance rates due to their shared nature.

7 Experiments
7.1 Implementation
We implemented DRAGON for distributed RAG workflow compris-
ing ~3,000 lines of Python code.9 The System consists of two sym-
metric processes, the device-side and cloud-side ones, each utilizing
eight threads for core functionalities (e.g., decoding, aggregation
and transmission) along with a memory-resident service process for
document retrieval. We implemented information synchronization
9Our code is available at GitHub [22]. Please refer to our technical report for more
implementation details.

between threads using multi-producer, multi-consumer queues, and
between processes using socket-based communication.

7.2 Experiment Setups
Testbed.We evaluated our framework and baseline methods using
a high-performance computer as the cloud server and a MacBook
Pro as the edge device. The server is equipped with an Intel Xeon
Silver 4210R CPU, 64GB of memory, and a GeForce RTX 3090 GPU,
while the MacBook Pro features an Intel Core i7 CPU, 16GB of
memory, and no dedicated GPU. The cloud and the device are
connected via a 2.4 GHz Wi-Fi local-area network, with latency
and jitter measured by sockperf as 2ms and 6ms, respectively. To
simulate network jitter, we replay a predefined random latency
trace by adjusting the network interface controller (NIC) latency
using the traffic control tool, tc.
Datasets andmetrics.We evaluated the long-sequence generation
performance of DRAGON on the large-scale language modeling
dataset WikiText [25], which comprises over 100 million tokens ex-
tracted from verified Good and Featured articles on Wikipedia. We
constructed retrieval corpora from the training sets of two different-
scale versions, WikiText2 and WikiText103. During evaluation, we
applied rolling windows of 1024 and 512 tokens, respectively, over
their test sets, using the first 1/8 of each window as the query for
retrieval and the remaining tokens for perplexity evaluation. To
further assess the efficiency of our method, we measure the time
to first token (TTFT) and per-token latency. In this measurement,
we used the retrieval corpus and index pre-built by Facebook from
a Wikipedia dump dated December 20, 2018, which contains 21
million documents.
Models and baselines. We used OPT-1.3B [40] and Qwen2.5-
1.5B [34], with vocabulary sizes of 151,936 and 50,272, respectively.
For language modeling and latency measurement, we adopted Con-
triever [14] and DPR [17] as the retrievers, respectively. Addition-
ally, we employed ms-marco-MiniLM-L6-v2 [30] for document re-
ranking. We compare DRAGON with four baseline methods:
• CRCG, centralized generation augmented with centralized re-
trieval from local corpus, using the context-aggregation strategy,
which represents most existing RAG methods [15, 23, 29].
• DRCG, on-device generation augmented with documents re-
trieved from a distributed corpus spanning both the device and
the cloud, using the context-aggregation strategy.
• DRDG/TW, distributed RAG using the output aggregation strat-
egy and token-wise synchronization, namely VDRAG, as dis-
cussed in § 2.2. The target tokens are collected and aggregated
on the device side.
• DRDG/SW, distributed RAG using the output aggregation strat-
egy and sequence-wise synchronization, i.e., one-time aggrega-
tion of the independently generated output sequences from the
device and the cloud. This baseline is implemented by extend-
ing the official REPLUG [31] implementation and Facebook’s
RAG-Sequence model [21] with distributed support.

To simulate insufficient but complementary corpus in the cloud and
device sides, we constrain the on-cloud and on-device retrieval by
selecting the first and second halves of the top-k documents from
the same corpus, respectively. Moreover, to study the overhead of
DRCG, we evaluate two variants: DRCG/Text retrieves raw text and

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu

0 2 4 6 8 10 12 14 16
Number of Retrieved Documents

10.2

10.4

10.6

10.8

Pe
rp

le
xi

ty

0 2 4 6 8 10 12 14 16
Number of Retrieved Documents

14.2

14.4

14.6

14.8

15.0

Pe
rp

le
xi

ty

w/o Retrieval CRCG/Cloud CRCG/Device DRCG DRAGON

(a) Qwen2.5-1.5B/WikiText2. (b) OPT-1.3B/WikiText103.
Figure 6: Performance on WikiText.

0 50 100 150 200 250 300
Extra Network Latency (ms)

0

100

200

300

400

500

La
te

nc
y

pe
r T

ok
en

 (m
s)

0 50 100 150 200 250 300
Extra Network Latency (ms)

0
50

100
150
200
250
300

La
te

nc
y

pe
r T

ok
en

 (m
s)

CRCG/Device CRCG/Cloud DRDG/SW DRDG/TW DRAGON

(a) Qwen2.5-1.5B. (b) OPT-1.3B.
Figure 7: Per-token latency in various network conditions.

prefill KV cache from scratch and DRCG/KV retrieves and reuses
the KV cache of documents directly.

7.3 Overall Performance and Efficiency
We first present the overall performance and efficiency of DRAGON
in comparison to the baselines. In the following experiments, we
set the maximum context length to 256 tokens on both the device
and cloud sides, with each retrieved document limited to 64 tokens.
Performance.We linearly increase the number of retrieved doc-
uments on both sides from 0 to 16 and report the corresponding
language modeling perplexity on WikiText. As shown in Figure 6,
DRAGON matches or outperforms all baseline methods across
all settings. As more documents are integrated, the performance
gap between DRAGON and the baseline methods widens. Finally,
DRAGON achieves 1.9× and 1.4× improvements over the non-RAG
method, compared to the second-best RAG baselines, for Qwen and
OPT, respectively. In contrast, CRCG methods perform poorly due
to an insufficient number of retrieved documents, which indicates
incomplete knowledge for the given context. Additionally, the per-
formance of DRCG quickly saturates once the amount of retrieved
text reaches the context budget limit. However, we observe a gap
between DRCG and our method prior to the saturation, suggesting
that output aggregation may inherently outperform context aggre-
gation. The results of DRDG methods are omitted, as they produce
identical outputs to DRAGON under the language modeling setting.
Efficiency.We inject additional latency to the server’s NIC, ranging
from 0 to 300ms, alongwith a jitter equal to 1/5 of the corresponding
latency value. We sample prompts from 10k_prompts_ranked [13],
a collection of synthetic and human-generated prompts with asso-
ciated ranking, and report the average end-to-end decoding latency
over 20 output tokens10. Figure 7 presents the per-token latency

10Despite averaging, the results still exhibits fluctuations due to varying CPU load and
network jitter, but do not affect the overall conclusion.

0 50 100 150 200 250 300
Extra Network Latency (ms)

0

4

8

12

Ti
m

e
to

 F
irs

t T
ok

en
 (s

)

0 50 100 150 200 250 300
Extra Network Latency (ms)

0

5

10

15

20

Ti
m

e
to

 F
irs

t T
ok

en
 (s

)

DRCG/Text DRCG/KV DRAGON CRCG/Device CRCG/Cloud

(a) Qwen2.5-1.5B. (b) OPT-1.3B.
Figure 8: Time-to-First-Token in various network conditions.

0 100 200 300 400
Extra Latency (ms)

0

10

20

30

40

To
ta

l T
im

e
(s

)

0 100 200 300 400
Extra Latency (ms)

0

10

20

30

40

To
ta

l T
im

e
(s

)

Cloud Random Device DRAGON

(a) Qwen2.5-1.5B. (b) OPT-1.3B.
Figure 9: Comparison of different scheduling strategies.

when incorporating the top-2 relevant documents for the RAG pro-
cess on each side. As shown in the figure, DRAGON demonstrates
strong robustness under different network conditions compared to
other distributed baseline methods. Specifically, DRAGON achieves
latency reduction of 49.5% and 42.4% when using OPT-1.3B com-
pared to the sequence-wise and token-wise DRDG methods, re-
spectively. In contrast, the per-token latency of DRDG methods
fluctuates significantly and tends to increase under higher network
latency conditions. Sequence-wise DRDG collects output distribu-
tions of all tokens once after generation completes, resulting in
a one-time large data transmission and increased sensitivity to
network latency. Token-wise DRDG amortizes data transmission
over the entire generation process, partially hiding latency within
decoding. However, it still under-performs compared to DRAGON
due to frequent output synchronizations. Additionally, DRCGmeth-
ods yields the same per-token latency with corresponding CRCG
methods, because they do not involve cooperation between the
device and the cloud. Although DRAGON incurs an average la-
tency overhead of 15.6%–20.3% compared to device-only methods,
it effectively supports tasks that require both personal and general
knowledge, where device-only or cloud-only methods may fail.

We further compare the TTFT of DRAGON with that of the
baseline methods under identical network conditions. TTFT typi-
cally includes the time for document retrieval and the latency of
the prefill stage, during which the key-value (KV) activations for
the concatenation of retrieved documents and the input query are
either computed from scratch in parallel or loaded from cache. As
shown in Figure 8, DRAGON incurs negligible TTFT overhead com-
pared to the device-only CRCG method. In contrast, as KV cache
is hosted on the same side with the corpus, DRCG/Text performs
prefill from scratch, resulting in high computation latency and 8.6×
TTFT on average compared to DRAGON. DRCG/KV directly fetches
KV activations from the server, leading to increased transmission
time under higher network latency and yielding over 15.3× TTFT
compared to DRAGON, rendering it entirely impractical. Notably,

DRAGON: Enhancing On-Device Model Performance with Distributed Retrieval-Augmented Generation MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

DRCG/Text incurs larger prefill latency when using Qwen2.5-1.5B
compared to OPT-1.3B, due to its larger number of parameters. In
contrast, DRCG/KV exhibits higher TTFT on OPT-1.3B, as Qwen2.5-
1.5B employs Grouped-Query Attention [2] to reduce the size of KV
activations. The transmission data size in DRCG/KV is 114 MB/16
MB for OPT-1.3B/Qwen2.5-1.5B when retrieving 2 documents of 64
tokens each. Local document retrieval latency is measured at 52.6
ms, while latency for remote raw-text retrieval ranges from 107.2
ms to 745.2 ms as extra network latency increases from 0 to 300 ms.

7.4 Effectiveness of Scheduling
To thoroughly evaluate the effectiveness of scheduling, we imple-
mented a simulator to run DRAGON repeatedly using different
scheduling strategies under consistent settings. We compare our
scheduling strategy with three baseline methods: (1) Cloud and (2)
Device, where aggregation is statically performed in the cloud and
the device, respectively, and (3) Random, which randomly selects
the side for aggregation. To implement the simulation, we record
and replay the acceptance decisions of the Aggregator, and use
real-world measurements of decoding latency on each side. We
simulate varying network conditions by adding an extra latency
and a sinusoidal jitter to the measured base latency. The period of
the jitter is set to 20𝜋 seconds with its amplitude set to 1/5 of the
corresponding latency, consistent with the settings in § 7.3.

Figure 9 presents the total time required to generate 100 tokens
under varying network conditions, each averaged over 50 different
acceptance decision sequences. The results show that DRAGON’s
scheduling strategy matches or outperforms all baselines across all
settings, with the efficiency gains increasing as the extra latency
grows. Due to the substantial gap in decoding latencies between the
device and the cloud (as shown in Figure 7), performing aggregation
on the device naturally hides cloud-side decoding and transmis-
sion within device-side decoding. When network latency is low,
Cloud and Random tend to incur higher latency while DRAGON
consistently selects the device side for aggregation. As network
latency grows and transmission becomes the bottleneck, DRAGON
dynamically selects the side with higher acceptance rate to mini-
mize transmission resulted from draft rejection. Finally, we argue
that when device-side and cloud-side decoding latencies become
closer in value, the overall generation time will be more sensitive
to the network latency. In that case, our scheduling strategy will
achieve greater improvement compared to these baseline methods.
Case study. To illustrate DRAGON’s detailed scheduling process,
we present a 15-token snapshot of a random simulation with the
extra latency set to 500 ms. Figure 10 shows, from top to bottom,
the cloud-side and device-side generation pipelines, the instanta-
neous RTT, the estimation score Δ𝑍 as defined in Equation (8), and
the accumulated acceptance rates. The pipeline graph comprises
vertically arranged bars representing decoding and different trans-
mission tasks (including transmission of draft tokens, target tokens
and instruction signals for switching aggregation place).

Initially, the Aggregator resides on the device by default. From
the perspective of the device, 𝑐𝑟dec < 𝑐𝑙dec ≤ 𝑐𝑟dec + rtt consistently
holds and Δ𝑍 is computed as the sum of two terms, 𝐴 = (1 −
𝛼𝑟𝑡) (𝑐𝑟dec−𝑐

𝑙
dec) and 𝐵 = (𝛼𝑙𝑡−𝛼𝑟𝑡)rtt. After the first aggregation at 0.5

s, the acceptance rates are updated to 𝛼𝑙0 = 1 and 𝛼𝑟0 = 0. As a result,
the positive term 𝐵 dominates and Δ𝑍 > 0. The Scheduler decides

D
R

AG
O

N
Pi

pe
lin

e

Cloud
Decode DraftToken TargetToken SwitchAggregator

Device

0.5

0.6

R
TT

 (s
)

-0.5
0.0
0.5
1.0

ΔZ Cloud Device

0.5 1.1 1.3 1.5 1.8 2.0 2.4 2.6 2.9 3.1 3.4 3.7 4.0 4.3 4.5 Time (s)
0.0
0.5
1.0

Ac
c.

Cloud Device

Figure 10: A random snapshot of the generation pipeline and
scheduling decisions of DRAGON.

to switch the Aggregator to the cloud, sending the switching signal
along with the target token. It then shifts to the cloud’s perspective
and reverses the sign of Δ𝑍 . Subsequently, since the accumulated
cloud-side acceptance rate remains lower, the Scheduler continues
to estimating Δ𝑍 < 0, indicating that cloud-side aggregation is
more efficient. This case shows that DRAGON’s scheduling strategy
dynamically minimizes decoding and transmission costs on the side
with a lower acceptance rate, which is consistent with our analysis
in § 5 and the results shown in Figure 9.

7.5 Overhead Analysis
DRAGON introduces an additional sampling operation at each
decoding step. However, as illustrated by the Sample function in Al-
gorithm 1, the overhead is minimal, involving only two scalar-level
random generations, subtractions, multiplications, and compar-
isons, along with one vector-level subtraction, comparison, and
normalization. Taking Qwen2.5-1.5B (the model used in our evalu-
ation with an output vocabulary size of 151,936) as an example, the
extra computational cost of sampling is less than 3 × 105 multiply-
accumulate operations (MACs), which takes ∼1 us and is negligible
compared to the >109 MACs required for decoding a single token.

Regarding communication overhead, our efficient data compres-
sion strategy [22] ensures that transmitting the output distributions
incurs less than 0.5 KB of extra data per token. Under a 100 Mbps
local-area Wi-Fi network, this translates to <40 us of transmission
latency, which is also negligible.

8 Related Works
RAG with Multiple Documents. Existing approaches aggregate
retrieved documents via either output aggregation (effective for
encoder-only and seq2seq models [11, 21] and adapted to decoder-
only LLMs [31]) or context aggregation (prepend the concatenation
of all documents to the input for simplicity [15, 23, 29]). Our frame-
work leverages output aggregation to facilitate the decomposition
of the multi-document RAG workflow across the device and the
cloud, whereas existing works adopt a centralized architecture.
Device-Cloud Collaborative Inference. While prior work [3,
19, 39] established device-cloud collaborative inference for conven-
tional neural networks, recent extensions to LLMs [27, 28] remain
limited in privacy-preserving RAG. Hybrid-RACA [36] retrieves
and compresses cloud documents for on-device SLMs, while [10]

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Shangyu Liu, Zhenzhe Zheng, Xiaoyao Huang, Fan Wu, Guihai Chen, Jie Wu

enhances kNN-LMs [18] using cloud interaction history. Both ap-
proaches prioritize availability over privacy by processing single-
source LLM outputs. In contrast, DRAGON leverages databases
on both the device and cloud sides, enabling model collaboration
without compromising document privacy.
Speculative Decoding. First proposed in [35], this technique em-
ploys a SLM to draft multiple future tokens for parallel verification
by the target LLM. Variants include Speculative Sampling [7, 20] for
diverse sampling strategies, and approaches like Medusa [5] and
Blockwise Decoding [33] that use modified Transformer decoders
for parallel drafting. Other work [37, 38] implements drafting via
early exiting. In contrast to speculative decoding, where a single
drafter fast predicts the output of the target LLM, speculative ag-
gregation in DRAGON verifies the consistency between outputs
generated by two distinct LLMs.

9 Conclusion
To address privacy risks of cloud LLMs and limited capabilities of on-
device SLMs, we propose DRAGON, a distributed RAG framework
that enhances on-device SLMs using both personal and general
knowledge without raw document transmission between the device
and the cloud. DRAGON partitions the RAGworkflow across device
and cloud, using Speculative Aggregation to minimize output syn-
chronization overhead. Experimental results show that DRAGON
notably improves generation quality while maintaining low latency.

References
[1] Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla,

Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary,
Congcong Chen, et al. 2025. Phi-4-Mini Technical Report: Compact yet Powerful
Multimodal Language Models via Mixture-of-LoRAs. arXiv:2503.01743

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebrón, and Sumit Sanghai. 2023. GQA: Training Generalized Multi-Query
Transformer Models from Multi-Head Checkpoints. In EMNLP. 4895–4901.

[3] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and
Yong Zhang. 2021. Auto-Split: A General Framework of Collaborative Edge-Cloud
AI. In SIGKDD. 2543–2553.

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, et al. 2022. Improving Language Models by Retrieving from Trillions of
Tokens. In ICML. 2206–2240.

[5] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming
Chen, and Tri Dao. 2024. Medusa: Simple LLM Inference Acceleration Framework
with Multiple Decoding Heads. In ICML. 5209–5235.

[6] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control: Measuring
bottleneck bandwidth and round-trip propagation time. Queue 14 (2016), 20–53.

[7] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Lau-
rent Sifre, and John Jumper. 2023. Accelerating Large Language Model Decoding
with Speculative Sampling. arXiv:2302.01318

[8] Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 2024. Benchmarking Large
Language Models in Retrieval-Augmented Generation. In AAAI. 17754–17762.

[9] DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. arXiv:2412.19437
[10] Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie Tang, Chengfei Lyu, and Guihai

Chen. 2024. Enhancing On-Device LLM Inference with Historical Cloud-Based
LLM Interactions. In SIGKDD. 597–608.

[11] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval Augmented Language Model Pre-Training. In ICML. 3929–3938.

[12] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks. In MobiSys. 225–238.

[13] Data is Better-Together. 2024. 10k_prompts_ranked. https://huggingface.co/
datasets/data-is-better-together/10k_prompts_ranked. Accessed: 2025-03-31.

[14] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2021. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. https://arxiv.org/abs/2112.09118

[15] Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-
Yu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active Retrieval

Augmented Generation. In EMNLP. 7969–7992.
[16] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and Open Problems in Federated
Learning. Foundations and Trends in Machine Learning 14, 1–2 (2021), 1–210.

[17] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In EMNLP. 6769–6781.

[18] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2020. Generalization through Memorization: Nearest Neighbor Language
Models. In ICLR.

[19] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. 2020. SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In MobiCom. 1–15.

[20] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference From
Transformers via Speculative Decoding. In ICML. 19274–19286.

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In
NIPS. 9459–9474.

[22] Shangyu Liu. 2025. DRAGON: A Device-Cloud Distributed RAG Framework that
Enables a Simultaneous Integration of Personalized Information and Generic Knowl-
edge. https://github.com/ThomasAtlantis/DRAGON

[23] Hongyin Luo, Tianhua Zhang, Yung-Sung Chuang, Yuan Gong, Yoon Kim, Xixin
Wu, Helen Meng, and James Glass. 2023. Search Augmented Instruction Learning.
In EMNLP. 3717–3729.

[24] Yu Ma, Weifa Liang, Jing Li, Xiaohua Jia, and Song Guo. 2020. Mobility-Aware
and Delay-Sensitive Service Provisioning in Mobile Edge-Cloud Networks. TMC
21, 1 (2020), 196–210.

[25] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017.
Pointer Sentinel Mixture Models. In ICLR.

[26] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774
[27] Yanghe Pan, Zhou Su, Yuntao Wang, Shaolong Guo, Han Liu, Ruidong Li, and

Yuan Wu. 2024. Cloud-Edge Collaborative Large Model Services: Challenges and
Solutions. IEEE Network 39, 4 (2024), 182–191.

[28] Guanqiao Qu, Qiyuan Chen, Wei Wei, Zheng Lin, Xianhao Chen, and Kaibin
Huang. 2024. Mobile Edge Intelligence for Large Language Models: A Contem-
porary Survey. arXiv:2407.18921

[29] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-Context Retrieval-Augmented Lan-
guage Models. TACL 11 (2023), 1316–1331.

[30] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. 3980–3990.

[31] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike
Lewis, Luke Zettlemoyer, and Wen-tau Yih. 2024. REPLUG: Retrieval-Augmented
Black-Box Language Models. In NAACL. 8371–8384.

[32] Milad Shokouhi, Luo Si, et al. 2011. Federated Search. Foundations and Trends in
Information Retrieval 1 (2011), 1–102.

[33] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 2018. Blockwise Parallel
Decoding for Deep Autoregressive Models. In NIPS. 10107–10116.

[34] Qwen Team. 2024. Qwen2.5 Technical Report. arXiv:2412.15115
[35] Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. 2023.

Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq
Generation. In EMNLP. 3909–3925.

[36] Menglin Xia, Xuchao Zhang, Camille Couturier, Guoqing Zheng, Saravan Ra-
jmohan, and Victor Rühle. 2024. Hybrid-RACA: Hybrid Retrieval-Augmented
Composition Assistance for Real-time Text Prediction. In EMNLP. 120–131.

[37] Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kang-
wook Lee. 2024. Predictive Pipelined Decoding: A Compute-Latency Trade-off
for Exact LLM Decoding. TMLR (2024).

[38] Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad
Mehrotra. 2024. Draft& Verify: Lossless Large Language Model Acceleration via
Self-Speculative Decoding. In ACL. 11263–11282.

[39] Shigeng Zhang, Yinggang Li, Xuan Liu, Song Guo, Weiping Wang, Jianxin Wang,
Bo Ding, and Di Wu. 2020. Towards Real-Time Cooperative Deep Inference over
the Cloud and Edge End Devices. IMWUT 4, 2 (2020), 69:1–69:24.

[40] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. OPT:
Open Pre-trained Transformer Language Models. arXiv:2205.01068 [cs.CL]

[41] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, et al.
2023. H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large
Language Models. In NIPS. 34661–34710.

[42] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A Survey
of Large Language Models. arXiv:2303.18223

https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2412.19437
https://huggingface.co/datasets/data-is-better-together/10k_prompts_ranked
https://huggingface.co/datasets/data-is-better-together/10k_prompts_ranked
https://arxiv.org/abs/2112.09118
https://github.com/ThomasAtlantis/DRAGON
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.18921
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Retrieval-Augmented Generation
	2.2 Device-Cloud Distributed RAG
	2.3 Problem Formulation

	3 Overview of DRAGON
	4 Speculative Aggregation
	4.1 Design of Aggregation Strategy
	4.2 Analysis of Acceptance Rate

	5 Greedy Scheduling
	6 Theoretical Analysis
	7 Experiments
	7.1 Implementation
	7.2 Experiment Setups
	7.3 Overall Performance and Efficiency
	7.4 Effectiveness of Scheduling
	7.5 Overhead Analysis

	8 Related Works
	9 Conclusion
	References

