Fast Interference-Aware Scheduling of Multiple Wireless Chargers

Zhi Ma*,†, Jie Wu†, Sheng Zhang*, and Sanglu Lu*

*State Key Lab. for Novel Software Technology, Nanjing University, CN
†Center for Network Computing, Temple University, USA
Outline

• Background and contributions
• Model and problem formulation
• Algorithm design
• Performance evaluation
• Conclusion
Background

• Wireless Sensor Network
 – Sensors are powered by small batteries;

• Long-distance charging – Low efficiency

• Ways to improve
 – Increase chargers’ power
 – Use multiple chargers
Background

- Combined energy
 - Combined energy is additive?
Background

- Related work:
 - Calculate the charging energy in advance; complexity grows exponentially with the number of chargers.

- Discovery:
 - Strong and weak areas.

- Diagram:
 - Energy received by sensor vs. distance from charger 1 (m).
 - Comparison between Linear Model and Nonlinear Model.
Contributions

• We apply a new charging model with nonlinear super-position into the FCS problem \(\rightarrow\) NP-complete;

• We propose FastPick algorithm in 1D line \(\rightarrow\) bound (2-\(\epsilon\));

• We propose RoundPick algorithm in 2D network \(\rightarrow\) bound;
Models

• Network model
 – N stationary sensor nodes \(\{ s_1, s_2, \ldots, s_n \} \) and M chargers \(\{ c_1, c_2, \ldots, c_m \} \)

• Charging model
 – frequency component \(\omega_0 \), amplitude \(A_0 \), initial phase \(\varphi_0 \), power attenuation factor \(2 \)
 – Radio signal received by sensor from charger \(c_i \)
 \[
 a_{i0}(t) = \frac{A_0}{4\pi d_{ij}/\lambda} \cos(\omega_0 t + \varphi_0 - 2\pi \frac{d_{ij}}{\lambda})
 \]
 – Radio signal received by sensor \(s_j \) from charger set \(C \)
 \[
 A_0^j(t) = \sum_{c_i \in C} a_{i0}(t) = \sum_{c_i \in C} \frac{A_0}{4\pi d_{ij}/\lambda} \cos(\omega_0 t + \varphi_0 - 2\pi \frac{d_{ij}}{\lambda})
 \]
Models

• Charging model
 - Power received by sensor s_j from charger set C

 $$P_{j|C} = \int [A_0^j(t)]^2 d\omega$$

 $$= P \sum_{c_i \in C} \frac{1}{d_{ij}^2} + P \sum_{c_i \in C} \sum_{c_m \in C, c_m \neq c_i} \frac{1}{d_{ij}d_{mj}} \cos(2\pi \frac{d_{ij} - d_{mj}}{\lambda})$$

 - where $P = \int p_i d\omega$, $p_i = \frac{A_i^2}{2}$
Models

• Harvesting model
 – Threshold of power: ϵ
 – Energy capacity: E

\[
e_{j|C,t} = \begin{cases}
0 & \text{if } P_j|_C < \epsilon \\
0 & \text{if } P_j|_C > \epsilon \text{ and } e'_j > E \\
\alpha t(P_j|_C - \epsilon) & \text{otherwise}
\end{cases}
\]
Problem Formulation

• We use H_i to denote i_{th} charging schedule
 - $H_2 = \{1, 0, 1, 0\}$;
 - Δ denotes charging duration.

• Problem:
 - Given a set C of chargers with fixed position, a set S of rechargeable sensors, a set $\{d_{ij} \mid 1 \leq i \leq N, 1 \leq j \leq M\}$ of distance between c_i and s_j, and an energy capacity E of each sensor, FCS is to find a set of multiple charging schedules $\{H_1, H_2, ..., H_k\}$, to charge each sensor with energy no less than E, and k is minimized.
• Rational
 – Assumption: all frequency are the same;
 – Observation: difference of phases between two chargers
• FastPick (Initial phases are adjustable)
 – Choose the sensor with the least energy;
 – Find two chargers that are closest to this sensor;
 – Adjust their initial phases to make most sensors lie in their strong areas;
 – Adjust other chargers’ initial phases to make the strong and weak areas are the same;
 – Reverse the original weak and strong areas.
One-Dimension Line

• Approximation Ratio

 – Lower bound: T (All chargers strengthen each other);
 – FastPick is at most 2 times longer than T;
 – T is smaller than OPT;
 – FastPick is $2-\varepsilon$ approximate.
Two-Dimension plane

• Challenges
 – Irregular;
 – Two directions;
 – Cannot coincide.
Two-Dimension Plane

• Partition
 – Every sensor in one slot should be covered by chargers in this slot;
 – There is at least one charger in a slot;
 – The length of slot side should be minimized but no less than $2 \times R$ (R is the charging radius).
• RoundPick
 – Partition the network;
 – In each iteration, algorithm first computes each two chargers strong areas in each slot, then chooses a sensor with the least energy;
 – Add new chargers if more energy would be received;
 – Move slot.

 – We also get a bound of $6-4\epsilon$
Evaluations

• Settings

 – Wave length $\lambda = 0.33\text{m}$, threshold of harvesting energy is 15uW,

 – Distance threshold 6.78m, $(0.25 \times \frac{4}{4\pi \times d^2} = 0.015\text{mW})$

 – Default number of charger 12, sensor 50, energy capacity 4mJ.
Evaluations
Thank you

Q&A