

Fast Interference-Aware Scheduling of Multiple Wireless Chargers

Zhi Ma*+, Jie Wu+, Sheng Zhang*, and Sanglu Lu* *State Key Lab. for Novel Software Technology, Nanjing University, CN +Center for Network Computing, Temple University, USA

Outline

- Background and contributions
- Model and problem formulation
- Algorithm design
- Performance evaluation
- Conclusion

Background

- Wireless Sensor Network
 - Sensors are powered by small batteries;

Background

- Combined energy
 - Combined energy is additive?

Background

• Related work:

Contributions

- We apply a new charging model with nonlinear super-position into the FCS problem →NP-comlete;
- We propose FastPick algorithm in 1D line \rightarrow bound (2- ε);
- We propose RoundPick algorithm in 2D network \rightarrow bound;

Models

- Network model
 - N stationary sensor nodes $\{s_1, s_2, \dots, s_n\}$ and M chargers $\{c_1, c_2, \dots, c_m\}$
- Charging model
 - frequency component ω_0 , amplitude A_0 , initial phase φ_0 , power attenuation factor 2
 - Radio signal received by sensor from charger c_i

$$a_{i0}(t) = \frac{A_0}{4\pi d_{ij}/\lambda} \cos(\omega_0 t + \varphi_0 - 2\pi \frac{d_{ij}}{\lambda})$$

- Radio signal received by sensor s_j from charger set C

$$A_0^j(t) = \sum_{c_i \in C} a_{i0}(t) = \sum_{c_i \in C} \frac{A_0}{4\pi d_{ij}/\lambda} \cos(\omega_0 t + \varphi_0 - 2\pi \frac{d_{ij}}{\lambda})$$

Models

- Charging model
 - Power received by sensor s_j from charger set C

$$P_{j|C} = \int \overline{[A_0^j(t)]^2} d_\omega$$

= $P \sum_{c_i \in C} \frac{1}{d_{ij}^2} + P \sum_{c_i \in C} \sum_{\substack{c_m \in C \\ c_m \neq c_i}} \frac{1}{d_{ij} d_{mj}} \cos(2\pi \frac{d_{ij} - d_{mj}}{\lambda})$

- where
$$P = \int p_i d_\omega$$
, $p_i = \frac{A_i^2}{2}$

Models

- Harvesting model
 - Threshold of power: ϵ
 - Energy capacity: *E*

$$e_{j}|_{C,t} = \begin{cases} 0 & \text{if } P_{j}|_{C} < \epsilon \\ 0 & \text{if } P_{j}|_{C} > \epsilon \\ \alpha t(P_{j}|_{C} - \epsilon) & \text{otherwise} \end{cases} \text{ and } e'_{j} > E$$

Problem Formulation

- We use H_i to denote i_{th} charging schedule
 - $H_2 = \{1,0,1,0\};$
 - $-\Delta$ denotes charging duration.

• Problem:

- Given a set C of chargers with fixed position, a set S of rechargeable sensors, a set $\{d_{ij} \mid 1 \le i \le N, 1 \le j \le M\}$ of distance between ci and sj, and an energy capacity E of each sensor, FCS is to find a set of multiple charging schedules $\{H_1, H_2, \dots, H_k\}$, to charge each sensor with energy no less than E, and k is minimized.

One-Dimension Line

• Rational

- Assumption: all frequency are the same;
- Observation: difference of phases between two chargers

One-Dimension Line

• FastPick (Initial phases are adjustable)

- Choose the sensor with the least energy;
- Find two chargers that are closest to this sensor;
- Adjust their initial phases to make most sensors lie in their strong areas;
- Adjust other chargers' initial phases to make the strong and weak areas are the same;
- Reverse the original weak and strong areas.

One-Dimension Line

- Approximation Ratio
 - Lower bound: T (All chargers strengthen each other);
 - FastPick is at most 2 times longer than T;
 - T is smaller than OPT;
 - FastPick is $2-\varepsilon$ approximate.

Two-Dimension plane

- Challenges
 - Irregular;
 - Two directions;
 - Cannot coincide.

Two-Dimension Plane

• Partition

- Every sensor in one slot should be covered by chargers in this slot;
- There is at least one charger in a slot;
- The length of slot side should be minimized but no less than 2 * R (R
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 <lii
 i
 <lii
 i
 i<

Two-Dimension Plane

• RoundPick

- Partition the network;
- In each iteration, algorithm first computes each two chargers strong areas in each slot, then chooses a sensor with the least energy;
- Add new chargers if more energy would be received;
- Move slot.

– We also get a bound of $6-4\varepsilon$

Evaluations

• Settings

Evaluations

Thank you Q&A