
Fused-Layer-based DNN Model Parallelism and
Partial Computation Offloading

Mingze Li∗, Ning Wang†, Huan Zhou∗, Yubin Duan§, and Jie Wu§

∗College of Computer and Information Technology, China Three Gorges University, Yichang, China
†Department of Computer Science, Rowan University, Glassboro, USA

§Center for Networked Computing, Temple University, Philadelphia, USA

Abstract—With the development of Internet of Things (IoT)
and the advance of deep learning, there is an urgent need to
enable deep learning inference on IoT devices. To address the
computation limitation of IoT devices in processing complex
Deep Neural Networks (DNNs), partial computation offload-
ing is developed to dynamically adjust computation offloading
assignment strategy in different channel conditions for better
performance. In this paper, we take advantage of intrinsic DNN
computation characteristics, and propose a novel Fused-Layer-
based (FL-based) DNN model parallelism method to accelerate
inference. The key idea is that a DNN layer can be converted to
several smaller layers to increase partial computation offloading
flexibility, and thus further create better computation offloading
solution. However, there is a trade-off between parallelism com-
putation offloading flexibility and model parallelism overhead.
Then, we discuss the optimal DNN model parallelism and the
corresponding scheduling and offloading strategies in partial
computation offloading. In particular, we present a Minimizing
Waiting (MW) method, which explores both the FL strategy,
the path scheduling strategy, and the path offloading strategy
to reduce time complexity. Finally, we validate the effectiveness
of the proposed method in commonly used DNNs. The results
show that the proposed method can reduce the DNN inference
time by an average of 18.39 times compared with No FL (NFL)
algorithm, and is very close to the optimal solution Brute Force
(BF) with greatly reduced time complexity.

Index Terms—FL, DNN inference, partial offloading, model
parallelism

I. INTRODUCTION

With the popularity of mobile devices and the advance of

wireless access technique, the booming mobile applications

have led to the explosive growth of data traffic [1]. According

to the International Data Corporation’s report [2], the global

data center traffic will reach 163 zettabytes by 2025, and

more than 75% of the data will be processed at the edge of

the network. Deep learning has shown success in complex

tasks, including computer vision, natural language processing,

machine translation and many other tasks. One of the obstacles

in using deep learning in Internet of Things (IoT) systems is

that IoT devices cannot provide real-time and high-precision

results at the same time due to their computation resource

limitation [3].

To reduce the Deep Neural Network (DNN) inference time,

recent studies have explored end device-only computation, full

computation offloading, and partial computation offloading.

In end device-only computation, existing research accelerates

DNN inference by optimizing the DNN structure or using

multiple cores [4]. Putic et al. [5] proposed DyHard-DNNs

to significantly reduce computation time, in which accelerator

microarchitectural parameters are dynamically reconfigured

during the execution of DNN. Microsoft and Google developed

small-scale DNNs for speech recognition on mobile platforms

by sacrificing the high prediction [6]. In full computation

offloading, raw data is offloaded to the Edge Server (ES)

directly in this category [7]–[9]. Fang et al. [10] introduced an

alternating direction method of multipliers to prune filters in a

layerwise manner, and then accelerated the DNNs on the ES.

In partial computation offloading, a DNN model is decom-

posed into layer-level subtasks and the intermediate feature

layer is offloaded to the ES by following the corresponding

processing dependencies [11]. In general, the intermediate

DNN layers have much smaller data sizes and thus lower

transmission time [12]–[14]. Duan et al. [15] minimized the

DNN inference time by jointly optimizing multiple DNNs

partitioning and scheduling.

However, in the existing parallel DNN computing studies,

the design of fine-grained partitioning of DNN models and

parallel computing strategies in edge computing environment

still lacks due attention. Therefore, the partial computation

offloading’s advantage is not maximized. In this paper, we

first use the Fused-Layer (FL) technique to convert a single

sequence of DNN layers into multiple sequences, called paths,

where each FL path consists of a sequence of small layers

without modifying the inference result [16]. As a result, we

create more flexibility in partial computation offloading by

scheduling small layers. However, the FL technique also brings

some challenges: (1) Determining the optimal FL strategy is

challenging due to the trade-off between parallelism compu-

tation offloading flexibility and model parallelism overhead;

(2) The FL technique leads to a more complicated DNN

architecture, which is abstracted as a Directed Acyclic Graph

(DAG), and thus it is non-trivial to determine the optimal path

offloading strategy and path scheduling strategy.

To solve the aforementioned two challenges, we propose a

Minimizing Waiting (MW) method, which jointly considers

the impact of FL strategy, path scheduling strategy and path

offloading strategy. Specifically, we first heuristically deter-

mine the path scheduling strategy and path offloading strategy.

Then, we traverse the possible number of FL paths and FL



0 0 0

1 0 1

0 1 0

Kernel
0 0 0

1 0 1

0 1 0

Kernel

y
1316

2010
16 13

2010

1 2
1

2

0 x

4374

64
5545

58
6

3
3

57

4

6
5

837
y

x1 2 3 4
1

2
3

4

0
4 37

5
3 4

54
6

1 2 3 4 5

1
2

3
4

5

x

y

0
2 0102

3 1121
1 1222

2 2112
1 3303

6

2
0

2
1

3
2 122 1 2 122 1 0

2 2 010
1

2
2

3

3 112
1 122

2 211
1 330

6

(a) Correspondence of values in DNN

20
13

10
16

3 1121
1 1222

2112
1 330

2 122
3

1

2

1 0312
1 2122

1211
3 313

1 021
0

2

2

437

6
554

6

545

8
6

3
3

7
64

554
4

58
6

3

16 13 10 20

0 2210
1 0312

222
2 121

3 310
1

3

1

2 0102
3 1121

1222
2 211

1 333
2

0

1

374

4

545
463

Independent Sequence of Layers

1

4
4

1 3 5

2 4 6

9

Path 1 Path 2 Path 3

7

8

Path 4

(b) Paths divided by the FL technique

Fig. 1. A simple DNN computation with the FL technique

path length to explore the optimal solution. The contributions

of this paper are summarized as follows:

• To our best knowledge, we are the first to use DNN

model parallelism in partial computation offloading. In

particular, we propose to use the FL technique to achieve

DNN model parallelism without accuracy loss.

• We propose a heuristic method, MW, to obtain the

approximate optimal FL strategy, path scheduling strategy

and path offloading strategy with a low time complexity.

• We conduct comprehensive simulations to validate the

effectiveness of the proposed method in commonly used

DNNs. The results show that the DNN inference time is

18.39 times lower than existing algorithms without model

parallelism.

This paper is structured as follows. Section II introduces the

system model, including the problem formulation, and Section

III presents the proposed method. The results of simulations

experiment are described in Section IV. Finally, Section V

summarizes this paper.

II. SYSTEM MODEL

In this section, we first introduce the FL technique for DNN

processing, which can enable DNN parallel processing. Then,

we further discuss the partial computation offloading model

used in this paper, and introduce the problem formulation.

A. Fused-Layer Technique

The FL technique was first proposed to enable DNN parallel

processing in the multi-core environment [16]. Its key idea is

to take advantage of processing locality for DNN operations

such as convolution and pooling. For these operations, each

output value only depends on the value in the corresponding

area of the previous layer. With this observation, the FL

technique computes the output feature layer by splitting the

input feature layers into independent small layers and further

fuses their corresponding results back to get the original

output. Unlike previous studies on FL technique, we note

that FL technique creates opportunities for parallel computing

between the end device and ES, and applies FL technique to

parallel edge computing environments.

Fig. 1 shows how the DNN inference result is computed

by applying the FL technique. In Fig. 1(a), we show the

processing dependency of four rectangular areas denoted by

four colors in three layers, respectively. These four areas can

be processed independently in the input and middle feature

layers, and then fused on the output feature layer, which is

also defined as the fused layer. Fig. 1(b) shows the DNN

conversion result by using the FL technique. It generates a se-

quence of small layers, which can be processed independently.

To simplify the description in this paper, we further define the

FL path as follows.

Definition 1. The independent sequence of layers divided

by the FL technique are abstracted as the FL paths P =
{1, 2, ..., p, ..., P} in a DAG, where P represents the number

of paths.

We define the FL path length as τ , and the size of the fused

layer with the FL path length τ as Sτ = {SL
τ , S

W
τ }, in which

SL
τ is the length and SW

τ is the width of the fused layer’s

size. The set of the intercepted fused layer’s size vector as

U = {u1, u2, ..., up, ..., uP }, where up = {uL
p , u

W
p } is the

intercepted fused layer’s size vector of FL path p, in which

uL
p is the length and uW

p is the width of intercepted fused

layer’s size. The intercepted fused layer’s size cannot exceed

SL
τ and SW

τ .

In Fig. 1(b), after applying the FL technique, the DNN

has 4 paths and the FL path length is 2, S2 = {2, 2}, and

u1 = u2 = u3 = u4 = {1, 1}. It is worth noting that the

FL technique will lead to additional computation redundancy.

For example, in the input feature layer, the rectangular area

with vertices of {(2, 1), (2, 5), (5, 2), (5, 5)} is the area where

the blue rectangular area and the green rectangular area are

computed repeatedly. Therefore, it is non-trivial to find the

optimal FL strategy, i.e., the FL path length, the number of

FL paths, and the intercepted fused layers’ size.



B. DNN Partial Computation Offloading Model

In this paper, we propose to apply partial computation

offloading paradigm to accelerate DNN inference. An end

device and an ES will work collaboratively to finish DNN

inference task. In general, we define the computation de-

pendency relationship of layers in a DNN as a DAG, and

use V = {1, 2, ..., v, ..., V } to denote the set of layers,

where v represents a certain computation layer, V is the

total number of computation layers. We use cv and dv to

denote the transmission data size of layer v, and the amount

of computation of layer v, respectively. ev′v = (v′, v) ∈ E
represents the computation dependency relationship from v′

to v, which means that layer v can only be computed after

layer v′ is computed completely, where E is the set of

dependencies. In partial computation offloading paradigm, the

ES can process the current offloaded layer as long as its

previous layer has been processed. Computation offloading

strategy can be defined as H = {h1, h2, ..., hV }, where hv = 0
if layer v is computed locally on the end device, and hv = 1
if layer v is offloaded to the ES.

1) Computation Time of the End Device: We assume that

only one computation layer can be computed at the same time

for the end device. If layer v is computed locally on the end

device, then the computation time tendv of layer v on the end

device is calculated as:

tendv =
dv
fend

, (1)

where fend [floating point operations per second (FLOPS)]

is the computation resource of the end device (i.e., compute

capability of graphics card).

2) Transmission Time between the End Device and the ES:
The computation layers are transmitted based on the first-

come-first-process order. If layer v is offloaded to the ES,

then the transmission time ttrv of layer v from the end device

to the ES is calculated as:

ttrv =
cv
R
, where R = B log2

(
1 +

QG

ε2

)
, (2)

R is the transmission rate between the end device and the

ES, which can be calculated by using the Shannon’s theorem.

B represents the bandwidth of the channel between the end

device and the ES, Q is the transmission power of the end

device, G is the channel gain between the end device and

the ES, and ε2 represents the standard deviation of Gaussian

channel noise.

3) Computation Time of the ES: Similarly, if layer v is

offloaded to the ES, then the computation time tesv of layer v
on the ES is calculated as:

tesv =
dv
fes

, (3)

where fes [FLOPS] is the computation resource of the ES.

Then, we need to obtain the FL strategy F (e.g., the number

of FL paths P , the FL path length τ ), the path scheduling strat-

egy, and the path offloading strategy. The computation order of

the FL paths on the end device is the same as the transmission

order and the computation order on the ES. Hence, the path

scheduling strategy S = {s1, s2, ..., sp, ..., sP } is defined as

the computation order of the FL paths on the end device, where

sp is the p-th scheduling path. Moreover, we define the path

offloading strategy as O = {o1, o2, ..., op, ..., oP }, where op is

the number of layers between the first computation layer and

the offloaded computation layer on path p.
Specifically, Tp(v) is the task completion time of layer v

on path p, which can be computed recursively and formally

as follows:

Tp(v) =

⎧⎨
⎩

maxTp(v
′) + tendv , {hv′ , hv} = {0, 0},

maxTp(v
′) + ttrv + tesv , {hv′ , hv} = {0, 1},

maxTp(v
′) + tesv , {hv′ , hv} = {1, 1},

(4)

where v′ represents the previous computation layer that has the

computation dependency on layer v, i.e., ∃ev′v ∈ E. When all

FL paths are computed on ES, FL paths will be fused into

the fused layer whose values are the same as those normally

convoluted into the fused layer. Specifically, T(v) is the task

completion time of layer v after FL paths fused on ES, which

can be formulated as:

T(v) = max T(v′) + tesv (5)

To illustrate how to obtain the path offloading strategy O

and task completion time Tp(v), we use a five-layer DNN

as an example. As shown in Fig. 2, the FL path length is

3, and the number of FL paths is 3 (i.e, τ = 3, P = 3).

The path scheduling order S = {s1, s2, s3} = {1, 2, 3}. The

three FL paths are offloaded to the ES at layer 3, layer

5 and layer 8, respectively. Therefore, the path offloading

strategy O = {3, 2, 2}. The couple (2, 2) near layer 1 means

that the amount of computation of layer 1 is 2 and the

transmission data size is 2. For simplicity, we assume that

the CPU frequency of the end device and the ES are 1

and 2, the transmission rate between the end device and

the ES is 1. Then, the task completion time of layer 2 is

T1(2) = T1(1) + tend2 = 2 + 2 = 4, {h1, h2} = {0, 0}. Layer

3 is offloaded to the ES, so the task completion time of layer 3

includes the transmission time and the ES computation time,

which can be calculated as T1(3) = T1(2) + ttr3 + tes3 =
4 + 2 + 1 = 7, {h2, h3} = {0, 1}. The right side shows the

computation layer’s end computation time, transmission time

between the end device and the ES, and the ES computation

time on the time axis. Each cell represents a unit time and it

can be seen that the DNN inference time is 18.

C. Problem Formulation
The objective of this paper is to minimize the DNN infer-

ence time in partial computation offloading while considering

DNN model parallelism optimization. The DNN inference

time (i.e., the task completion time of last layer v), T, with

computation dependency can be formulated as follows:

min
F,S,O

T = max T(v)

s.t. C1 : Tp(v
′) ≤ Tp(v) ∀ev′v ∈ E

C2 : T(v′) ≤ T(v) ∀ev′v ∈ E

(6)



1

4

7

2 3

5 6

8 9

10 11

Offloading
(2,2)(2,2)(2,2)

(2,2)(1,2)(1,4)

(2,2)(2,2)(2,4)

(6,3) (6,1) Transmission

ES computing

53

1

8

2

3

10 11

End device computing
4

5

Path 1

Path 2

Path 3

7

8 9

6

Fig. 2. Illustrating DNN inference with the FL technique in a five-layer DNN

Among them, constraints C1, C2 denote the computation

dependency. The computation layer can only be computed if

all of its predecessors have been computed. When a DNN

has few layers, the optimal solution can be obtained by using

the Brute Force (BF) algorithm. However, the complexity of

finding the optimal solution increases exponentially with the

increase of the total number of layers and the FL paths. It is

proved that the above optimization problem is NP-Hard [13].

III. MINIMIZING WAITING METHOD

This section proposes a heuristic method, Minimizing Wait-

ing (MW) to solve the above optimization problem. The FL

strategy can be obtained by enumerating all possible numbers

of FL paths and FL path length. Then, the intercepted fused

layer’s size is obtained as Sτ divided into P layers with the

same size, so the intercepted fused layer’s size vector U is

obtained. Once the FL strategy is obtained, DNN inference

time can be obtained by determining path scheduling strategy

and path offloading strategy. Therefore, by updating the FL

strategy, we can obtain the minimum DNN inference time.

For the path scheduling strategy and path offloading strat-

egy, the main idea is that once the current path has completed

its transmission, the next path should finish its computation

and start to transmit without waiting. The first scheduling path

and offloaded layer can be determined by using the following

criterion. The fewer layers on the path computed on the end

device, the shorter the time for parallel computing of the next

path on the end device. However, too few layers computed on

the end device will lead to too much transmission data, thus

increasing the transmission time between the end device and

the ES. Therefore, we need to find an appropriate number of

offloaded layers of each path. The offloaded layer v on path

p should satisfy the minimal transmission completion time,

which can be formulated as:

min
(
Tp(v − 1) + ttrv

)
, (hv−1 = 0, hv = 1) . (7)

Then, the first scheduling path is recorded as s1 and the

offloaded layer is recorded as op. If multiple offloading so-

lutions result in the same transmission completion time, we

will choose the offloading strategy which has the minimum

local computation time. It is because in this case, the ES can

start processing as soon as possible and at the same time, the

next path can compute on the end device as soon as possible.

Algorithm 1 Minimizing Waiting

Input: Neural network layers l and their parameters.

Output: The minimum completion time T
best
MW ; The best

solution U
best
MW , τ bestMW , Obest

MW , SbestMW .

1: Initialize T
best
MW = NULL

2: for FL path length τ = 1 : l do
3: for The number of FL paths P = 1 : SL

τ × SW
τ do

4: The intercepted fused layer’s size is obtained as Sτ

divided into P layers of the same size.

5: for each FL path do
6: The first scheduling path and the offloaded layer

are determined as:

7: p, op ← min (Tp(v − 1) + ttrv )
8: The scheduling path is recorded as s1 and the

offloaded layer op is recorded in O.

9: end for
10: for The p-th scheduling path p = 2 : P do
11: The p-th scheduling path and the offloaded layer

are determined as:

12: p, op ← min (|Tp−1(v)− tesv − Tp(v
′)|)

13: The scheduling path is recorded as sp and the

offloaded layer op is recorded in O.

14: end for
15: According to the S, O, U, the DNN inference time

TMW is obtained.

16: If Tbest
MW = NULL

17: Update T
best
MW ← TMW , τ bestMW ← τ ,

18: S
best
MW ← S, Ubest

MW ← U,

19: End If
20: If TMW ≤ T

best
MW

21: Update T
best
MW ← TMW , τ bestMW ← τ ,

22: S
best
MW ← S, Ubest

MW ← U, Obest
MW ← O.

23: End If
24: end for
25: end for

1

4

7

2 3

5 6

8 9

10 11

Offloading
(2,2)(2,2)(2,2)

(2,2)(1,2)(1,4)

(2,2)(2,2)(2,4)

(6,3) (6,1) Transmission

ES computing

1 3

2 6

End device computing

8

9

Path 1

Path 2

Path 3

4 5 7

81 6

10 11

Fig. 3. Illustrating MW in a five-layer DNN

The offloading strategy of the p-th, (p ∈ {2, 3, ..., P})
scheduling path is determined by the transmission completion

time of the (p − 1)-th scheduling path so that the waiting

time between two paths is minimized. In particular, the task

completion time on the end device of the p-th scheduling path

should be as close as possible to the transmission completion

time of the (p − 1)-th scheduling path. Then, the p-th



1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

�7�U�D�Q�V�P��V�V��R�Q���U�D�W�H����0�%���V�

0

20

50

150

200

250

400

800

1200

1600

�'
�1
�1
��
�
�Q
�I
�H
�U
�H
�Q
�F
�H
��
�7
�
�P
�H
��
�
�P
�V
� NFL

BF (2x2)

MW (2x2)

MW (kxk)

(a) AlexNet

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

�7�U�D�Q�V�P��V�V��R�Q���U�D�W�H����0�%���V�

0

20

40

60

100

500

600

700

800

900

1000

�'
�1
�1
��
�
�Q
�I
�H
�U
�H
�Q
�F
�H
��
�7
�
�P
�H
��
�
�P
�V
� NFL

BF (2x2)

MW (2x2)

MW (kxk)

(b) SqueezeNet

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

�7�U�D�Q�V�P��V�V��R�Q���U�D�W�H����0�%���V�

0

10

20

100

150

200

250

300

350

400

�'
�1
�1
��
�
�Q
�I
�H
�U
�H
�Q
�F
�H
��
�7
�
�P
�H
��
�
�P
�V
� NFL

BF (2x2)

MW (2x2)

MW (kxk)

(c) YOLOv2

Fig. 4. The DNN inference time with only changing transmission speed. (a) AlexNet. (b) SqueezeNet. (c) YOLOv2.

scheduling path can start transmission as soon as possible after

the (p − 1)-th scheduling path is completed. The offloaded

layer v of the p-th scheduling path denoted as sp and op can

be determined by the following formula:

min (|Tp−1(v)− tesv − Tp(v
′ − 1)|) , p ∈ {2, 3, ..., P}, (8)

where v is the offloaded layer of the (p − 1)-th scheduling

path and v′ is the offloaded layer of the p-th scheduling

path. If multiple layers have the same task completion time

on the end device, we will choose the layer which has the

maximum number of previous layers on the path. Then, the

p-th scheduling path can compute more on the end device.

Therefore, the path scheduling strategy and the path offloading

strategy are obtained.

To illustrate how to obtain the solution, we use a five-

layer DNN as an example. As shown in Fig. 3, the FL path

length, the number of FL paths, the CPU frequency of the

end device and the ES, the transmission rate are the same

in Fig. 2. The minimal transmission completion time of the

three FL paths are 2, 4, 4, respectively. By using MW, path

1 is the first scheduling path. If we choose to offload layer

1, the transmission completion time of path 1 is 0 + 2 = 2
since the task completion time of layer 1 on the end device

is 0, and the transmission time of layer 1 is 2. By following

the same logic, if we choose to offload layer 2 or layer 3, the

transmission completion time is 2 + 2 = 4 or 2 + 2 + 2 = 6,

respectively. Therefore, o1 = 1. For the second scheduling

path, the task completion time of layers on the end device

should be as close to 2 as possible. The task completion time

of layer 5 and layer 7 on the end device are 1 + 1 = 2 and

2. Therefore, we determine path 2 as the second scheduling

path, and layer 6 is offloaded to the ES. By the same logic,

path 3 is the third scheduling path, and layer 8 is the offloaded

layer. That is, o3 = 2. When the previous layers of layer 10

have all finished the computing, the output of layer 3, layer 6

and layer 9 are fused as layer 10, then the fused layer 10 can

start the computing, and the task completion time of layer 10

is 8 + 3 = 11.

The pseudocode of MW is shown in Algorithm 1. Line 1 is

to initialize T
best
MW , which is the minimum DNN inference time

obtained by MW . Line 4 is to obtain the intercepted fused

layer’s size U. Lines 5 to 9 are to determine the first scheduling

path, the offloaded layer and record them in S, O, respectively.

Lines 10 to 14 are to determine the path scheduling order from

the second path to the last path and record the corresponding

values in S, O, respectively. Line 15 is to obtain the DNN

inference time by Eq 6. Line 16 to 23 are to update the DNN

inference time T
best
MW , the best solution by using MW.

IV. PERFORMANCE EVALUATION

We conduct extensive simulations to demonstrate the ef-

fectiveness of the proposed method in five neural networks

which are (1) AlexNet, (2) SqueezeNet, and (5) YOLOv2.

The structure of the neural network can be obtained from

[17]–[19]. Realistic network parameters are used in our ex-

periments [20], which are shown in Table. I. We compare the

performance of our proposed MW with the following bench-

mark algorithms: (1) No FL (NFL) : Partial computation

offloading without the FL technique is used in this algorithm.

(2) Brute Force (BF ) : The FL technique is used in this

algorithm, and the optimal solution is obtained by traversing

all feasible solutions.

With the increase of the total number of layers and the FL

paths, the complexity of finding the optimal solution increases

exponentially. Therefore, we choose the case of four FL paths

with homogeneously intercepted fused layer’s size to compare

the performance of BF (2×2) and MW (2×2). Furthermore,

we use MW (k × k) to represent MW with homogeneously

intercepted fused layer’s size, where the number of FL paths

k × k is determined by MW method.

The transmission rate is varied from 1.1 MB/s to 3 MB/s to

simulate a variety of scenarios, which covers common network

environments, such as 4G 1.3 MB/s and WiFi 1.8 MB/s [11],

etc. Fig. 4 shows the simulation results. Across five different

neural networks, when the transmission rate increases from

1.1 MB/s to 3 Mb/s, the DNN inference time of MW is

18.39 times less than that of NFL. However, the improvement

depends on the neural network architecture. Fig. 4(a) shows

the results in the AlexNet, the DNN inference time of the

NFL, BF (2×2), MW (2×2), and MW (k × k), are reduced

from 1470 ms, 260 ms, 335 ms, and 40 ms, to 1384 ms, 160

ms, 255 ms, and 38 ms, respectively, when the transmission

rate changes from 1.1 MB/s to 3 MB/s. It can be found that in



TABLE I
SIMULATION PARAMETERS

Parameter Definition Value

fend computation resource of the end device 2.23× 108

fES computation resource of the ES 4.32× 109

B The bandwidth of wireless links 5MHz
Q The transmission power of the end device 0.1W
ε2 The power of background noise 10−9

G The channel gain between end device and ES 10−6

YOLOv2, the DNN inference time of NFL, BF (2×2), MW

(2×2), and MW (k×k) reduces from 346 ms, 232 ms, 232 ms,

and 28 ms to 171 ms, 121 ms, 151ms and 22 ms, respectively.

Therefore, the structure of neural network has a significant

impact on DNN inference time.

The number of FL paths is very important. From the

results in Fig. 4(a), the following observation can be obtained.

When the number of FL paths is 4, the DNN inference time

of BF(2×2) is 5 times less than that of NFL. When the

transmission rate changes from 1.1 MB/s to 3 MB/s at the

SqueezeNet, the DNN inference time of MW (k×k) is reduced

from 46 ms to 42 ms, respectively. Compared with MW (2×2),

MW (k × k) further reduces 410 ms DNN inference time.

The reason is that a lager number of FL paths leads to more

flexibility in the path scheduling, and thus causes better results.

Overall, our approach reduces the DNN inference time

well, whether in a lightweight DNN such as the AlexNet and

YOLOv2 or a heavyweight DNN such as the SqueezeNet.

Lightweight DNNs have low convolution steps with 1 or 2

in most neural layers, using the FL technique can reduce

more DNN inference time. In the AlexNet and YOLOv2, the

average DNN inference time obtained by MW (k× k) are 39

ms and 40 ms, respectively, which are reduced by 1370 ms and

215 ms times compared with NFL, respectively. Heavyweight

DNNs have large convolution steps or neural layers, e.g., 7

convolution steps in the SqueezeNet, but the DNN inference

time can still be reduced greatly by parallel computing on

the end device and the ES. For example, the average DNN

inference time of MW (k × k) in the SqueezeNet is 44 ms,

which is reduced by 523 ms compared with NFL, respectively.

Therefore, the effectiveness of MW has been demonstrated.

V. CONCLUSION

In this paper, we presented a new solution for DNN

parallelism and partial computation offloading in MEC. We

proposed a DNN neural network partitioning model based on

the FL technique and the corresponding computation model

when the DNN neural network is transformed into a DAG.

Subsequently, we proposed the MW method to solve the prob-

lem. Specifically, we design the MW algorithm to determine

the FL strategy, path scheduling strategy, and path offloading

strategy. Finally, we validated the effectiveness and superiority

of the method through extensive simulation experiments, and

the simulation results showed that our proposed method can

reduce the DNN inference time by an average of 18.39 times

compared with NFL.

REFERENCES

[1] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep
reinforcement learning for energy-efficient computation offloading in
mobile edge computing,” IEEE Internet of Things Journal, vol. PP,
no. 99, pp. 1–1, 2021.

[2] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Mobile edge
computing and networking for green and low-latency internet of things,”
IEEE Communications Magazine, vol. 56, no. 5, pp. 39–45, 2018.

[3] H. Qiu, Q. Zheng, T. Zhang, M. Qiu, G. Memmi, and J. Lu, “Toward
secure and efficient deep learning inference in dependable iot systems,”
IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3180–3188, 2021.

[4] C. Guo, Y. Zhou, J. Leng, Y. Zhu, Z. Du, Q. Chen, C. Li, B. Yao, and
M. Guo, “Balancing efficiency and flexibility for dnn acceleration via
temporal gpu-systolic array integration,” in Proceedings of ACM/IEEE
DAC, 2020, pp. 1–6.

[5] M. Putic, A. Buyuktosunoglu, S. Venkataramani, P. Bose, S. Eldridge,
and M. Stan, “Dyhard-dnn: Even more dnn acceleration with dynamic
hardware reconfiguration,” in Proceedings of ACM/IEEE DAC, 2018, pp.
1–6.

[6] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark,
D. Rybach, and P. Moreno, “Bringing contextual information to google
speech recognition,” in Proceedings of ICCT, 2015, pp. 468–472.

[7] Y. Chen, H. Balakrishnan, L. Ravindranath, and P. Bahl, “Glimpse: Con-
tinuous, real-time object recognition on mobile devices,” in Proceedings
of ACM CENSS, 2015, pp. 155–168.

[8] S. Han, H. Shen, M. Philipose, S. Agarwal, and A. Krishnamurthy,
“Mcdnn: An approximation-based execution framework for deep stream
processing under resource constraints,” in Proceedings of ACM MobiSys,
2016, pp. 123–136.

[9] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proceedings of IEEE INFOCOM, 2020, pp.
257–266.

[10] F. Yu, L. Cui, P. Wang, C. Han, R. Huang, and X. Huang, “Easiedge:
A novel global deep neural networks pruning method for efficient edge
computing,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1259–
1271, 2021.

[11] Y. Kang, J. Hauswald, J. Mars, C. Gao, and A. Rovinski, “Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge,” in
Proceedings of ASPLOS, 2017, pp. 615–629.

[12] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partition-
ing for latency sensitive mobile cloud applications,” IEEE Transactions
on Computers, vol. 64, no. 8, pp. 2253–2266, 2015.

[13] N. Wang, Y. Duan, and J. Wu, “Accelerate cooperative deep inference via
layer-wise processing schedule optimization,” in Proceedings of IEEE
ICCCN, 2021, pp. 1–9.

[14] Y. Duan and J. Wu, “Computation offloading scheduling for deep neural
network inference in mobile computing.” in Proceedings of IEEE/ACM
IWQoS, 2021, pp. 1–10.

[15] Y. Duan and J. Wu, “Joint optimization of dnn partition and scheduling
for mobile cloud computing,” in Proceedings of IEEE ICPP, 2021, pp.
1–10.

[16] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in Proceedings of IEEE/ACM MICRO, 2016, pp. 1–12.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Advances
in Neural Information Processing Systems, 2012, pp. 1–1.

[18] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and <0.5mb model size,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.07360

[19] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight yolov2:
A binarized cnn with a parallel support vector regression for an fpga,”
in Proceedings of ACM Int. Symp. Field-Program. Gate Arrays, 2018,
pp. 31–40.

[20] M. Mehrabi, S. Shen, V. Latzko, Y. Wang, and F. H. P. Fitzek, “Energy-
aware cooperative offloading framework for inter-dependent and delay-
sensitive tasks,” in Proceedings of IEEE GLOBECOM, vol. PP, no. 99,
2020, pp. 1–6.


