Fast Interference-Aware Scheduling of

 Multiple
Wireless Chargers

Zhi Ma*†, Jie Wu†, Sheng Zhang*, and Sanglu Lu*
*State Key Lab. for Novel Software Technology, Nanjing University, CN
†Center for Network Computing, Temple University, USA

Outline

- Background and contributions
- Model and problem formulation
- Algorithm design
- Performance evaluation
- Conclusion

Background

- Wireless Sensor Network
- Sensors are powered by small batteries;

Background

- Combined energy
- Combined energy is additive?

Background

- Related work:

Contributions

- We apply a new charging model with nonlinear super-position into the FCS problem \rightarrow NP-comlete;
- We propose FastPick algorithm in 1D line \rightarrow bound (2- E);
- We propose RoundPick algorithm in 2D network \rightarrow bound;

Models

- Network model
- N stationary sensor nodes $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and M chargers $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$
- Charging model
- frequency component ω_{0}, amplitude A_{0}, initial phase φ_{0}, power attenuation factor 2
- Radio signal received by sensor from charger c_{i}

$$
a_{i 0}(t)=\frac{A_{0}}{4 \pi d_{i j} / \lambda} \cos \left(\omega_{0} t+\varphi_{0}-2 \pi \frac{d_{i j}}{\lambda}\right)
$$

- Radio signal received by sensor s_{j} from charger set C

$$
A_{0}^{j}(t)=\sum_{c_{i} \in C} a_{i 0}(t)=\sum_{c_{i} \in C} \frac{A_{0}}{4 \pi d_{i j} / \lambda} \cos \left(\omega_{0} t+\varphi_{0}-2 \pi \frac{d_{i j}}{\lambda}\right)
$$

Models

- Charging model
- Power received by sensor s_{j} from charger set C

$$
\begin{aligned}
P_{j \mid C} & =\int \overline{\left[A_{0}^{j}(t)\right]^{2}} d_{\omega} \\
& =P \sum_{c_{i} \in C} \frac{1}{d_{i j}^{2}}+P \sum_{\substack{c_{i} \in C}} \sum_{\substack{c_{m} \in C \\
c_{m} \neq c_{i}}} \frac{1}{d_{i j} d_{m j}} \cos \left(2 \pi \frac{d_{i j}-d_{m j}}{\lambda}\right)
\end{aligned}
$$

- where $P=\int p_{i} d_{\omega}, p_{i}=\frac{A_{i}^{2}}{2}$

Models

- Harvesting model
- Threshold of power: ϵ
- Energy capacity: E

$$
\left.e_{j}\right|_{C, t}= \begin{cases}0 & \text { if }\left.P_{j}\right|_{C}<\epsilon \\ 0 & \text { if }\left.P_{j}\right|_{C}>\epsilon \text { and } e_{j}^{\prime}>E \\ \alpha t\left(\left.P_{j}\right|_{C}-\epsilon\right) & \text { otherwise }\end{cases}
$$

Problem Formulation

- We use H_{i} to denote $i_{t h}$ charging schedule
$-H_{2}=\{1,0,1,0\} ;$
- Δ denotes charging duration.
- Problem:
- Given a set C of chargers with fixed position, a set S of rechargeable sensors, a set $\left\{d_{i j} \mid 1 \leq i \leq \mathrm{N}, 1 \leq \mathrm{j} \leq \mathrm{M}\right\}$ of distance between ci and sj, and an energy capacity E of each sensor, FCS is to find a set of multiple charging schedules $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$, to charge each sensor with energy no less than E , and k is minimized.

One-Dimension Line

- Rational
- Assumption: all frequency are the same;
- Observation: difference of phases between two chargers

2018/1C

One-Dimension Line

- FastPick (Initial phases are adjustable)
- Choose the sensor with the least energy;
- Find two chargers that are closest to this sensor;
- Adjust their initial phases to make most sensors lie in their strong areas;
- Adjust other chargers' initial phases to make the strong and weak areas are the same;
- Reverse the original weak and strong areas.

One-Dimension Line

- Approximation Ratio
- Lower bound: T (All chargers strengthen each other);
- FastPick is at most 2 times longer than T;
- T is smaller than OPT;
- FastPick is $2-\varepsilon$ approximate.

Two-Dimension plane

- Challenges
- Irregular;
- Two directions;
- Cannot coincide.

Two-Dimension Plane

- Partition
- Every sensor in one slot should be covered by chargers in this slot;
- There is at least one charger in a slot;
- The lenoth of slot side should he minimized hut no less than $2 * \mathrm{R}(\mathrm{R}$

- - - Partition into 4 slots
-- Partition into 2 slots
__ Partition into 1 slot
- Charger
- Sensor

Two-Dimension Plane

- RoundPick
- Partition the network;
- In each iteration, algorithm first computes each two chargers strong areas in each slot, then chooses a sensor with the least energy;
- Add new chargers if more energy would be received;
- Move slot.
- We also get a bound of $6-4 \varepsilon$

Evaluations

- Settings

Evaluations

Thank you
 Q\&A

