
Progressive or Conservative: Rationally Allocate
Cooperative Work in Mobile Social Networks

Wei Chang and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122
Email: {wei.chang, jiewu}@temple.edu

Abstract—There are plenty of idle computational resources on
the Internet, which could potentially be used for accomplishing
huge tasks. More and more applications are being designed
for exploring those idle resources. In this paper, we focus
on the idle computational resources, including both human
intelligence and machine computing abilities, in mobile social
networks (MSNs). Based on the unique features of MSN, we
design a new cooperative system, called social-crowdsourcing. The
distributed and infrastructure-free features of the system make
it more attractive than traditional crowdsourcing platfor ms. In
the proposed system, a huge work is gradually partitioned into
smaller pieces, and is propagated from node to node. However,
how to partition and allocate these segments is a critical problem,
which directly affects the work’s completion time and system
throughput. Due to the lack of global information, independent
relay nodes are likely to make conflicted decisions, which will
cause an unbalanced workload distribution on participating
nodes. In this paper, we find that, for a work at different
processing stages, one should adopt distinct workload exchanging
schemes, moving from a progressive method to a conservative
one. Based on this observation, we propose an adaptive workload
allocation scheme, in which a participating node can gradually
switch his decision strategy according to the workload statuses
of neighboring nodes. By using our approach, system throughput
can be significantly improved, and large works can finish within
a nearly optimal time. Unlike in traditional scheduling problems,
we take a human’s rejection, contact delay, and social similarity
into consideration. Extensive simulation results show that our
proposed algorithms can successfully make full use of the idle
resources in MSNs.

Keywords—Mobile social networks, outsourcing, potential re-
source, social-crowdsourcing, work partition.

I. I NTRODUCTION

Around us, plenty of computing resources have been wast-
ed, including both human intelligence and machine computa-
tional abilities. For electronic devices, such as smartphones
or tablet computers, we may leave them turned on for a
whole day without doing anything to them; even when we
are using them, only a portion of the machine’s computational
resources have been utilized, let alone the human intelligence
that is wasted each day. In order to make better use of these
idle resources, several centralized crowdsourcing projects have
been implemented, such as Boinc [1], Folding@home [2], and
Amazon MTurk [3]. In these projects, a project owner uploads
a large and time-consuming task onto a server in advance [4],
and volunteers participate in certain parts of the task whenthey
are idle. The tasks may relate to human intelligence, such as
seeking an object from images, or the tasks may simply use
the computational resources of idle machines, such as training
a model or solving complex mathematic functions.

However, there are two constraints, which restrict the
development of crowdsourcing systems. First, the existing
crowdsourcing platforms, such as Amazon MTurk, lack an
advertising mechanism to timely recruit participants (also
known as workers): It is hard for a newly created task to attract
enough participants in a relatively short time, unless the task
owner gives a very attractive payment. Many off-line workers,
who are eager to do certain types of tasks, are not able to
be timely aware the existence of the new tasks. Moreover,
plenty of people do not even know of the existence of certain
platforms, let alone the tasks on them. Secondly, the current
system is centralized and platform-specified, and therefore, it
is not flexible and robust enough. The workers, accustomed to
one platform, are less likely to participate in another platform’s
tasks, and the unavailability of these platforms will completely
destroy most of the existing crowdsourcing applications.

In this paper, we create a distributed and self-organized
crowdsourcing scheme within mobile social networks (MSNs),
called social-crowdsourcing. The main idea of the social-
crowdsourcing scheme is that, after recruiting a worker, the
task not only gets the workers’ abilities, but also the resources
potentially contributed by the worker’s related people. Our
scheme creates a multilayered outsourcing structure, and ex-
plores the idle computing resources withinsocial domains.
Instead of waiting for others to log in to a crowdsourcing
platform, select your tasks, and work on them, our system
directly sends the task to the potential workers via multi-
hop social contacts. By using the scheme, users can self-
organizedly build up a crowdsourcing system for a task, or
it can also be used as an extension of workers in conventional
crowdsourcing systems.

Example task in social-crowdsourcing: One may meet
the following situation: when thinking about a problem, we
recall that we have read a paper mentioning an idea, which
could be used. But we do not remember which article it
is. Although we have saved all of the papers in electronic
documents, finding the article is still hard since that idea
may be semantically described. Solely going through all of
documents’ contents is extremely time-consuming; instead, we
can recruit friends for seeking the article.

The procedure of social-crowdsourcing: A task owner
(a mobile device’s user) first creates a social-crowdsourcing
task by including both the electronic documents and job de-
scription. Once it is done, the owner becomes the first worker
and begins to locally search the article. Note that the task
owner could be the owner of the documents, or a worker, who
undertakes a portion of a task from the conventional crowd-
sourcing platform. In social-crowdsourcing, any participant can
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further recruit new workers via any kind of social contacts.For
example, when a worker physically comes across his social
contactor, such as friends or colleague, the participant’sdevice
will automatically send a message to the contactor and ask his
willingness to participate in the task. If the answer is yes,a
portion of the documents will be transferred from the worker
to the contactor via shortwave radio, and then, both of them
can go through the papers in parallel. When a participant
is able to access free Internet, such as in vicinity of a free
WiFi access point, or the participant agrees to use cellular
networks to transmit social-crowdsourcing’s workload, hecan
directly send the helping message or transfer a certain amount
of workloads to his friends via network-storages, such as email,
instant messaging (IM), or dropbox. Later, when his friendsget
Internet connection (e.g. 3G/4G or free WiFi), their devices
will automatically fetch the data. When a participant finds the
result, he will return the article’s id to the task owner via the
cellular network. Note that only a few participants need to
return, and the size of the package is very small.

Remuneration: For workers’ payment, we adopt MIT
DARPA Challenge Team’s scheme: the winner who finds the
article gets half of the total bonus; the worker, who invitedthe
winner, gets one fourth of the total; the people who invited
the inviter gets one eighth, and so on. The main advantage
of this incentive scheme is that users, who do not want to
personally seek the paper from the documents, are still willing
to participate and propagate the task to their social contactors.

During work segments’ dissemination processes, the esti-
mation of assigned workloads to each social contactor is a
critical problem. Essentially, a selected allocation algorithm
directly affects not only the whole work’s completion time,but
also the resource utilization rate of the social-crowdsourcing
system. In this paper, we address the following question: given
huge works originating at random nodes, by what strategy
can the works’ segments be appropriately disseminated during
stochastic contacts, such that the system’s throughput canbe
maximized? Due to the distributed feature of our system, this
problem is not trivial. Take Fig. 1 as an example. WhenA
meetsC, A should leave some extra workload toC, such
that C can forward these extra work segments to his future
encounterD at an earlier time. WhenA transmits work seg-
ments toB, he must also countB’s potential workloads given
by B’s other friends. In short, a worker has to take others’
future potential contactors, accepting probabilities, contacting
delays, current workloads, processing speed, and the impacts
of common friends into account.

To solve the problem, we first propose a distributed work-
load allocation algorithm based on the historical information
of worker’s1-hop neighbors. Consider the fact that, no matter
who owns the work and how large the work is, a worker’s
overall computing ability should be a fixed value; we further
propose a distributed algorithm for pre-estimating each node’s
future computing ability. By comparing the work-completing
progress patterns of these two algorithms with those of the
optimal ideal case, we finally propose an adaptive solution.The
adaptive scheme automatically switches the work allocation
methods according to the work segments’ propagation status.
Our solutions not only work under the single work, single
source condition, but also are applicable in the situationsof
multiple works and multiple sources. Extensive simulation

0.80.9

0
.9

0.9

C

B

A

C D

B

D

(a) contact situations at time t

(b) contact situation at time t+ t

A

(c) user contact graph

(d) parameters

E

E

F

F

75

1079

985

        15S18S12S

        18S11S14S

FED

CBA

  

   

   

   

   

EFCD

BFBEBD

ADACAB

  

   

   

AP

AP

Fig. 1. Workload allocation in social-crowdsourcing. Shadowed users indicate
the ones carrying work segments. Idle users are representedby the color white.

results show that our proposed schemes can significantly
increase the system’s overall throughput.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a typical MSN, which consists ofM mobile
users (also named nodes). LetVi represent a node. Each node
is associated with a constant processing speedSi, and we
assume that, once a node participates in a task, it will not stop
until the task has been finished. Social-crowdsourcing involves
multiple rounds of recruiting via social contacts: a user’s
workload will be outsourced to his friends, friends’ friends,
and so on. Essentially, a huge work is gradually partitioned
and propagated from friend to friend. In our model, a work
consists of several work segments, and a work segment is the
smallest uncleavable data unit. The workload of a node is the
total number of work segments that have been assigned to it.
Any user could be a task’s owner (also called a source node),
and more than one task could exist in the system.

In social-crowdsourcing, information exchanges during any
kind of social contacts: locally or remotely. For local contacts,
two nodes should physically encounter each other (like nodes’
contacts in DTN), and data is transmitted via shortwave radio;
remote contacts indicate the situations that two remote friends
communicate with one another via cellular network or free
WiFi-based Internet. In practice, data transmission of remote
contacts can be implemented by using network storages, such
as email, IM, or dropbox. When a worker contacts his friend
for the first time after participating in a task, the friend can
determine whether to join in the task. We usePij to represent
the accepting probability. Once agreed, their devices willau-
tomatically adjust the workloads whenever they contact other
participants of the task, until it is completed. For any worker,
he may physically encounter other participants, stochastically.
For the participants, who agree to use cellular networks at any
time, they may query the working progress of their friends and
adjust the workloads, once in a while. As for the workers, who
use free Internet to transmit workload, they also can do same
things whenever they get free Internet. Clearly, the contacting
interval between a pair of workers is a random variable, and
we useλ to represent the average inter-contacting time. Table I
summarizes the common symbols used in this paper.
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TABLE I. COMMON NOTATIONS

Notation Description

G nodes’ social contact graph,G =< V,E >
Vi a participant (user/node)
M total number of nodes
Si userVi ’s local computing speed
S

(p)
i

userVi ’s future potential ability
Pij the accepting probability betweenVi andVj

Qij(t) encounter (contact) probability betweenVi, Vj within t
λij average inter-meeting time betweenVi, Vj

N(·) the neighbor set ofVi on contact graph
E(·) the expected value
W wasted computing resources
∆W exchanged workload
Φi the assigned workload on nodeVi

A workload transition matrixA = [Aij ]
L the size of the original work

Note that we cannot let all friends of a worker share one
network storage “box” due to the security and trust reasons.
Social-crowdsourcing has a concept of commitment: at any
time, a work segment only belongs to one worker. If we put
the workload in one box and let the worker’s friends to fetch
the data based on their dynamic needs, some workers may
maliciously modify others’ work segments in order to prevent
them from winning the bonus (the friends of a user may not be
friends). In order to avoid using complex security mechanisms,
we do not let multiple users share a network storage.

B. Problem Formulation and Challenges

Social-crowdsourcing is a distributed system. From a
source node, how to allocate the segments of a given work
during stochastically contacts becomes a fundamental problem,
which directly influences the completion time of the work.
The goal of the paper is to opportunistically maximize the
overall throughput of a social-crowdsourcing system. Since
work segments are transmitted hop-by-hop, at each instanceof
segment relay, a relay node must estimate how many workloads
he will keep, and how many workloads should be forwarded to
the social contactors. The optimal allocation happens when(1)
each participating node begins to work as early as possible and
(2) all participants complete their assigned work at the same
time. However, due to the lack of real-time global information
and the accurate future encountering times, it is impossible for
nodes to provide an optimal allocation.

The social-crowdsourcing system can be abstracted as a
stochastic bucket network: each node is a huge bucket and
there is a hole at the bottom of each bucket. The size of the
holes may be different (which means the computing speed of
each node may be different). Stochastically, we can pour some
amount of water from one bucket to another (which models
the workload reassignments during social contacts). Initially,
only one bucket has water (the original large job), and we want
to find a local scheme to determine the amount of transmitted
water such that the water in the whole system can be drain
as quickly as possible. For the rest of the paper, we will
not discriminate how a social contact is conducted (locallyor
remotely), since all types of social contacts can be abstracted
as stochastic data exchange between friends.

In order to estimate the amount of transmitted work-
loads during social contacts, the relay nodes must be able
to answer the following two questions: ‘how to describe a
node’s local computing ability and the overall abilities ofhis
future encountered nodes?’ and ‘how to estimate the carrying

workloads of the future potential contactors?’ Since segments
are disseminated based on multi-hops relay, the participants
must carry an appropriate workload for their future contactors.

The estimation of future encountered nodes’ capacities is
difficult, not only because of the uncertainty of their contact
times and acceptance decisions, but also the double counting
of the abilities of their common friends. For instance, Fig.1
(c) is a possible contacting graph among six users. WhenVA

forwards workloads toVB, he should not only considerVB ’s
capacity, but also the potential workloads given byVD, VE ,
andVF ; otherwise,VB may overload. Also, whenVA forwards
workloads toVC , he should make a decision on whether to
give VD ’s work segments toVC for further relay. Obviously,
VA could also keep the segments and directly forward them to
VD later, or give them toVB. Even ifVA selected a relay path
to VD with the highest probability, the realistic shortest contact
path could be another one. Note that our problem is essentially
different from the conventional delay-tolerant networks (DTN)
studies. In our problem, any idle node could be a work
segment’s consumer. Since the optimal result happens when all
workers simultaneously complete their workloads, we should
avoid the unbalanced workload distribution among workers,
which has never been considered in DTN.

III. SOLUTION OVERVIEW

A. Key Observations

Compared with traditional online social networks and
delay-tolerant networks, MSNs have several unique features,
which influence the performance of a solution. In this part, we
present some important features of MSNs on our problem.

The number of participants, in the initial phase, highly in-
fluences the whole work’s completion time. Roughly speaking,
the number of participants at this phase affects the speed of
work segment propagation. This observation is consistent with
the research results in the field of maximizing social influence.
In our model, work segments are disseminated to participating
nodes via multiple relays. If a node does not carry enough
work segments, he may locally process all the segments
before contacting other idle nodes. Progressively estimating
the abilities of a new participant and its future contactorscould
reduce the likelihood of this condition happening, but could
also cause the imbalanced distribution of work segments.

In social-crowdsourcing, it is inevitable to have multiple
segment-relaying flows pass the same node. However, whether
the confluence is beneficial or not is determined by whether
the situation could potentially reduce the work’s completing
time. During the initial phase of segment propagation, flow
convergence may result in overloads, while, at a later time,it
also provides chances for re-balancing the workload.

Due to the lack of real-time global information, it is ex-
tremely hard to estimate the future potential encounter nodes’
carrying workloads. However, the amount of transferred work-
loads essentially relates to the workloads’ differences between
a pair of contactors, instead of their absolute workloads.

B. Main Idea

In this paper, we propose an adaptive scheme for allocating
work segments. Instead of assigning the accurate workload to a
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node on the first try, wefuzzily divide the whole process into
three phases. Phase one intends to assign an approximately
corrected amount of workload onto each region; phases two is
used for dynamically re-balancing the workloads within small
regions, and the final phase ends the work by opportunistically
transferring the unbalanced workloads to idle nodes.

In the first phase, since a majority of nodes have not
obtained the work yet, we usean aggressive scheme to estimate
nodes’ overall computing abilities, including the potential
abilities from the future contactors. Therefore, for each node,
we consider alocal computing speed and a future potential
speed, which indicates how much help a node could potentially
obtain from future opportunistic contactors. Since there are
time delays and rejecting probabilities at each time of trans-
mission, computing the exact value of the potential speed is
inappropriate and impossible. Considering that the aggressive
scheme cannot provide a fine adjustment of workloads, instead,
we take the overall speed that a node could get via the
opportunistic contacting paths as the criteria. This metric
can integrate transmission delay and accepting rate together,
and avoids the double-counting problems caused by common
friends. Although the work segments are physically propagated
via random paths, our metric essentially computes the expected
sum of speed that the whole system could provide to the node.

As for the second phase, when two users contact each
other, they will use their stored neighbor’s historical workload
status information to estimate the work’s finishing time, and
will further make workloads’ adjustments based on it. The
second phase is the transition phase. The intuition behind
this mechanism is that, once each node’s neighbors have
the same completion time, the workloads are balanced and
distributed among all participating nodes. By exploring the
two contactors’ direct neighborhood information, one extends
his local view to2-hop. Based on an estimated completion
time distribution, a node proportionally assigns weights to the
aggressive scheme and the conservative scheme.

The locally stored historical information used in phase two
is collected during a pairwise contact. It may have already be-
come outdated before making a workload allocation decision;
some nodes could complete their assignments earlier than oth-
ers. At the final phase, nodes simply transfer some unfinished
work segments to the randomly encountered contactors. The
method, used in this phase, purely considers each node’s1-hop
neighborhood status and that of the current contactors.

IV. SOLUTION DETAILS

A. Contact Frequency and Contact Graph

We assume that the inter-contacting timet between any
two nodesVi andVj follows exponential distribution with the
pairwise contact rateλij (λij > 0). The contacting probability
density functions (PDF) are represented as follows:

Qij(t) = λij × e−λij ·t (1)

where Qij(t) stands for the contacting probability between
nodesVi and Vj within time interval t. Assume that there
is a r-hop transmitting path from nodeVi to nodeVr with
edge weightsλi,1, λ1,2, · · · , λr−1,r. According to [5], the total

transmitting time follows hypoexponential distribution:

Qir(t1 + t2 + · · ·+ tr) =

r
∑

s=1

Cs,r × λs,s+1e
−λs,s+1·t (2)

whereCs,r =
∏r

u6=s,s=1 λu,u+1/(λu,u+1 − λs,s+1) and t =
t1 + t2 + · · ·+ tr.

After iteratively exchanging information with friends, n-
odes learn the system parameters withinr-hop, such as
computing speed, average accepting rate, and average inter-
contacting time. Based on this information, a contact graphwill
be locally created on each node, which records the identities
of a node’s contactors, together with the system parameters.
Besides the system parameters, each node may also store cer-
tain auxiliary information about its direct contactors, such as
a node’s potential ability (which will be introduced in Section
IV. D.) Note that, in our system, a node may also record others’
expected completion times. However, such values are not in
real-time, and the node can only learn distant nodes’ expected
completion times via multi-hop contacts. For instance, in Fig. 1
(c), nodeVA never contactsVF , but it can learnVF ’s expected
completion time via nodeVB ’s historical estimation. After
encountering withVF , VB may estimate its finishing time
based on the carrying workload at the contacting time, and
record the value together with a time stamp. WhenVA meets
VB , he could update his record aboutVF by using the newest
historical estimation.

B. Neighbor Status-based Finishing Time Estimation (NSFT)

In our system, after each instance of pairwise contacts, a
node is able to estimate the work’s finishing time within its
1-hop neighborhood. The estimation of finishing time is not
trivial, due to the fact that nodes may adjust their workloads
among other neighbors at any time. Therefore, the recorded
carrying workload of a neighbor node may have already been
changed at the time of estimation.

Algorithm 1 shows our procedure for approximating the
finishing time. Without loss of generality, we assume that
Algorithm 1 is running on nodeVu, and nodeVv is the current
contactor ofVu. Since a userVi could be the common contactor
of both nodesVu and Vv, the first step of Algorithm 1 is
to eliminate the double counting problem. We virtually split
the common contactorVi into two virtual nodes, and use its
accepting probabilities to weight each virtual node, as shown
by Algorithm 1, line 5. Essentially, line 5 splits the carrying
workload and the local computing speed according to the
corresponding accepting probability, and exclusively virtually
assigns a portion of the carrying workloads and speed toVu

and Vv, respectively. The advantage of this approach is that,
after virtually splitting, the completion times of the two virtual
nodes are still equal to those ofVi. Via this way, nodeVu

is able to rationally estimate the real possible impacts of his
neighbors’ workloads and computing abilities.

Although workload adjustments may happen at any time,
here,we are only interested in a set of time periods, which
could potentially come at the cost of wasting computing
resources. More specifically, within nodeu’s 1-hop neigh-
borhood, computing resources will be wasted if workload
adjustment happens during the condition that some neighbors
have finished all of their workloads while others are still
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Algorithm 1 Neighbor Status-based Finishing Time Estima-
tion (NSFT)

1: /*Assume NSFT is running onu and the other encounter isv*/
2: Find u andv’s common neighborsN(u) ∩N(v)
3: for ∀i ∈ N(u)\v do
4: if i ∈ N(u) ∩N(v) then
5: Split the recorded workloadΦ and speedS of the common

neighbor ofu andv:
Φi ← Φi ×

Piu

Piu+Piv
, Si ← Si ×

Piu

Piu+Piv

/*Eliminate the double counting problem of the common
neighbors ofu andv*/

6: Based onu’s local record, estimate each neighbor’s finishing time
{Φi/Si}, and Sort{Φi/Si} ∪ Φu/Su in ascending order

7: for ∀i ∈ N(u)\v do
8: if Φi/Si < Φu/Su then
9: Compute the expected wasted computing resourceW ac-

cording to Equation (3)
10: /*Wasted resource exists whenu is working whilei is idle*/
11: if Φi/Si > Φu/Su then
12: Compute the wasted resourceWu by Equation (3), and

update a temporary variabletp: tp← min {tp,Wu/Su}
/*Resource is wasted whenu is idle while the neighbors of
u are working*/

13: W ←W + (
∑
∀i,i∈N(u)\v,Φi/Si<Φu/Su

Si + Su)× tp
14: Estimate the finish timetF :

tF←[
∑

∀i∈N(u)\v Φi+Φu+W ]/[
∑

∀i∈N(u)\v Si+Su]

working. After getting an approximated value of the wasted
computing resources,u can estimate his finishing time by first
summing it up with the real workloads, and then dividing the
result by the summation of weighted speeds, as shown by
Algorithm 1, line 14.

From the viewpoint ofVu, he only needs to care about
the workload adjustment between him and his neighbors. For
the neighbor node{Vi}, who will finish its current workload
beforeVu (Algorithm 1 line 8), we can estimate the wasted
computing resource at a nodeVi, Wi, as the product ofVi’s
computing speed and the expected time delay afterVi finishes
the work. Assumetnext is the next contacting time between
nodesVu andVi, then we have:

Wi = Si × E[(tnext − Φi/Si),Φi/Si < tnext < Φu/Su]

= Si ×

∫ Φu/Su

Φi/Si

(t− Φi/Si)λe
−λt dt (3)

For each nodeVi, who completes the corresponding works
before Vu, we need to calculate aWi and sum them up
(Algorithm 1 line 9). However, as for any nodeVj , who
finishes his works afterVu (Algorithm 1 line 11), onlyVu’s
wasted computing resources will be considered (sinceVu

records only1-hop information, the wasted resources dur-
ing the workload propagation directly betweenVu’s 1-hop
neighbors are ignored.) Therefore, for the node group with
a completion time larger thanVu, we only need to find the
earliest completing time: after this time,Vu may get new
work segments again (Algorithm 1, line 12.) One may notice
that, whenVu finishes his workloads and is in idle status,
the neighbors with earlier completing times must also be idle.
So, we also estimate their wasted resources during the period
from Vu completing his workload to getting new segments
(Algorithm 1, line 13).

Algorithm 2 Local 1-hop Status-based Workload Adjustment
1: /*Assume it is running onu and the other encounter isv*/
2: Get v’s 1-hop information fromv
3: ∆W ← |Φu −Φv |/2
4: while NSFT (u,∆W ) 6= NSFT (v,∆W ) do
5: if NSFT (u,∆W ) > NSFT (v,∆W ) then
6: if Φu > ∆W then
7: Φu ← Φu −∆W , Φv ← Φv +∆W
8: else
9: ∆W ← Φu

10: else
11: if Φv > ∆W then
12: Φu ← Φu +∆W , Φv ← Φv −∆W
13: else
14: ∆W ← Φv

15: ∆W ← ∆W/2
16: Send/receive∆W amount of workload to the other contactor

Fig. 2. Contacting graph of example data set.

C. Local 1-hop Status Information-based Workload Allocation

Whenever two users contact each other, they could real-
locate their workloads such that the work can be completed
at the same time. Intuitively, after exchanging and updating
their recorded neighborhood information, each node can figure
out an ideal size of the transferred workloads by using NSFT
algorithm. Here, we adopt the binary search algorithm to
estimate the size. Note that, in our model, both contactors
could run the NSFT algorithm and get the same value of the
transferred workload,∆W . Algorithm 2 gives the procedure.

In order to check the effectiveness of this1-hop
information-based algorithm, we compare it with the optimal
result and the naive result, respectively. In the naive case,
after two nodes meet each other, workloads are reallocated
according to their local processing speed. The optimal result is
based on posteriori knowledge: after events have happened,all
nodes’ contacting times and accepting decisions are recorded
and known. Based on this information, the optimal scheme
simply finds out the fastest relay paths from the work owner
node to any other participants. The optimal scheme calculates
the earliest work segment arriving time of each node, and then,
assigns an appropriate amount of workloads to the participants,
such that they will finish the job at the same time.

Figs. 3 to 7 illustrate the workloads’ average diffusion
patterns on a regular contacting graph (as shown by Fig. 2)
with the growth of observation time. The contacting graph is
based on karate club social graph [6]. When generating these
figures, we keep each node’s acceptance decision fixed, and
repeat the simulation10 times by randomly creating different
encountering times. On these graphs, the intensity of the gray
color at position(x, y) represents the carrying workload on
nodey at timex. We use the absolute work amount to represent
the unfinished workloads being carried on each node. The
darker a line’s color is, the more workloads that are held
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by a node. If a node becomes idle, we use white color to
represent it. The work’s processing progression is shown in
Fig. 8. In order to more accurately describe the contributions
of different schemes, we also consider an extreme social
contacting graph, where the nodes form a chain and each node
only has contact with the previous two nodes and next two
nodes. The simulation results of this special contacting graph
are given by Figs. 9 to 14.

From Fig. 3, we can see that, under the naive scheme, the
work segments do not fully spread. Many nodes barely have
work segments, and for some other nodes (such as nodes 1 to
5), they have not obtained appropriate amount of workload:
there are many white-colored intervals between the gray one.
From thex-axis, we can see that it takes almost1200 units
of time to finish the work. In Fig. 8, the slope of the brown-
diamond curve indicates the overall processing speed by using
the naive scheme. In this example, since nodes fail to transfer
an appropriate amount of the workload to other nodes, only
a limited amount of computing resources is used. Moreover,
during the simulation, we also find that the completion time
of this scheme is unpredictable, and is influenced by the
contacting sequences. As for the optimal result, shown by
Fig. 7, we can see that, during the initial phase (the first200
units of observation time), work segments are quickly spread
among nodes. As we have mentioned, in the optimal result, all
participants complete their work at the same time.

Compared with the naive scheme, the1-hop status
information-based algorithm (Fig. 4) can quickly disseminate
the workloads during the initial phase; however, from a long-
term perspective, the transferred amount at this phase is inap-
propriate, and therefore, some nodes are out of work quickly.
By further checking the size of assigned workloads, we find
that the scheme underestimates certain nodes’ potentiallyidle
abilities, especially during the initial phase. From the view
of the percentage of completed work, as shown in Fig. 7, we
observe a better result in which, the slop of the green-star curve
is larger than the brown-diamond one. The simulation resulton
the chain-style contacting graph gives us a similar result.By
comparing Figs. 11 and 12, we can clearly see that the1-hop
status information-based algorithm can better propagate work
segments than the naive scheme. However, by observing the
locations of the darkest points between Figs. 12 and 9, it seems
the initial participants should transfer more work segments to
the contactors.

D. Potential ability-based Workload Allocation

Influenced by the HITS algorithm [7], [8], which is used
for rating Web pages, we propose an algorithm for measuring
and ranking a node’s potential future computing ability that the
node could obtain by recruiting other nodes. Essentially, we let
each node be associated with two features: a local computing
speed and a potential speed. However, unlike the traditional
link analysis problems, the links in our model are associated
with both accepting rate and random contacting delay. For
addressing this problem, we design a special weight on each
link, which can successfully integrate the number of friends,
contacting delays, and accepting decisions together.

1) Weights of Contacting Edges: For a nodeVu, we con-
sider the following situation: if all neighbors ofVu are idle and

only Vu has a huge work with sizeL, what is the expected
amount of workload that each ofVu’s neighbors,Vv, can
obtain? We use the NSFT algorithm, which is discussed in
Section IV.B. However, the NSFT assumes that a pair of nodes
has already met. In the current problem, nodesVu and Vv

may or may not come across each other. Similar to previous
analysis, we need to measure the expected amount of wasted
computing resources,E [Wv], beforeVu meetsVv and transfers
workload to it. Here, we estimate the wasted workloads as
E [Wv] = Sv × E [inter-contacting time] = Sv/λuv. Let Φu

andΦv be the workloads on nodesVu andVv after encounter.
They should satisfy the following two conditions:

L = Φu +Φv + Sv/λuv (4)

NSFT (Φu) = NSFT (Φu) (5)

We useρuv to represent the expected percentage of workloads
that nodeVv can get fromVu.

ρuv = Puv ×
Φv

L
(6)

wherePuv is the accepting probability betweenVu and Vv.
Without loss of generality, we defineρuu as the following:

ρuu =
E [L− Φv]

L
=

∑

v∈N(u) [Puv × (L − Φv)]

L×
∑

v∈N(u) Puv
(7)

By normalizingρuv for all of u’s neighbors, we get a workload
transition matrixA = [Auv].

Auv =
ρuv

∑

v∈N(u) ρuv
(8)

For each nodeVu, the computation ofAuv for each neighbor
node Vv only requires nodeVu’s 1-hop information, and
therefore, each node can locally compute the transition weight
Auv to each neighbor. Note that the transition matrixA is not
a symmetric matrix, and

∑

v∈N(u)
⋂

Vu
Auv = 1.

Theorem 1: The transition matrix,A = [Auv]M×M , has
a stationary distribution,π1×M , such thatlimk→∞ Ak = 1π,
where1 is the column vector with all entries equal1.

Proof: We can model the propagation process of a single
work segment by a time-homogeneous Markov chain. Each
user (node) is a state. The state transition probability is given
by the transition matrixA, which is introduced in Section IV.
D. According to book [5] (Theorem4.1), a Markov chain has a
unique stationary distribution if it is irreducible and aperiodic.

According to our scheme (Algorithm.3 lines 3 to 6) for
generating the transition matrixA, all considered states are
accessible by the algorithm executing nodeVu. Since the
communication between nodes is bidirectional, any state in
A can access any other state by following a transition path
through nodeVu. Therefore, the Markov chain is irreducible.

In our model, the average inter-contacting time between
any pair of nodes is greater than zero. Therefore, the value of
Auu is non-zero. A state in a Markov chain is aperiodic if the
state’s transition probability to itself is greater than zero. Since
all states in our model have the self-loop, the Markov chain
is aperiodic. Based on the above two features of the transition
matrix A, the corresponding Markov chain has a stationary
distributionπ = [π1 π2 · · ·πM ]. πj =

∑∞
i=0 πi×Aij (j ≥ 0),

and
∑

j=0 πj = 1.



7

local speed−based scheme
n
o
d
e
 i
d
e
n
ti
ti
e
s

observation time
400 800 1200

5

10

15

20

25

30

Fig. 3. Single work: case 1

1−hop status−based scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200

5

10

15

20

25

30

Fig. 4. Single work: case 2

potential ability−based scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200

5

10

15

20

25

30

Fig. 5. Single work: case 3

adaptive scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200

5

10

15

20

25

30

Fig. 6. Single work: case 4

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

optimal scheme

400 800 1200

5

10

15

20

25

30

Fig. 7. Single work: case 5

0 250 500 750 1000 1250
0

0.2

0.4

0.6

0.8

1

observation time

p
e
rc

e
n
ta

g
e
 o

f 
c
o
m

p
le

ti
o
n

single work; regular structure

optimal

adaptive

one−hop

speed

potential

Fig. 8. Work progress comparison

optimal scheme; linear structure

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200 1600 2000 2400

5

10

15

20

25

30

35

Fig. 9. Special structure: case 5

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
special contact structure

observation time

p
e
rc

e
n
ta

g
e
 o

f 
c
o
m

p
le

ti
o
n

optimal

adaptive

one−hop

speed

potential

work arrives

Fig. 10. Work progress comparison

local speed−based scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200 1600 2000 2400

5

10

15

20

25

30

35

Fig. 11. Special structure: case 1

1−hop status−based scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200 1600 2000 2400

5

10

15

20

25

30

35

Fig. 12. Special structure: case 2

potential ability−based scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200 1600 2000 2400

5

10

15

20

25

30

35

Fig. 13. Special structure: case 3

adaptive scheme

observation time

n
o
d
e
 i
d
e
n
ti
ti
e
s

400 800 1200 1600 2000 2400

5

10

15

20

25

30

35

Fig. 14. Special structure: case 4

2) Estimation of Potential Ability: During the computation
of nodeVu’s potential ability, both the local computing ability
of a neighbor nodeVv and its potential ability should be regard-
ed asVu’s potential ability. However, on a social contacting
graph, since each node has more than one contactor, a node
must equally split its abilities among the neighbors. Here,we
adoptAuv as the weights for splitting. LetS(p)

u representVu’s
potential ability, then it can be recursively defined as following:

S(p)
u =

∑

v∈N(u)

Avu ×
[

S(p)
v + Sv

]

(9)

whereSv is the local computing speed of a node, andAvu is
the transition probability from nodeVv to Vu. One may note
that the value ofAuv is related to the selected value ofL.
In reality, instead of computing a single value, we calculate
a series of different values of〈L〉 = 〈L1, L2, · · · , Lk〉, and
weigh the corresponding results.

There are two common ways to compute the potential abil-
ity. The first approach is similar to the computing procedureof
the HITS algorithm: each node may simply store a temporary
score S

(p)
u (t), iteratively exchange the recorded score with

neighbors, and update the score by usingS
(p)
u (t + 1) =

∑

v∈N(u) Avu×
[

S
(p)
v (t) + Sv

]

. Ideally, after several rounds of

exchange,S(p)
u (t) becomes stable. However, at the end of each

iteration, the approach must normalize each node’s recorded
score by the total of the current scores; otherwise, the scores
will not converge.

The second approach is based on random walk. By analyz-
ing the definition function ofS(p)

u , we can see that the value of
S
(p)
u is essentially the sum of the computing speeds that each

node can contribute toVu along the opportunistic contacting
paths. In the second approach, each node sends out several
random walkers. Each walker is associated with a score, which
indicates the amount of speed that the originated node can
contribute to the walkers’ current resident node. Whenevera
walker passes a node, the resident node records the current
score of the walker, and the walker randomly selects its next
destination from the direct neighbors of the resident node.
Note that, with each transition from node to node, the walk’s
carrying score will be reduced according to the edge weight,
Auv. A walker stops moving when its score becomes less than
a pre-defined threshold. The potential ability is approximated
by the sum of a node’s recorded scores. Although the second
approach is fully distributed, in reality, the whole process may
take a long time and involve a lot data packages.

For simplifying the problem, we let each node gradually
learn other nodes’Auv and speeds via several rounds of node
pairwise contacting. Each node locally creates the whole social
contacting graph and computes the potential ability. One can



8

Algorithm 3 Potential ability-based Workload Allocation
1: /*Assume the algorithm is running onVu*/
2: /*Generation of the edge weights in matrixA*/
3: for Every nodev ∈ N(u) do
4: for EveryLi in 〈L1, L2, · · · , LK〉 do
5: ComputeA(Li)

uv for each sampling workload size
6: Compute the weighted average ofAuv based on the size distri-

bution of real works
7: /*ComputeVu and its neighbors’ potential abilityS(p)*/
8: Learn other nodes’Auv andSv via pairwise contacting
9: Compute potential ability by equation 9

10: /*Workload allocation scheme on nodeu*/
11: Exchange and update state information withv
12: if Vu is contactingVv andΦu +Φv > 0 then
13: Φ← Φu+Φv, α← (Su+βS

(p)
u )/(Su+Sv+βS

(p)
u +βS

(p)
v )

14: Φu ← αΦ, Φv ← (1− α)Φ

compute the value ofS(p)
u either by directly using equation 9,

or by first calculating matrixA’s stationary distributionπ and
then computingS× 1× π, whereS1×M is the speed vector.

3) Workload Allocation: Once obtaining the potential a-
bilities of direct contactors, a pair of encountering nodes
can redistribute their workloads according to their potential
abilities. Algorithm 3 shows the procedure for potential ability-
based work segments allocation. The basic idea of Algorithm3
is that, during the propagation of work segments, especially at
the initial phase, if participating nodes can roughly estimate
the overall ability of each work assigning flow, the work
segments could be disseminated more uniformly. Note that
the potential ability is a rough estimation about a participant’s
future computing capacity. In practice, one should consider
both the potential ability and local speed by assigning certain
weights to them (Algorithm 3 line 13).

Fig. 5 shows the diffusion process after using Algorithm 3.
This approach has a better performance than does Algorithm 2,
and it assigns more appropriate amount of work segments to
the participants. From Fig. 5, we can see that a large part of
participants (nodes15 to 34) are assigned with more workloads
within the first400 units of observation time. The completion
progression of a given work is presented in Fig. 8; From
the very beginning, Algorithm 3 beats Algorithm 2. However,
based on the algorithms, we know that the1-hop status-based
approach’s local workload adjustment is better than that ofthe
potential ability-based scheme: by further comparing Fig.4
with Fig. 5, we can see that1-hop status-based approach use
more idle resources on nodes5 to 15. However, in Figs. 12 and
13, we did not see such a difference. Probably due to the chain
structure, a1-hop status-based approach cannot equilibrate
the workloads well. Based on the respective advantages of
the 1-hop status-based scheme and the potential ability-based
scheme, we wonder whether we could combine them together
and get a better result.

E. Adaptive Scheme

Workload allocation process can be fuzzily partitioned into
three phases. Initially, most nodes are idle, but their realistic
accepting decision is unknown. In this phase, the large-scale
propagation of workloads, in a balanced way, should be the
first priority of an allocation scheme. As more and more nodes
participate in the cooperative work, the amount of exchanged

workloads gradually becomes smaller, and the undertaken
workload of each node trends to stable. Therefore, at the initial
phase, we allocate the workloads mainly based on each node’s
expected potential ability. Here, we adopt the potential ability-
based workload allocation method (Algorithm 3.) Because
most nodes have not participated in the new work, and the
workload partition decisions are made based on the average
condition, the workload allocation scheme used in this phase
is more progressive than those of the later phases.

As time grows, the accepting decisions of a majority of
nodes become clear. The workload allocation process grad-
ually enters the second phase, which focuses on balanced
distributing workloads among the real participating nodes. A
typical feature of phase two is that all participating nodesare
physically working on the same work’s segments, simultane-
ously. Nodes in our model essentially perform two operations:
processing work segments one-by-one, and re-balancing the
remaining workloads among the contactors within several hops
(these nodes virtually form a region). Although a certain
amount of workload has been transmitted from the source node
to each region, due to the uncertainty of nodes’ accepting
decision, the realistic workload distribution among different
regions may not be balanced. Therefore, we combine the
potential ability-based method with the local1-hop status-
based approach (Algorithm 2): the former approach helps to
re-balance workloads between different regions, and the latter
one re-allocates the workloads within each local region.

During the final stage, some nodes complete their work
and become idle again, while some other nodes are still
working. Opportunistically and locally re-balancing has the
top priority. Consider the fact that the local1-hop status-based
approach holds more accurate neighborhood completion time
information than the aggressive one. Hence, at the final stage,
we focus on using the1-hop status-based scheme.

Our adaptive solution basically combines the poten-
tial ability-based approach together with the local1-hop
information-based one. However, how to identify the three
phases discussed above, and how to smoothly switch between
the two approaches, is critical. Clearly, at the initial stage,
the expected work completion times are highly unbalanced,
where the expected finishing times for the initial participants
are much higher than others. Meanwhile, at the final stage,
the completion times are more uniformly distributed. Since
there is not a clear boundary between each stage, we use the
distribution of the expected completion times as an indicator,
which is able to quantitatively describe how much closer
the current system status is to the initial stage (a highly
biased distribution) and the final stage (a uniform distribution).
However, since the real-time global statuses are not available,
the completion times’ distribution is purely based on each
node’s local recording of the finishing time information about
other nodes. As we have mentioned in Section IV. A, a node
may learn other nodes’ expected completion times by multiple
rounds of information exchanging between different nodes.

We adopt the entropy of the completion times’ distribu-
tion [9] as the metric. Let∆W p be the amount of trans-
ferred workloads by using the potential ability-based scheme,
∆W l be the transferred workload by adopting a local1-hop
information-based scheme, andpi be the percentage of nodes
with completion timeti. The transferred work amount in our
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Algorithm 4 Time Adaptive-based Scheme
1: /*Assume the algorithm is running on nodeVu*/
2: for Every contact betweenVu and its neighborsVv do
3: Exchange and update state information
4: Compute the completion time’s distribution{pi}
5: α← 1 + log−1(M)×

∑
∀i pi log(pi)

6: Compute∆W p and∆W l by calling Algorithms 2 and 3
7: ∆W ← α×∆W p + (1− α)×∆W l

adaptive scheme is determined as follows:

∆W = α×∆W p + (1− α)×∆W l (10)

α = 1 +

∑

∀i pi × log(pi)

log(M)
(11)

whereα is a mixing parameter, andM is the total number
of a work’s participants. Whenpi = 0, we assign zero to the
computing result ofpi × log(pi). During the computing of
α, we compare the entropy of the current completion times’
distribution with that of the uniform distribution, which is
equal to

∑

M 1/M × log(1/M) = − log(M).

Algorithm 4 shows the procedure of our adaptive scheme.
Note that more than one work may coexist in our system. Since
the goal of this paper is to maximize the system’s overall
throughput, here, we do not discriminate the segments from
different works. Figs. 6 and 14 show the workload diffusion
pattern by using the adaptive scheme. By comparing Fig. 6
with Figs. 4 and 5, we can clearly see that the adaptive
scheme takes the advantage of both the potential ability-based
scheme and the local1-hop status-based scheme: in the initial
stage, workloads are widely and appropriately disseminated
among participants, and at the later stage, workloads are locally
equilibrated among neighbors. In Fig. 8, the proposed adaptive
solution is the best approximation algorithm. However, as
for the simulation result on the special chain-style contacting
graph, although the adaptive scheme still beats all other
solutions, its excellence is smaller than that of the simulation
on the regular contacting graph.

F. Example

Take Fig. 15 as an example. Assume that, at timet,
nodesVA and VB come across each other for the first time
(after the work arrived the system), and Fig. 15 (b) gives
the parameters about participants. The carrying workloadsof
VA andVD are1000, respectively. All other nodes have zero
workload. After the contact betweenVA and VB , intuitively,
VA should transfer a large portion of workload toVB , since
VB has more potential computing resources. However, if we
assign workload only based on local speed,VB can only get
0.01 × 1000/(1 + 0.01) ≈ 10 units of workload. According
to the current1-hop information ofVB , the 1-hop status-
based scheme first considers the available computing resources
within VB ’s neighborhood exceptVA, and then it will assign
834 workloads toVB such that the expected finishing times of
VA andVB are 166 and 167. Note that the estimation of the
finishing time also considers the impacts from the neighborsof
VB . If we adopt the potential ability-based scheme, the overall
potential abilities ofVA andVB are1.87 and8.49. However,
we should not directly use these scores, since the scores count
the potential speeds coming from both sides. By temporarily
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Fig. 15. A simple example about workload allocation in social-
crowdsourcing. Shadowed users indicate the ones carrying work segments.
Idle users are represented by the color white.

removing the edge betweenVA andVB, the mutual potential
abilities of them become0 and6.62. As a result,VB will get
(0.01 + 6.62) × 1000/(1 + 0 + 0.01 + 6.62) ≈ 869 units of
workload. Note that the computation of the potential speed is
related with the size of work. Here, we present another simpler
approach to compute the potential speed. After temporarily
removing the edge betweenVA and VB , the potential speed
of VB can be estimated as[λBC + (1− λBC)λBDλDC ]SC +
[λBD + (1 − λBD)λBCλCD]SD + (λBCλCE + λBDλDE −
λBCλCEλBDλDE)SE = 2.764. By using this score,VB will
get (0.01+2.764)× 1000/(1+0+0.01+2.764)≈ 735 units
of workload.

G. Further Discussion

In reality, it is possible that a work has more than one
owner. For example, a study group possesses a certain amount
of data, which needs to be processed. Each member of the
group could be the work’s owner. In order to guarantee that
the work segments that originated from different members have
the same work identity, the group may choose the smallest
identity of its group members, and concatenate it with the
releasing time as the work’s identity. For ease of description,
we call such casesmultiple sources conditions. We can assume
that there is a virtual node, which only has contact with each
of the group members. Since the workload allocation process
at all nodes, in multiple sources conditions, is the same as
that in the single source condition, our proposed adaptive
workload allocation scheme can still function well. Essentially,
the multiple sources conditions just shorten the length of the
initial propagation phase. Since the work segments’ diffusion
patterns are similar to the patterns of a single source condition,
we do not provide the illustration figures.

Any node could be the owner of a work. Therefore, it is
possible that different works coexist in our system. Clearly, if
there is always a large time gap between the arriving times of
different works, our schemes definitely work. However, it is
also possible that some works arrive while other works have
not been completed yet. Clearly, the coming of new works
may cause an unignorable difference between the recorded
workload statuses of other nodes and their real conditions.
However, since the goal of our paper is to maximize the
system’s overall throughput, instead of minimizing each work’s
completion time, all of our discussed schemes do not need to
discriminate the segments of different work.

Note that, when multiple works coexist in a system, min-
imizing the works’ completion time becomes a very difficult
problem. The segments from different works inevitably will
compete for the computing resources. Moreover, since social-
crowdsourcing is a fully-distributed system, and the makespan
of a work is determined by the finishing time of the last
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Fig. 21. Throughput rate comparison

segment, it is very hard for a node to appropriately allocate
the computing resources to different works based on the node’s
local view. One possible research direction is to explore the
backpressure routing algorithms [10]–[12]. However, unlike
the traditional routing problems, social-crowdsourcing does not
have the concept of message destination. We leave the problem
for minimizing the completion time as our future work.

Figs. 16 to 20 illustrate the work segments’ diffusion
patterns under different work allocation approaches. During the
simulation, we randomly create4 works with a relatively large
size. However, unlike the results in single source condition,
the work’s processing progression curves are closer to each
other. In order to clearly observe the differences between
schemes, instead of drawing the processing progression graph,
we consider the system throughput rate by each scheme,
as shown by Fig. 21. From the simulation results, we find
that, comparing to other schemes, the coexistence of multiple
works has a negative effect on the1-hop information-based
solution. One possible explanation is that, among all solutions,
the 1-hop information-based solution highly depends on the
recorded workloads of neighbor nodes; due to the arrival of
new works, the workload status information changes much
more frequently. When the changing rate exceeds the records’
updating rate about a majority of neighbors, nodes will make
wrong workload allocation decisions, which could also result
in a chain reaction. Although the adaptive scheme also uses
the historical information, it still has the best performance. The
reason is that, whenever a node receives a statue of information
indicating the existence of a new work, the node will mainly
use the workload allocation decision based on potential ability.
Therefore, the chain reaction of the wrong decisions is avoided.

V. PERFORMANCEANALYSIS AND EVALUATION

In this section, we conduct extensive simulations to eval-
uate the performances of our proposed algorithms. For ease
of comparison, we call the naive scheme, which simply splits

workloads according to the contactors’ local computing speeds,
speed, the allocation scheme based on each contactor’s local
1-hop historic information is calledone-hop, the algorithm that
pre-calculates a participant’s future potential computing ability
is calledpotential, and the algorithm that adaptively switches
different allocation methods is calledadaptive. In order to
compare these solutions with the optimal results, after the
whole observation is completed (posterior knowledge), we find
the optimal allocation and useoptimal to represent it. Based
on the posterior knowledge, one can compute the shortest path
from source to participants, and the optimal allocation canbe
found by letting all participants complete their workload at the
same time. Although this algorithm is useless in practice, we
can use its result as a comparison criterion.

A. Evaluation Setup and Comparison Metric

The evaluations use both synthetic data and real data.
In the synthetic simulation, we use a real social network
data set called karate club [6]. However, since in real life
the social-crowdsourcing system always contains too much
diversity, such as users’ computing features, in order to quickly
and accurately find out the changing trends of our interested
attributes, in each simulation, we only change one variable.
The work source nodes are randomly selected, and each
simulation is executed10 times. There are34 users, and
average inter-contacting time between each pair of nodes is
uniformly distributed from40 units of time to100 units of
time. The computing speed of nodes also follows a uniform
distribution from0.0001 to 10 units of work per unit of time.
The total size of a work is set as200, 000 units. The accepting
rates are uniformly distributed in the interval from0.35 to 0.99.
We take3, 000 units of time as the length of an observation.
In the real data-based experiments, we use Infocom06 trace.
We eliminate the nodes with very low contacting frequencies,
and we only use the data that was collected during daytime.

For efficient comparison, we adopt two metrics: percentage
of completion and system (average) throughput rate. As we
have mentioned in the introduction, the more nodes that join
the system at an earlier phase, the sooner the work can
be completed. The first metric can clearly show how well
work segments are disseminated and processed within the
systems at any time. By using this metric, one can observe
the impacts of different methods on work segment diffusion.
The second metric calculates the utilization of the system’s
available resources. The system throughput rate is computed
as the ratio between the number of computing resources that
have been used during an observation (the time interval before
a majority of work segments has been completed) and the total
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number of available resources that the system can provide.
Due to the existence of work segments’ propagation delays,
system throughput rate can never reach100%, even for the
optimal result. The closer that a scheme comes to approaching
the optimal result, the higher the system throughput rate is.
The simulation basically consists of three parts. The first part
focuses on the allocation of a single work on a regular social
contacting graph, the second part shows the results regarding
multiple works coexisting in our system, and the last part gives
the results based on real trace.

B. Evaluation results

Fig. 22 shows the impacts of average accepting ratio on
task’s processing progress. During the simulation, we keepthe
average inter-contacting time of nodes uniformly distributed
from 40 to 100 time units. The computing speeds are also
randomly and uniformly generated with the interval(0, 10]
units of work per unit time. The minimal average acceptance
rate is 35%, and the maximum is99%. In Fig. 22, thex-
axis represents the observation time, and they-axis indicates
the percentage of workloads that have been completed by
the observed time. We can see that, with the growth of the
accepting rate, the speed-based allocation scheme performs
worse. One possible explanation is that when there are more
participants in the system, the scheme cannot properly deter-
mine the workloads during each time of contacts. However, as
the average accepting rate grows, it processes more quickly:
the shape of its curve becomes closer to the upper left cornerof
the graph. For the other four methods, their work’s processing
progresses also become better at the high accepting rate
scenario. Since the percentage of completion lines may become
closer to each other, for the rest of evaluation, we focus on the
average value of the system throughput rate.

Fig. 23 shows the impacts of average accepting ratio
on the system throughput rate. With the increasing of the
average accepting rate, all schemes’ system throughput rates
are growing upward. When the system has only a single task
(Fig. 23 (a)), the growing speed of the optimal scheme is much
faster than the other four solutions, and therefore, there is a
gap between the optimal result and others. However, when
there are multiple tasks (Figs. 23 (b) and (c)), the optimal
scheme, the adaptive scheme, and the potential-ability-based
scheme have similar throughput rates at the higher accepting
rates. One possible explanation is that, when there is a single
work within a social-crowdsourcing system, a certain amount
of computing resources is wasted due to the inappropriate
workload assignments; however, when the system contains
multiple works from different sources, those unused resources
are taken by other works, and therefore, the system throughput
lines become closer to the optimal one in multiple works
condition. Fig. 23 (d) gives the simulation results on real
trace. Note that our approximation algorithms only consider
the pairwise contacts, but in this real trace, there are situations
where a group of users encounter each other at the same time.
In these situations, we simply assign a sequential order to each
pair of contacts, and then apply our algorithms. For Fig. 23
(d), we can see that the system throughput rate goes up with
the increasing of accepting rate and becomes relatively stable
at high accepting rate part.

In Fig. 24, we check the impacts of users’ average com-

puting speeds on the system throughput rate. We let the
average speed gradually change from a relatively low speed
to a high speed. During this process, we check the system
throughput rate under three distinct conditions: a system with
a single work, a system with multiple works (periodically
arrived), and a system with multiple randomly arrived works.
We also test our scheme on real trace with a single work
source. All simulation results show that, with the average speed
growing upward, the throughput of all workload allocation
methods decrease. When nodes have higher computing speeds,
obviously, the completion time of the works can be reduced.
As a result, the effect of the amount of wasted resources
during the work segments’ propagation phase exacerbates the
system’s overall throughput. We further check the influence
of the average computing speed on the changing pattern of
completion time. For a given fixed-size work, with the growing
speed, the completion time becomes smaller, but the reducing
speed is not linear. One possible explanation is that, with the
growth of the speed, a task can be finished before other workers
participate in the task. One interesting phenomenon in Fig.24
is that, comparing to the situation of single work source, the
performance of one-hop scheme becomes worse when multiple
works coexisting in the system. Since the contacts in our
system are intermittent, we think this phenomenon is related
with the timeliness of historic neighborhood workload records.
One way to solve the problem is to assign a time window for
each node’s historic records. The length of the window must
be related with the node’s contacting rates with others. For
example, we can first set up a thresholdl about contact times,
and then compute the expected time∆t for a node to have
l times of contacts with others. The expected time∆t will
be used as the window’s size. Once a record about historic
workload expires, it will be invalid.

Next, we consider the influence of the size of works.
In social-crowdsourcing, a system’s computing resources are
wasted during the segments’ propagation phase. For a huge
work, its work segments’ propagation times are relatively
small, compared to its completion time. Therefore, in general,
the system throughput rate of a large work must be greater than
that of a small-sized work. The simulation results are consis-
tent with our qualitative analysis. In Fig. 25, the throughput
rates increase along with growing work sizes. When there is
only a single work in the system, there is a small gap on
the throughput values of the optimal scheme and the others.
However, when the system contains multiple works, such a
gap disappears. The reason for this phenomenon is that, when
nodes fully-occupy work segments (from plenty of tasks),
the nodes always possess unfinished segments. Therefore,
when propagating a task’s segments, workers are using their
resources on another task; no system resources are wasted.

Fig. 26 shows the impacts of users’ average inter-contacting
time. The average inter-contacting time directly affects the
frequency of the segments’ redistribution among nodes. The
more frequently segments are exchanged, the more likely it
is that the workloads of workers are balanced. As shown by
Fig. 26, all schemes’ system throughput rates are decreasing
with the growth of average inter-contacting time. Moreover,
all of them have a similar decreasing rate. It seems that the
average inter-contacting time has a similar influence on all
workload allocation approaches.
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(b) single source, accepting rate:90%

0 600 1200 1800 2400 3000
0

0.2

0.4

0.6

0.8

observation time

p
e
rc

e
n
ta

g
e
 o

f 
c
o
m

p
le

ti
o
n optimal

adaptive

one−hop

speed

potential

works arrive

(c) multi-source, accepting rate:50%
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Fig. 22. The impacts of average accept ratio on processing progress
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Fig. 23. Impacts of average accepting ratio on the system throughput rate
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Fig. 24. Impacts of average speed on the system throughput rate
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Fig. 25. Impacts of the size of works on the system throughputrate

Fig. 27 shows the impact of the number of work sources.
In this simulation, we assume that there is a huge work,
the segments of which are owned by several users. Unlike
the condition of multiple works, here, the multiple source
condition requires that all owners of a single work put the
work into social-crowdsourcing at the same time. During the
simulation, we gradually increase the number of the work
segments’ owners from1 to 10. The total size of the whole
work is a fixed value, and all work sources are randomly
selected. From Fig. 27, we can see that our proposed adaptive
scheme has the highest system throughput rate, compared
to the other three approaches. All methods experience an

increment with the growth of the number of sources. Since the
total number of users is a fixed value, increasing the number
of work owners can reduce its completion time, but the speed
must converge to the condition that every node has already
possessed his corresponding workload at the beginning.

When a social-crowdsourcing system contains multiple
works, the arrival of a new work may disturb the current
workload distributions. In this simulation, we want to check
the mutual influence among works. Fig. 28 shows the impact
of the number of coexisting works on our system, especially
when the works randomly come at different times. If one work
has not been finished while the other works appear, there must
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Fig. 26. Impacts of the average length of inter-contacting time on the system throughput rate
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Fig. 27. Impact of the num. of sources
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Fig. 28. Impact of the number of works
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Fig. 29. Impact of arriving density

be certain interference between the old and the coming new
works. In simulation, there are2 to 10 works randomly coming
during the observation time. The total length of the observation
is set as3, 000 units of time. The works’ arrival times follow
a uniform distribution. Also, the works’ owners are randomly
selected, and the total size of the works is a fixed value. We
observe the system throughput rate decrease with the growth
of the number of works. Moreover, all of them have a similar
increasing pattern. Fig. 28 shows that the coexisting of multiple
works do influence the workload assignments.

Since the arrival of a new work may interfere with the
existing ones, in this part of simulation, we check the impacts
of works’ arriving densities. We let works be periodically
generated at some random nodes, and we gradually increase
the period from50 to 300 units of time, which means the
arriving densities change from high to low. Fig. 29 gives
simulation results: with the growth of the length of periods, the
system throughput rate decreases. Although our approximation
algorithms try to assign certain workloads to nodes such that
they can complete the task at the same time, the real finishing
times are different; In fact, lots of resources are wasted during
the a work’s ending stage. When works arrive in a shorter
period, the nodes, who just finished the previous work, are
able to work on the new one.

VI. RELATED WORK

In crowdsourcing [3], [13], [14], a tedious work is often
subdivided into smaller pieces, which are then assigned to
an undefined group of workers [15]. However, the current
crowdsourcing systems are centralized [16]. Workers proac-
tively join a crowdsourcing platform and seek tasks. When
using a crowdsourcing platform [17], [18], inevitably, someone
has to pay a fee for using the centralized server. For example,
currently, Mturk collects a10% commission on top of the
amount that you paid for your work [19]. Moreover, these
centralized platforms cannot assign works to the workers if

there is not an internet connection. Paper [20] proposed an
archetype for building a distributed crowdsourcing systemin
DTN. In this paper, we extend their model on mobile social
networks, and further analyze the schemes for opportunis-
tically allocating work segments among participants. When
determining nodes’ workloads, our schemes take contacting
delay, computing speed, acceptance probability, the number of
initial work sources, and the existence of resource competition
works, into consideration.

Scheduling is a process of determining how to commit
machines (executants) among a variety of works. Based on
the number of executants, scheduling can be categorized into
single-machine scheduling [21] or multiple-machine schedul-
ing [22]. Generally speaking, the scheduling method used in
this paper belongs to the multiple-machine scheduling. As the
name suggests, multiple-machine scheduling tries to make up
schedules for different executants. However, in our model,
data segments are transferred based on nodes’ opportunistic
contacts. We cannot explicitly assign an exact work segmentor
workload, to a specific machine in advance, like the traditional
multiple-machine scheduling did.

Scheduling in distributed systems involves load-balance
and congestion control [23]. For the heterogeneous system,
where nodes have different computing abilities, partitionable
workloads are considered. Usually, a task is divided into
different-sized segments, according to the capability of their
executants [24], [25]. But in our problem, the size of an
assigned workload is not only related with the local computing
ability of a node, but also the abilities of the node’s future
contactors. Backpressure routing [10] is an algorithm for dy-
namically adjusting traffic over a multi-hop network. However,
backpressure routing is hard to implement in a fully-distributed
style, and it aims at enhancing the throughput of a network,
while, our problem focuses on designing a local algorithm for
reducing the completion time of works. Adopting backpressure
routing may not be a good solution for our problem.
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VII. C ONCLUSION

In this paper, we proposed a new crowdsourcing system,
called social-crowdsourcing. Unlike the traditional outsourc-
ing platforms, our system is a distributed and self-organized
system, which explores the social relations among users.
Based on the proposed system, we consider the problem
of workload partitioning and allocation among users. Un-
like the traditional scheduling problems, the solution to our
problem needs trade-offs between users’ computing abilities,
participance probabilities, and their social neighbors’ abilities.
By observing the work segments’ diffusion pattern, we find
that, at different processing stages, we should adopt different
workload allocation schemes, from the progressive one to the
conservative one. In this paper, we first propose a conservative
approach and a progressive approach, and then, we design
an adaptive mechanism to combine the two approaches. The
proposed progressive scheme is based on the overall computing
ability of each user’s future potential contactors, and the
conservative scheme takes the historical workload statuses of
nodes’ 1-hop neighbors into account. For automatically and
gradually switching between different approaches, we consider
the distribution of each node’s expected completion time, based
on collected historical information: a highly biased distribution
indicates that the system needs a progressive way to transfer
the surplus workloads to others, while an approximately unifor-
m distribution simply requires local adjustment. Our solution is
applicable, not only when a system has a single work, but also
when the system contains multiple coexisting works. Extensive
simulations prove the significant performance of our schemes.
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