
ArrayPipe: Introducing Job-Array Pipeline
Parallelism for High Throughput Model Exploration

Hairui Zhao1, Hongliang Li1,2,∗, Qi Tian1, Jie Wu3, Meng Zhang1, Xiang Li1, Haixiao Xu4
1 College of Computer Science and Technology, Jilin University, China

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, China
3 Department of Computer and Information Sciences, Temple University, USA

4 High Performance Computing Center, Jilin University, China
zhaohr21@mails.jlu.edu.cn, lihongliang@jlu.edu.cn, qitian23@mails.jlu.edu.cn, jiewu@temple.edu,

mzhang22@mails.jlu.edu.cn, {lxiang, haixiao}@jlu.edu.cn

Abstract—Deep Learning (DL) applications have experienced
exponential growth in data volume and model complexity,
spurring various parallel approaches. Existing solutions mostly
focus on accelerating individual training jobs. However, jobs
submitted to a cluster may not always be independent. This is
due to the distinctive characteristic of DL training that it is
an exploratory process. Model developers often launch multiple
training instances in a batch with the same model structure but
different settings to tune hyper-parameters, which provides an
opportunity to regard these jobs as job-arrays. With further
support of low-cost job context switching, sharing resources
among these jobs is not just feasible but also beneficial to
the resource utilization and the throughput of a DL cluster.
This paper introduces Job-Array Pipeline Parallelism (JAP) that
assembles a batch of sibling DL training jobs into a concurrent
job-array. We design ArrayPipe, a framework that supports high
throughput model exploration with JAP. A novel scheduling
problem in JAP is proposed that seeks to minimize the per-
iteration training time for a job-array, along with two scheduling
algorithms for different scales of job-arrays. Extensive testbed
experiments and trace-driven simulations show that ArrayPipe
achieves 1.46× training throughput on average compared with
state-of-the-art related works.

Index Terms—Deep Learning, Distributed Computing, Ex-
ploratory Jobs, Pipeline Model Parallelism, Scheduling

I. INTRODUCTION

Recently, Deep Learning (DL) has shown tremendous suc-
cess across a range of applications [1], [2]. Over the years,
in pursuit of unprecedented accuracy, Deep Neural Network
(DNN) training has grown exponentially in both data vol-
ume and model complexity, e.g., training GPT-4 (1.8 trillion
parameters) model took approximately 2 years with 1024
H100 NVIDIA GPUs [3]. Thus, training DNN in parallel
(e.g., GPUs) is an inevitable trend [4]–[7]. Various parallelism
techniques have been proposed for both large dataset (Data
Parallelism (DP) [4], [8]) and large model size (Tensor Model
Parallelism (TMP) [9], [10], Pipeline Model Parallelism (PMP)
[11]–[14], and hybrid parallelism [15], [16]).

PMP is widely used for large model training. As exampled
in Fig.1(a), a 4-stage PMP utilizes 4 devices to accelerate the
model training process. Each job occupies a set of resources

* Corresponding author: lihongliang@jlu.edu.cn

B1

B0

Job B

2 1

2 1 0

2 1 0

2 1 0

Iteration

…

0

S
w

itc
h

Job A

…

U
p
d
a
te

… …

Job C

S
w

itc
h

Minibatch

Microbatch

BackwardForward Update Switch Cost Bubble

S3

S2

S1

S0

B0 C0

B1

B2

C1

C2 C2 B2

C1 B1

C0 B0

Job A Dependency Job B Dependency Job C Dependency

B0

…

S2

S1

S0

…

Time Saving

C3

C2

C1

C0

A3

A1

A0

Iteration of Job Array{Job A, B and C}

Minibatch

A2
…

S3

S2

S1

S0

B3C3

C2

C1

C0

B2

B1

A2

A0

A1

B0

B0 C0

B1

B2B2

C1

C2 C2

C1B1

C0B0 C0

S2

S1

S0

Next Iteration

B2

B3

B1

B0

A3

A0 B0

A1

A2

0

0

0

0

1 2

12

1 2

1 2 0

A0

A1

A2 A2

A1

A0 A0

A1

A2

A0

A1

A2 A2

A1

A0 A0

0

0

0

1

1

1

1

2

2

2

2

2

2

2

2 1

1

1

1

0

0

0

0

(a) An Example of Pipeline Model Parallelism

B1

B0

Job B

3 2 1

3 2 1 0

3 2 1 0

3 2 1 0

Iteration

0

1 0

…

0

S
w

itch

Job A

…

U
p

d
ate

… …

Job C

S
w

itch

Minibatch

Microbatch

BackwardForward Update Switch Cost Bubble

S3

S2

S1

S0

B0 C0

B1

B2

C1

C2 C2 B2

C1 B1

C0 B0

Job A Dependency Job B Dependency Job C Dependency

B0

…

S2

S1

S0

…

Time Saving

C3

C2

C1

C0

A3

A1

A0

Iteration of Job Array{Job A, B and C}

Minibatch

A2
…

S3

S2

S1

S0

B3C3

C2

C1

C0

B2

B1

A2

A0

A1

B0

B0 C0

B1

B2B2

C1

C2 C2

C1B1

C0B0 C0

S2

S1

S0

Next Iteration

B2

B3

B1

B0

A3

A0 B0

A1

A2

0

0

0

0

1 2 3

1 2 3

1 2 3

1 2 3 0 1

0

A0

A1

A2 A2

A1

A0 A0

A1

A2

A0

A1

A2 A2

A1

A0 A0

(b) An Example of Job-Array Pipeline Parallelism

Fig. 1. Model Exploration with PMP and JAP on 4 stages, S1, S2, S3, and
S4. 0, 1, 2, and 3 in Fig. 1(a) denote the index of micro-batches in a job,
while A0,A1,A2, and A3 denote the stages of job A in a job-array.

exclusively, and after the completion of one job, the GPU
running environment (e.g., CUDA context in NVIDIA) needs
to be cleaned and initialized for the next one. Switching
job context can cause a noticeable delay (usually more than
100× the duration of an iteration [17]. PMPs face under-
utilization from two aspects, training efficiency (i.e., poor GPU
ALU utilization caused by small mini-batches) and pipeline
efficiency (i.e., high bubble ratio in pipelines) [11], [18].
Current parallelism studies have been focusing on accelerating
individual DL training jobs [19], [20].

One key characteristic of DL training is that it is not a one-
time effort and often involves a significant amount of trial-
and-error jobs, known as exploratory jobs [21], [22]. Such
exploratory jobs consume a large amount of time and resources
in DL clusters (e.g., 37.69% GPUs time overall in Microsoft
production clusters [23]). To select an optimal set of hyper-
parameters (e.g., data sample batch size, learning rate, and so
on), data scientists can submit tens to hundreds of instances
of DL training jobs with the same model structure but varying
model configurations in a batch [24].

Therefore, in this paper, a novel Job-Array Pipeline Paral-

lelism (JAP) is introduced to pursue high throughput for large
model exploration. A key observation motivating us is that a
batch of exploratory jobs are siblings that share the same core
(e.g., model structures). This provides an opportunity to regard
these jobs as a job-array, allowing resource sharing among
them to improve the resource utilization and overall throughput
of a DL cluster. JAP can be regarded as an extension of PMP
that each job still executes in a pipeline fashion, only that
multiple sibling jobs in a job-array share a set of resources and
execute concurrently. As exampled in Fig. 1(b), the training
blocks (i.e., mini-batch training stages) of sibling jobs A, B,
and C can execute in parallel for better training throughput.

Specifically, there are two key challenges that need to
be addressed. (a) To support resource sharing on the same
device, the CUDA contexts need to be switched between
consecutive training block of different jobs. How to enable
low-cost switching between sibling jobs in a job-array is a
challenge. (b) Unlike in traditional PMP, the execution time
of each training segment is not identical for different jobs in
JAP, as exampled in Fig.1, which invalidates existing PMP
scheduling approaches. Moreover, stage dependencies within
a job increase the difficulty of the already challenging problem.
Sophisticated scheduling algorithms are needed to ensure high
throughput JAP training.

To address the above issues, this paper makes the following
contributions:

1) A novel parallel scheme, Job-Array Pipeline Parallelism
(JAP) is introduced to enable a batch of sibling jobs to
form a concurrent job-array and to execute concurrently,
aiming for high throughput model exploration.

2) We design ArrayPipe, a framework to support JAP with
low-cost job context switching mechanism within a job-
array and a GPU-Host memory manager for fast job
state loading.

3) We propose a novel scheduling problem Job-Array
Pipeline Scheduling Problem (JAPSP) that seeks to
minimize the per-iteration time of the job-array, along
with two algorithms for different scales of job-arrays.

4) Extensive experiments both testbed and trace-driven
simulations are conducted to evaluate the efficiency of
ArrayPipe. The results show that ArrayPipe achieves an
average 1.46× training throughput compared with state-
of-the-art PMP approaches.

II. BACKGROUND AND RELATED WORK

A. DNN Training

DL training is an iterative process that seeks a set of
optimal model parameters i.e., the probability-weight asso-
ciations between input and predicted output. DL jobs are
typically trained over a large dataset which is divided into
mini-batches. These mini-batches are fed to the DNN model
to minimize a loss function until the model converges. In each
training iteration, one mini-batch is processed in three steps:
(1) Forward Propagation (FP): the mini-batch is computed
by applying the model function to derive a loss value. (2)

Backward Propagation (BP): gradients of model parameters
are computed based on the loss value in the reverse order of
FP. (3) Parameter update: the model parameters are updated by
using a gradient with an optimization algorithm, e.g., adaptive
moment estimation (Adam) [25].

B. Parallelism Techniques

To deal with large volumes of training data and complex
models, researchers have put forward a range of parallel
techniques. In DP [4], [8], a DL job starts multiple model
instances (i.e., workers), each worker trains an identical DNN
model with a part of the dataset. With TMP [15], layers
(operations) of the model are split into different devices,
and each matrix-multiplication requires two synchronous com-
munications resulting in significant communication overhead.
PMP [5], [20], [26] mitigates this issue by partitioning the
layers of a DNN model into multiple stages, where each stage
consists of a consecutive set of layers. Only the border layers
of neighbor stages communicate in each iteration. This paper
mainly focuses on PMP, which is widely applied parallelism
for large DNN models in both commercial and academic DL
clusters [15], [19], [26].

GPipe [11] splits a mini-batch into smaller micro-batches
and synchronously updates parameter at mini-batch barriers.
PipeDream [26] injects multiple mini-batches and updates
model parameters asynchronously for different stages. How-
ever, PipeDream sacrifices the training accuracy and keeps
multiple copies of the parameters. Similarly, Chimera [20]
achieves a low bubble ratio by maintaining an extra model
replica on each device to form a bidirectional pipeline.
Hanayo [19] is an improvement of Chimera which mitigates
the memory pressure by splitting more stages to achieve a
more efficient bidirectional pipeline. DAPPLE [27] adopts
one-forward-one-backward (1F1B) schedule to reduce the
memory footprint of activations but introduces memory im-
balance between devices. BPipe [5] leverages high-speed in-
terconnects to transfer intermediate data between GPUs during
training, enabling all GPUs to utilize comparable amounts of
memory. Existing studies have been focusing on accelerat-
ing individual DL training jobs. The possibility of sharing
resources among jobs is overlooked.

C. Accelerate Exploratory DNN Training

Despite the extensive efforts on PMPs, few had taken the
exploratory feature of DL training jobs into consideration. One
key characteristic of DL training is that it usually involves a
significant amount of trial-and-error jobs [28]–[30]. Generally,
once a DNN model structure has been identified, users launch
multiple job instances and perform the exploratory process by
using some searching tools. For example, HyperBand [30] can
launch 128 DL jobs in a batch. Large DL model exploration
would inevitably put great pressure on the already busy model
training infrastructures.

Related work [22], [31] has taken advantage of the ex-
ploratory characteristic of DL jobs. Gandiva [21] is proposed
as a scheduling framework to address the exploratory jobs

…G
P

U

Server Node

Memory

…

PCIe

Switch

……G
P

U

Server Node

Memory

…

PCIe

Switch

…

ArrayPipeSibling

Jobs

Profiler

Pack

Context

Sharing

Low-Cost

Switching

Binder

Analysis

Branch&

Bound

Genetic

Algorithm

Scheduler

Graph

Generator

Recompute

Just-in-time

Update

Pre-fetch

&Off-load

Memory

Manager

Job Array

Records

Cluster

Records

Job Array

Task Graph

Executor

Memory

Optimization

Instructions

(512, 0.01

, 0.0005, …)

(256, 0.01

, 0.0005, …)

…

(batch_size,

learning_rate,

weight_decay,

…)

S0 S1

Task Graph

…G
P

U

Server Node

Memory

…

PCIe

Switch

…

Job

…

S2

Job
…

Pre-fetch Thread Off-load Thread

Compute Thread Update Thread

…

Fig. 2. Overview of ArrayPipe System Architecture

by allocating GPUs to a new job immediately and using
the suspend-resume mechanism to provide early results. Ex-
plSched [22] makes resource allocation decisions online to
maximize the training progress of jobs. The above researches
take into account the characteristics of early termination in ex-
ploratory jobs but do not address the characteristic associated
with batch job submissions. They consider each exploratory
job independently, while this paper proposes a new perspective
of considering a batch of exploratory jobs as a whole. Existing
studies (e.g., Hyperband, ExplSched) are all orthogonal to
ArrayPipe and can be seamlessly integrated with it.

III. ARRAYPIPE DESIGN

A. Overview

To accelerate the exploratory process, a collection of sibling
jobs (i.e., DL training jobs with an identical structure and
dataset but varying hyper-parameters) are submitted to a DL
cluster in a batch [30]. For the given sibling job set, previous
parallelisms consider each training job individually, which
leads to both low training efficiency and pipeline efficiency.
Thus, we introduce Job-array Pipeline Parallelism (JAP) as a
novel parallelism by regarding the sibling jobs as a concurrent
job-array and share a set of resources. JAP is inspired by
the abstraction of array job in distributed computing which
combines multiple similar jobs from one batch submission to
reduce the scheduling and management overhead [32].

Definition 1. Job-Array Pipeline Parallelism (JAP). Given
a job-array J =

{
j1, j2, ..., j|J|

}
and a cluster of servers H

(h1, h2, ..., h|H|), JAP is a pipeline parallelism that supports
the stages of different jobs in J execute concurrently rather
than consecutively. This is enabled by low-cost context switch-
ing between sibling jobs that share the same core, e.g., model
structure and CUDA context, and so on.

We design ArrayPipe, an efficient framework supporting
JAP to accelerate the training process of model exploration.
Fig. 2 shows the overview of ArrayPipe system architecture.

S1

S0 B0 A0

A1B1 B1

B0A0

CTXS CTXS CTXS

CTXS CTXS CTXS

A1

A0 A0

A1 A1B1

B0 B0

B1

(a) Training of JAP without sharing CUDA context

S1

S0

CUDA Context

Context Switch

A1 A1

A0

B1 B1

B0

Load Model

CTXS

Model States

B0A0

A0 B0 A0

A1 A1 B1B1

B0

(b) Training of JAP with sharing the CUDA context
Fig. 3. Example of JAP training with and without shared CUDA context.

To avoid sacrificing the training accuracy that is a non-trivial
goal for exploratory jobs [22], we focus on the synchronization
semantics. ArrayPipe achieves high throughput for model
exploration by three components. Specifically, for submitted
sibling jobs with identical model structure but varying hyper-
parameters, Binder packs them into a job-array. Meanwhile,
Binder implements CUDA context sharing among the sibling
jobs for low-cost context switching (Sec. III-B). Then, Sched-
uler is utilized to generate a task graph of the job-array, aim-
ing at minimizing the job-array’s per-iteration training time
of a job-array. Two scheduling algorithms are integrated into
the Scheduler for different scales of job-arrays (Sec. III-C).
Finally, ArrayPipe ships a Memory Manager that maintains a
buffer on GPU memory to prepare for the upcoming training
blocks and designs several approaches dedicated for JAP to
reduce the memory pressure (Sec. III-D).

B. Binder

Despite the existing parallelisms releasing the memory
pressure by dividing the model into multiple devices and
improving the training throughput, there is still room for
expediting them. As shown in Fig. 1(a), sibling jobs are
submitted to a cluster and scheduled individually, which leaves
a considerable amount of bubbles. However, the sibling jobs
have identical model structures but varying hyper-parameters,
which provides the potential to share resources among them.

For a given batch of sibling jobs, Binder regards them as a
whole and packs them as a job-array by maintaining a public
model structure. Fig. 3 shows an example of training a job-
array with two jobs on two GPUs. While the CUDA context
is required to be switched between the boundary of each block
of different jobs, the training states of each job are saved and
swapped from GPU memory to the host memory of the CPU.
The CUDA context switching can be costly and even can
deteriorate the training throughput, as illustrated in Fig. 3(a).

The key to enabling low-cost context switching is leverag-
ing the unique characteristics of sibling jobs that share the
same core, e.g., model structures, operation graphs, and so
on. Specifically, the same core of jobs in job-array helps
ArrayPipe maintain a shared CUDA context among them. As
shown in Fig. 3(b), facilitated by the shared CUDA context,
only model states (i.e., model parameters and optimizer) need
to be switched between the training boundary of different jobs

B1

B0

Job B

3 2 1

3 2 1 0

3 2 1 0

3 2 1 0

Iteration

0

1 0

…

0

S
w

itc
h

Job A

…

U
p
d
a
te

… …

Job C

S
w

itc
h

Minibatch

Microbatch

BackwardForward Update Switch Cost Bubble

S3

S2

S1

S0

B0 C0

B1

B2

C1

C2 C2 B2

C1 B1

C0 B0

Job A Dependency Job B Dependency Job C Dependency

B0

…

S2

S1

S0

…

Time Saving

C3

C2

C1

C0

A3

A1

A0

Iteration of Job Array{Job A, B and C}

Minibatch

A2
…

S3

S2

S1

S0

B3C3

C2

C1

C0

B2

B1

A2

A0

A1

B0

B0 C0

B1

B2B2

C1

C2 C2

C1B1

C0B0 C0

S2

S1

S0

Next Iteration

B2

B3

B1

B0

A3

A0 B0

A1

A2

0

0

0

0

1 2 3

1 2 3

1 2 3

1 2 3 0 1

0

A0

A1

A2 A2

A1

A0 A0

A1

A2

A0

A1

A2 A2

A1

A0 A0

(a) JAP using GPipe Strategy

B1

B0

Job B

3 2 1

3 2 1 0

3 2 1 0

3 2 1 0

Iteration

0

1 0

…

0

S
w

itc
h

Job A

…

U
p
d
a
te

… …

Job C

S
w

itc
h

Minibatch

Microbatch

BackwardForward Update Switch Cost Bubble

S3

S2

S1

S0

B0 C0

B1

B2

C1

C2 C2 B2

C1 B1

C0 B0

Job A Dependency Job B Dependency Job C Dependency

B0

…

S2

S1

S0

…

Time Saving

C3

C2

C1

C0

A3

A1

A0

Iteration of Job Array{Job A, B and C}

Minibatch

A2
…

S3

S2

S1

S0

B3C3

C2

C1

C0

B2

B1

A2

A0

A1

B0

B0 C0

B1

B2B2

C1

C2 C2

C1B1

C0B0 C0

S2

S1

S0

Next Iteration

B2

B3

B1

B0

A3

A0 B0

A1

A2

0

0

0

0

1 2 3

1 2 3

1 2 3

1 2 3 0 1

0

A0

A1

A2 A2

A1

A0 A0

A1

A2

A0

A1

A2 A2

A1

A0 A0

(b) ArrayPipe Scheduling Strategy
Fig. 4. JAP Scheduling Examples.

in job-array. A model state is usually much smaller in size
than the entire job context, e.g. the model states of BERT and
GPT-2 take 1GB and 12GB space, respectively. Furthermore,
this makes it possible for ArrayPipe to prepare model states
for upcoming blocks in GPU memory, instead of host memory,
to support low-cost switching within a job-array.

C. Scheduler

Though job-array generated by Binder has low-cost switch-
ing, an improper execution order of the blocks leads to a
large number of bubbles that degrade the training throughput.
As shown in Fig. 4, three jobs (A, B, and C) form a job-
array, traditional PMPs (e.g., GPipe in Fig. 4(a)) can result in
inefficient pipeline schedules for two reasons.

Firstly, previous studies assume equal training time for
all micro-batches in a particular stage. Nonetheless, JAP
processes jobs with varying hyper-parameters, and the training
time of blocks (i.e., mini-batch training stages) can be differ-
ent, as shown in Fig. 1(b). Secondly, with JAP, jobs do not
have to be executed in the same order in each stage, as long
as the stage dependencies within a job are satisfied, as shown
in Fig. 4(b). The scheduling of JAP is more flexible compared
with traditional PMP, and more sophisticated algorithms are
needed to ensure high throughput JAP training.

Scheduler is integrated into ArrayPipe to generate the task
graph, scheduling of blocks, for a job-array. Two scheduling
algorithms are proposed for different scales of job-arrays, the
algorithms will be discussed in Sec. IV.

D. Memory Manager

Multiple model states need to be stored on the GPU,
which can cause over-subscribing of GPU memory. ArrayPipe
ships with a Memory Manager to mitigate this issue. Firstly,
ArrayPipe employs re-materialization [11] to reduce the GPU
memory footprint of activations approximately to the square
root of the total activations [33], incurring a 33% overhead.
Secondly, there is no need for synchronization at the end of
each block benefiting from job-level parallelism. Thus, just-
in-time updates can release the footprint of gradients and
further improve the throughput of training. Thirdly, as shown
in Fig. 5, ArrayPipe maintains a small number of rather than
all block states (i.e., model states of the corresponding blocks)

G
P

U

Host Memory

…

Buffer

Server Node
Memory

…

A1 B1

C0 D0

…C1 D1

Instructions

G
P

U

A0 B0

…

Executor

①

②

③

③

②

Gradients Activations Others

Load Model Off-load Pre-fetch

①

Fig. 5. Low-cost switching supported by memory manager.

buffers in each GPU memory, making sure that the state of
an upcoming block is always available before block context
switching. ArrayPipe constantly pre-fetches block states to
GPU memory for the upcoming training blocks. The states
are pre-fetched from the host memory or other GPUs in
the backend through PCIe or NVLink, according to the task
graph generated by Scheduler. Outdated block states will be
offloaded to host memory, utilizing GPU virtualization [34],
[35], to avoid GPU memory pressure. The number of buffered
states can be configured according to GPU memory size and
block state size.

IV. JAP SCHEDULING

For each job j in a job-array J , the model structure consists
of L (l1, l2, ..., l|L|) layers. L is partitioned into stages S
(s1, s2, ..., s|S|). Each stage consists of a consecutive set of
layers (at least one layer), and the last layer of stage sn is the
predecessor of the first layer of stage sn+1.

A DL cluster consists of a set of server nodes H
(h1, h2, ..., hm), and each server h has Gh (g1, g2, ..., g|Gh|)
devices (i.e., GPUs). The bandwidth of inter-servers (intra-
servers) communication is denoted by binter (bintra). Note
that the focus of our study is not the stage partitioning or
resource allocation for jobs, but the scheduling of blocks of
jobs in a job-array on a given set of devices.

A. Problem Formulation

As shown in Fig. 1(b), on server h, in each training iteration,
a mini-batch of job j is fed into the device hosting the first
stage (s1) for FP. Let ejshf denote the start time of an FP
block for stage s. During FP, each stage (except s1 and s|S|)
gets the input activations from the previous stage and generates
activations for the next stage. The training time of an FP block
on stage s is represented by rjshf . Let ajs,s′ denote the size
of activations (gradients) transferred between stage s and its
adjacent stages. The communication time between sn and sn′

can be represented by ηjs,s′ ,

ηj
s,s′ =


a
j

s,s′
binter

, s, s′ across servers
a
j

s,s′
bintra

, s, s′ within a server.
(1)

Upon completing an FP block for job ji, the training
state switches the model states (i.e., model parameters and
optimizer) to the subsequent job ji+1, and continues execution.
Let wj

sh denote the switch time (preparing context) for stage

TABLE I
NOTATION

J A collection of sibling DL training jobs (j ∈ J).
L Layer set of the model structure of job j.
S L is partitioned into stage set S (s ∈ S).
H DL cluster host severs set H (h ∈ H).
Gh Server h has device set Gh.

binter Inter-server communication bandwidth.
bintra Intra-server communication bandwidth.

ejshf (e
j
shb)

The start time of an FP (BP) block of job j for stage
s on server h.

rjshf (r
j
shb)

The training time of an FP (BP) block of job j for
stage s on server h.

wj
sh

The time for preparing CUDA context for stage s of
job j on server h.

rejsh
The re-computation time of job j for stage s of job
j on server h.

uj
sh The update time of job j for stage s on server h.

aj
s,s′

The size of activations (gradients) of job j transferred
between s and its adjacent stage s′.

mj
sh The size of model states of job j on server h.

ηj
s,s′ Adjacent stage communication time of job j.

s of job j. Furthermore, to support low-cost switching, the
model states of the upcoming block should be pre-fetched
before using, and Eq. (2) gives the constraint of pre-fetch
delay, where mj

sh denotes the size of model states of job j on
server h, and Sh denotes the stages on server h.∑

∀s∈Sh

mj
sh/bintra ⩽ min

j∈{1,2,...,|J|}
{rjshf − ηj

sf} (2)

Note that the left-hand side of Eq. (2) gives the worst case
for block state pre-fetch delay, when all the block states on a
server are swapped at the same time. Here, we use bintra
to denote the bandwidth between GPU and host memory,
which is shared among all devices The right-hand side of
Eq. (2) gives the shortest training time of blocks. ArrayPipe
enables low-cost switching by carefully arranging pre-fetch
and offloading operations on a server, according to Eq. (2),
that no extra swapping delay is introduced.

Then BP transfers gradients following a similar process to
FP but in the reverse order. Let ejshb and rjshb represent the start
time and training time of a BP block on stage s, respectively.
The activations are not released until the completion of BP
because they are generated during BP based on the activations
in FP. To avoid GPU memory pressure, JAP utilizes re-
materialization [33] that introduces extra computation over-
head (denoted by rejsh). Finally, the model of each stage is
updated once a BP block finishes (i.e., just-in-time update).
The update time of stage s for job j is denoted by uj

sh.
We use the overall training time of an iteration of all jobs

in J as our performance metric, which can be calculated by
the end time of the last BP block, denoted by T ,

T = max
j∈{1,2,...,|J|}

{ejs1hb + rjs1hb + uj
s1h

+ wj
s1h

+ rejs1hb}. (3)

The optimization objective is to minimize T with the con-
sideration of all solution spaces by scheduling the execution
order of blocks of jobs in J .

Source

Stage Dependencies Resource Competition

Stage 0

0

0

0

𝑟𝑠2
𝐴

𝑤𝑠2
𝐴

Ω t(Ω) 𝒊∗ 𝜴’ Opt_S

Step1 (A,0),(B,0),(C,0) 𝑟𝑠0
𝐴 + 𝜂𝑠0

𝐴 Stage 0 (A,0),(B,0),(C,0) (B,0)

Step2 (A,0),(B,1),(C,0) 𝑟𝑠0
𝐴 + 𝜂𝑠0

𝐴 Stage 0 (A,0),(C,0) (C,0)

Step3 (A,0),(B,1),(C,1) 𝑟𝑠1
𝐵 + 𝜂𝑠1

𝐵 Stage 1 (B,1),(C,1) (B,1)

...

Step 1

Step 1 Step 3

Step 3S
te

p

2

𝜂𝑠1
𝐴

Determined Arcs

C,0

A,0

B,0

C,2

A,2

B,2

C,1

A,1

B,1

Stage 1 Stage 2

Prepared Nodes Unprepared Nodes Determined Nodes

Sink

U V

Fig. 6. An Example of Disjuctive Graph for JAPSP.

Definition 2. Job-Array Pipeline Scheduling Problem
(JAPSP). Given a job-array of DL training jobs
J =

{
j1, j2, ..., j|J|

}
, and a cluster of servers

H =
{
h1, h2, ..., h|H|

}
, the JAPSP seeks a pipeline

schedule of all blocks for J on H , with minimum T , as
minimize T, (4)

subject to :
ejsif + rjsihf + ηj

sif
⩽ ejsi+1f

, i ∈ {1, ..., |S| − 1}, (5)

ejsib + rjsib + ηj
sib

+ rejsihb ⩽ ejsi−1b
, i ∈ {2, ..., |S|}, (6)

ejshf + ηj
sf + wj

sh ⩽ ejshb, ∀s ∈ S, (7)

ejshf + rjshf + wj
sh ⩽ ej

′

shf , ∀s ∈ S, (8)

ejshb + rjshb + wj
sh + uj

sh + rejshb ⩽ ej
′

shb, ∀s ∈ S. (9)

Constraints (5) and (6) are the stage dependencies, ensuring
that the execution of stage sn+1 in FP (BP) for job j must wait
for the activations (gradients) transferred from the previous
stage, respectively. Constraint (7) ensures FP is executed
before the BP for the same job at any stage. Constraints (8)
and (9) represent the resource competition of jobs on the same
machine, ej

′

shb denotes the next block on the same device.
JAPSP is a variant of the Job Shop Scheduling Problem

(JSSP) [32]. It is straightforward that JAPSP can be reduced
from JSSP, which proves that JAPSP is NP-hard.

B. Algorithms

To achieve the goal of high throughput job-array training,
two scheduling algorithms are integrated into ArrayPipe for
different scales of job-arrays:

Branch and Bound (B&B). To minimize T in Eq. 4, we
consider FP and BP separately and reformulate JAPSP as a
disjunctive graph form, as shown in Fig. 6. Consider a graph
G with a set of nodes N and two sets of arcs. Each node in N
corresponds to a block besides two dummy nodes (source node
U and sink node V). The conjunctive (solid) arcs represent the
stage dependencies within a job, and the disjunctive (broken)
arcs represent the resource competition of jobs on the same
device. U (V) has |J | solid arcs emanating to (coming from)
the first (last) block of |J | jobs. Both the nodes and arcs in

G have weights, which is different from the traditional JSSP.
The weight of nodes and arcs are shown in Fig. 6, (e.g., rAs2
for (A, 2), ηAs1 for solid arc from (A, 1) to (A, 2), and wC

s2 for
broken arc from (A, 2) to (C, 2)).

This problem can be reduced to minimize the length of
the critical path in graph G. We use B&B to find an optimal
selection of disjunctive arcs as shown in Alg. 1. Let Ω denote
the set of all blocks that have already been prepared, and the
initial Ω contains the first block of all jobs. Let RelΩ denote
the earliest starting time of prepared blocks (sn, j) in Ω. Let
eJS , rJS , ηJS , and wJ

S denote the start, training, communication
and switching time of a block in the job set J for all stages s
in S. Fig. 6 shows part of the steps to execute Alg. 1.

To select an optimal arc from G, we first need to determine
which stage (denoted by i∗) has the optimal arc. Stage i∗

can be obtained by calculating {Reljsn + rjsn} among all jobs
(denoted by t(Ω) in line 5). The stage of the job with the
minimum t(Ω) is i∗ (line 6). Then, blocks on stage i∗ in Ω
are merged into Ω′ (line 9). Here, if the Reljsn is greater than
t(Ω), it will be not merged into Ω′ (lines 7-11). The reason
for selecting i∗ and merging is clear, selecting stage or job
j should be prepared as early as possible and postpone other
schedules as little as possible.

Then, for each node in Ω′, solid arcs from this node to the
nodes on stage i∗ are added to a temp graph G′ (lines 12-
14). In G′, the makespan can be updated, and the Lmax of all
stages can be calculated by using 1|Relj |Lmax function, which
is a classic problem as a sub-problem in numerous scheduling
algorithms (lines 16-17). Due to space limitations, we have
refrained from expanding 1|Relj |Lmax, please refer to [32]
for more details. The lower bound of this extended graph
(LB(G′)) can be obtained by adding the makespan and Lmax.
By enumerating nodes in Ω′, the minimum lower bound and
corresponding node Opt_S can be found (lines 12-21). Then,
Opt_S is eliminated from Ω and its follower node is added
to Ω (line 21). Let Opt_S be the extended node (i.e., added
to Sched) and update G (lines 23-24). Alg. 1 finishes till Ω is
empty and returns task graph Sched.

However, the overhead of the B&B algorithm is innegligible
for large-scale job-arrays. Furthermore, exploratory jobs can
often experience early terminations. Thus, prompt scheduling
results are needed for frequent reschedulings.

Genetic Algorithm (GA). ArrayPipe also employs a GA-
based scheduling algorithm for computing prompt scheduling
results for large-scale job-arrays. Let a one-dimensional vector
of length |J |×|S| represent a feasible schedule (i.e., a chromo-
some or individual in GA). For each job, it appears |S| times
in an individual, and the number of occurrences n denotes
the mini-batch of job training on stage sn. GA initializes
the population by randomly generating multiple individuals
based on the specified population size. In each generation, the
number of individuals designated for crossover is random. GA
calculates the Fitness (i.e., the makespan of this individual)
of all individuals in the population and obtains the best
individual. To avoid a local optimum, GA provides mutations
to increase the diversity of a population. Specifically, GA

Algorithm 1 Branch and Bound Algorithm for JSSP
1: Input: Initial graph G, Job set J
2: Output: Schedule for each block of jobs Sched
3: Initial: LBmin(G

′)=+∞, Ω′={}, makespan=0, Sched={}
, Ω={(s1, j)}, RelΩ = {Reljs1 = 0},∀j ∈ J

4: while Ω ̸= ∅ do
5: t(Ω)=min

j∈J
{Reljsn + rjsn}

6: (i∗, _) = argmin
j∈J

{Reljsn + rjsn}
7: for (sn, j) in Ω do
8: if sn == i∗ and Reljsn < t(Ω) then
9: Ω′ = (sn, j) ∪ Ω′

10: for (i∗, j) in Ω′ do
11: G′ = G
12: add arcs to other jobs in stage i∗ in G′

13: Update makespan
14: Lmax = 1|Relj |Lmax(S)
15: LB(G′) = makespan + Lmax

16: if LB(G′) ≤ LBmin(G
′) then

17: OptSched = (i∗, j), LBmin(G
′) = LB(G′)

18: Ω = Ω−Opt_S ∪ (Opt_S.next follower)
19: Sched = Sched ∪ Opt_S
20: G = G′

21: return Sched

decides individuals to mutate in the population, and swaps any
two bits for them. Then, the mutating individuals are added
to the new population.

Crossover is the most important operation of GA, which
determines the global search ability of the genetic algorithm.
GA calculates the probability of crossover for all individu-
als according to the Roulette Wheel rule. The rationale is
that individuals with high fitness will have more chances to
crossover with others. Two individuals are selected from the
population as parents. To guarantee the children (individuals
in the next generation) can inherit the good characteristics of
parents (individuals in this generation), precedence operation
crossover is utilized to generate two new individuals. Finally,
a tournament rule is used for the remaining individuals to
select individuals with higher fitness from the old population,
ensuring a competitive and fitness-driven selection mechanism.

V. IMPLEMENTATION AND EVALUATION

ArrayPipe1 is implemented by using Pytorch and CUDA.
Specifically, ArrayPipe achieves a flexible PMP with commu-
nication among blocks in ArrayPipe handled via mpi4py based
on NCCL. It uses the Pytorch profiler to collect information for
Scheduler to generate a task graph. The job context switching
mechanism is implemented by leveraging CUDA’s memory
management functions.

Binder. ArrayPipe’s Binder supports sharing CUDA context
among sibling jobs in the job-array by maintaining a public
model structure to load model states of them. The main

1https://github.com/libai-master/ArrayPipe

TABLE II
DEEP NEURAL NETWORKS FOR EVALUATION

Model Dataset Optimizer # of Params

VGG19 [36] ImageNet SGD 144M
ResNet152 [37] ImageNet SGD 60M
BERT-large [38] GLUE BertAdam 340M

GPT2-xl [39] WikiText AdamW 1.5B

challenge lies in achieving low-cost switching. Instead of
swapping model states to the host memory of the CPU,
ArrayPipe saves model states directly on GPU memory for
quick access and loading.

Scheduler. ArrayPipe decomposes the sibling jobs so that
each layer can be executed individually. Then, ArrayPipe uses
the Pytorch profiler to record profiles (e.g., forward/backward
computation time, the size of activations) for each layer in
parallel. The scheduling algorithms take the layer-granularity
profiles as input and analyze them to generate a graph for
tasks of jobs in job-array, the Scheduler then executes the
task graph on a set of GPUs in the deployment.

Memory Manager. ArrayPipe includes a Memory Manager
to mitigate the memory over-subscribing issue. It achieves
re-materialization by recording the checkpoint of input of
each stage during the FP and recomputing according to these
checkpoints in the BP. ArrayPipe executes the operation of
updating at the end of each block in BP, then discards the
gradients from GPU memory. To overlap the overhead of
switching job context with the computation, the model states
of the upcoming blocks are swapped asynchronously by lever-
aging dedicated CUDA streams. Furthermore, ArrayPipe can
effectively pre-fetches and offload the model states between
the GPU memory buffer and host memory according to the
task graph generated by Scheduler.

A. Experimental Setup

We conduct comprehensive experiments including both
testbed and trace-driven simulation studies to evaluate the
efficiency of ArrayPipe. The results show that ArrayPipe
achieves 1.46× training throughput over State-Of-The-Art
(SOTA) PMPs on average.

1) Baseline: ArrayPipe is compared with three represen-
tative PMPs. (1) GPipe [11], one of the pioneering PMPs
proposed by Google, splits a mini-batch into multiple micro-
batches and utilizes recompute to reduce the memory footprint
of activations. (2) BPipe [5], a memory-optimized PMP,
adopts 1F1B to reduce the peak memory and mitigates the
memory imbalance by transferring intermediate activations
between pairs of GPUs. (3) Hanayo [19], is currently the
most effective PMP, achieving a low bubble ratio without
introducing an extra memory footprint.

2) DNN Models: Four representative DNN models are used
in the experiments, as shown in Table II. The DNN models
are divided into 8 stages with balanced execution time between
stages, as in [19], [40].

3) Workload: For each DNN model, an exploratory work-
load is generated, which consists of 64 sibling jobs. The hyper-

ArB&B ArGA Hanayo GPipe BPipe
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
im

e
(S

ec
on

d)

1e3
BERT-large
VGG19

ResNet152
GPT-2

Fig. 7. Training Time Comparisons.
parameters of sibling jobs are set from the following combi-
nations: for computer vision and nature language processing
jobs, we set the batch_size to [128, 256, 512, 768] and [8, 16,
24, 32], respectively. The initial learning_rate is set in [0.01,
0.001, 0.0001, 0.00001], and the weight_decay within [0.0001,
0.00001], and the momentum is in [0.9, 0.99]. The number
of micro-batches with the highest throughput is chosen in
Hanayo, GPipe, and BPipe for different job sizes. The number
of waves in Hanayo is set as 2 due to the limitation of layers
of DNN models.

B. Testbed Experiments

The environment consists of one NVIDIA SXM4 server
with 8 Ampere-100 GPUs, each with 80GB on-chip memory,
and the communication bandwidth between each GPU is
NVLink (300GB/s). The bandwidth between GPUs and CPU
is PCIe4.0 with the 64GB/s. Running on 64-bit Ubuntu Ubuntu
20.04.5 LTS with CUDA toolkit V11.7.99 and PyTorch 2.0.1.

1) Training Time: Training time is the key metric repre-
senting the duration required to train all jobs in the workload
for a single epoch. Fig. 7 shows the training time comparisons
with different PMPs, the results of ArrayPipe with different
algorithms are shown separately: Ar_B&B (ArrayPipe using
B&B) and Ar_GA (ArrayPipe using GA). The size of job-
array is set as large as possible based on the memory capacity,
and multiple job-arrays are executed sequentially.

Fig. 7 indicates that Ar_GA reduces 32.1%, 48.4%, and
50.1% training time of different DNN models on average,
compared with Hanayo, GPipe, and BPipe, respectively. For
GPT-2 and BERT, Ar_B&B has 8.8% shorter training time
than Ar_GA, while 45.8% longer time than Ar_GA for
VGG19 and ResNet152. As the scale of job-array increases
(i.e., more jobs are packed into a job-array for smaller DNN
models), the overhead to obtain the optimal schedule by B&B
is not tolerable. For example, 30 jobs with eight devices take
Ar_B&B about 2 minutes to get the optimal schedule, and
3 seconds is needed for Ar_GA. Thus, we set 30 as the
maximum job-array size for Ar_B&B in our experiment. In
practice, the user can set the threshold parameter and guild
ArrayPipe to choose the proper algorithm for different scales
of job-arrays. ArrayPipe achieves an overall 1.46× training
throughput compared with SOTA PMPs on average.

2) Utilization: Fig. 8 further illustrates the advantages
of ArrayPipe by showing the averaged GPU utilization of
different PMPs. ArrayPipe achieves the highest utilization

0 50 100 150 200 250 300 350
Time (Second)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

GP
U

Ut
ili

za
tio

n
ArrayPipe Hanayo GPipe BPipe

Fig. 8. GPU Utilization.
compared with the baselines (higher than Hanayo, GPipe, and
BPipe 20%, 36.8%, and 41.8%, respectively). This is because
ArrayPipe forms a pipeline with mini-batches of different jobs
instead of partitioned micro-batches of the same job, leading
to higher utilization. Hanayo has a lower bubble ratio which
also leads to a higher utilization compared with GPipe and
BPipe, however, the double stages reduce the utilization of
Hanayo. Additionally, we could see that ArrayPipe has a
stable utilization compared with other PMPs. According to the
analysis, the GPU usage of training DNN usually fluctuates
and follows a cyclic pattern [41], and ArrayPipe has longer
iterations which prolongs the cyclic interval by consolidating
multiple jobs into a job-array.

3) Low-Cost Switching and Memory Manager: To evaluate
the effectiveness of Low-Cost Switching (LCS) and Memory
Manager (MM), we compare ArrayPipe with the degraded Ar-
rayPipe (i.e., ArrayPipe w/o MM, ArrayPipe w/o LCS). Fig. 9
shows the speedup of ArrayPipe and degraded ArrayPipe over
vanilla model parallelism (i.e., only one device is active at each
time when a mini-batch is trained with PMP [40]). ArrayPipe
obviously has the best performance for all DNN models, since
ArrayPipe switches the model states between training jobs
with LCS and utilizes MM to reduce the memory pressure
for packing more jobs into a job-array. Note that although
ArrayPipe achieves LCS and mitigates memory pressure, the
memory footprint still increases with the number of jobs for
the reason of storing activation checkpoints.

ArrayPipe w/o MM stores as many as model states on GPU
to support LCS, however, it only packs 7 BERT jobs into a
job-array and even causes Out Of Memory (OOM) by storing
two copies of GPT-2. While ArrayPipe packs 30 BERT jobs
and 19 GPT-2 jobs into job-arrays, respectively, resulting in
high throughput job-array training.

On the other hand, ArrayPipe w/o LCS packs the same
number of jobs into a job-array as ArrayPipe due to the
reduced memory footprint by MM. However, ArrayPipe w/o
LCS has the worst performance because it frequently loads
the model states from host memory instead of GPU with low-
cost switching. For GPT-2, without LCS, the CUDA context
switching between different jobs is based on the stop-resume,
which costs 6.7s. With LCS, the training jobs can be switched
by loading their model states through a shared public model
structure. The loading model states from host memory takes
0.47s, where most of the loading time is consumed by the
swapping operation. Furthermore, the model states can be

O
O
M

Vanilla

Fig. 9. Comparison between whether to use LCS and MM in ArrayPipe.
loaded directly from the GPU using pre-fetching, reducing the
loading time to just 0.08s.

C. Simulation Studies

We further evaluate ArrayPipe in various environments
by simulation studies. The simulated DL cluster consists
of NVIDIA servers, including PCIe (64GB/s) versions with
40GB and 80GB memory, and NVLINK (300GB/s) versions
with 80GB memory, each server has 16 GPUs, the communi-
cation between servers is connected by InfiniBand (50GBps).
The workload is the same as in the testbed. We drive our
simulation using profiled data collected from real-world mea-
surements by running GPT-2 on one NVIDIA SXM4 server,
including training time, model states memory, and context
switching overhead. For a fair comparison, the variants of
ArrayPipe by using other PMP scheduling strategies are added
as baselines, including ArHanayo, ArGPipe, and ArBPipe.

1) Number of Servers: To evaluate the performance with
the bandwidth between GPUs and host memory, we distribute
8 stages into 1, 2, 4, and 8 PCIe server(s) with a capacity of
80GB memory, as shown in Fig. 10(a). ArrayPipe reduces the
training time by 39.1%, 43.7%, 48.9%, and 62.9% than other
baselines on average with 1, 2, 4, and 8 servers, respectively.
ArrayPipe and ArGPipe achieve higher performance when
more servers are involved. This is because more bandwidth
is being used to swap the model states between GPUs and the
host memory (i.e., easier to satisfy the Eq. (2)). The results
demonstrate that ArrayPipe is suitable in the scenario of using
multiple servers, which is consistent with the common practice
of hybrid parallelisms. Other baselines perform worse with
the increasing number of servers because of the low inter-
node bandwidth (i.e., InfiniBand) between stages. This issue is
particularly pronounced for BPipe and ArBPipe, which require
high-speed bandwidth between stages to support frequent com-
munications. Though Hanayo introduces an additional reverse
pipeline to reduce the bubble ratio, Hanayo is not suitable
for ArrayPipe due to its complexity of bi-direction. The
unequal execution time for each block seriously deteriorates
the pipeline efficiency of ArHanayo.

2) GPU Memory: To illustrate the relationship between the
performance and GPUs’ memory, we use PCIe servers with
different (40GB and 80GB) memory capacities. As shown
in Fig. 10(b), ArrayPipe and its variants benefit from GPUs
with large memory by packing more jobs into a job-array.
For example, ArrayPipe can pack 19 GPT jobs into a job-
array with an 80GB GPU but only 4 with a 40GB GPU,

ArrayPipe ArGPipeGPipe ArBPipeBPipeArHanayoHanayo

Fig. 10. Performance Comparison in Different Resource Settings.

ArrayPipe Hanayo ArHanayo GPipe ArGPipe BPipe ArBPipe Vanilla
0

1

2

3

Ti
m

e (
Se

co
nd

)

1e4

FP Time
BP Time

Overhead
Bubble Time

Fig. 11. Wall-clock time (accumulated actual time) of forward, backward
time, overhead (e.g., switching context, communications), and bubble time.

which leads to a 29% performance degradation. In contrast,
GPipe, BPipe, and Hanayo do not show performance changes
with larger GPU memory due to the sequential execution.
The performance of ArBPipe and BPipe is worse than other
baselines because PCIe is not enough to overlap their extra
activation communication between stages in the training.

3) Bandwidth: We further explore the performance of Ar-
rayPipe with different bandwidths by using 80GB servers with
PCIe and NVLink. As shown in Fig. 10(c), the performance of
ArrayPipe and its variants when using a PCIe server degrades
by 49.9% compared with using the server with NVLink. This
is because by using a server with NVLink, the upcoming
blocks’ model states can not only be pre-fetched from the
host memory but also from other GPUs, which reduces the
significant overhead of pre-fetching. Furthermore, BPipe lever-
ages NVLink to balance the memory usage and packs more
jobs into a job-array, thus, ArBPipe has higher performance
improvement compared with ArHanayo and ArGPipe. The per-
formance of Hanayo and GPipe is stable at different bandwidth
levels, due to their low dependence on the bandwidth.

4) Number of Stages: Fig. 10(d) shows the training time
with a different number of stages by splitting GPT-2 into 4 to
16 stages in an NVLink server. With the number of stages
increasing, the performance of ArrayPipe and its variants
has obvious improvements, e.g., with 4 stages, ArrayPipe
has 19.2% shorter training time than Hanayo, and with 16
stages, it is 57.5% shorter. Because more stages mean less
memory footprint on each GPU, which makes more jobs could
be packed into a job-array. Moreover, the large number of
stages helps ArrayPipe have a fine-grained schedule. For other
baselines, the training time first decreases and then increases

as the increasing of stages, since more stages lead to fewer
bubbles, while reducing the training efficiency.

5) Time Breakdown: Fig. 11 shows the breakdown of accu-
mulating time of different PMPs, the overhead contains extra
operations, such as context switching, communication between
GPUs, and so on. The vanilla PMP is used to demonstrate the
relationship between overhead and bubble time. The FP and
BP time of existing PMPs (i.e., Hanayo, GPipe, and BPipe)
are higher than ArrayPipe and their corresponding variants,
due to a larger number of micro-batches and stages decreasing
the training efficiency of GPUs. However, ArrayPipe and its
variants introduce higher overhead compared with other PMPs.
This is because ArrayPipe brings overhead of switching model
states and memory optimization, but ArrayPipe overlaps al-
most 90% overhead with computation according to a carefully
designed schedule. BPipe also incurs noticeable extra time due
to transferring activations. One can see that Vanilla has the
lowest overhead, but Vanilla has the highest bubble time due
to the absence of any optimization strategies. In summary,
ArrayPipe improves the efficiency of PMP training for model
exploration, with a modest overhead.

VI. CONCLUSION

This paper introduces Job-array Pipeline Parallelism (JAP)
for high throughput large model exploration. JAP enables a
batch of exploratory DL training jobs to form a job-array and
execute concurrently on a shared set of resources. ArrayPipe
is designed as a framework to support JAP with low-cost job
context switching in a job-array. A novel Job-Array Pipeline
Scheduling Problem (JAPSP) is proposed to seek to minimize
the per-iteration training time of a job-array, along with two
algorithms for different scales of job-arrays. Extensive testbed
experiments and trace-driven simulations are conducted to
evaluate the efficiency of ArrayPipe. The results show that
ArrayPipe achieves an average 1.46× training throughput
compared with state-of-the-art approaches.

ACKNOWLEDGMENT

This work is supported by the Natural Science Foun-
dation of Jilin Province (Grant 20230101062JC), the Na-
tional Key Research and Development Plan of China (Grant
2017YFC1502306), and the National Natural Science Foun-
dation of China (Grant 62272190).

REFERENCES

[1] Y. Xiao, L. Wu, J. Guo, J. Li, M. Zhang, T. Qin, and T.-Y. Liu, “A survey
on non-autoregressive generation for neural machine translation and be-
yond,” IEEE Transactions on Pattern Analysis and MachineIntelligence
(TPAMI), 2022.

[2] H. Zhao, X. Li, and H. Li, “Visage: Visual-aware generation of adversar-
ial examples in black-box for text classification,” in CCF International
Conference on Natural Language Processing and Chinese Computing
(NLPCC), 2024.

[3] O. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, and I. Akkaya, “Gpt-4
technical report,” 2023.

[4] Y. Wu, K. Ma, X. Yan, Z. Liu, Z. Cai, Y. Huang, and J. Cheng, “Elastic
deep learning in multi-tenant gpu clusters,” (TPDS), 2022.

[5] T. Kim, H. Kim, G.-I. Yu, and B.-G. Chun, “Bpipe: Memory-balanced
pipeline parallelism for training large language models,” in ACM Inter-
national Conference on Machine Learning (ICML), 2023.

[6] B. Du, J. Liu, Z. Luo, C. Wu, Q. Zhang, and H. Jin, “Expediting
distributed gnn training with feature-only partition and optimized com-
munication planning.”

[7] Z. L. J. L. S. Z. W. J. Yijun Li, Jiawei Huang and J. Wang, “Reducing
staleness and communication waiting via grouping-based synchroniza-
tion for distributed deep learning,” IEEE International Conference on
Computer Communications (INFOCOM), 2024.

[8] Y. Liu, B. Jiang, S.-M. Zhao, T. Lin, X. Wang, and C. Zhou, “Libra:
Contention-aware gpu thread allocation for data parallel training in
high speed networks,” IEEE Conference on Computer Communications
(INFOCOM), 2023.

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” (ArXiv), 2019.

[10] G. Liu, Y. Miao, Z. Lin, X. Shi, S. Maleki, F. Yang, Y. Bao, and S. Wang,
“Aceso: Efficient parallel dnn training through iterative bottleneck alle-
viation,” European Conference on Computer Systems (EuroSys), 2024.

[11] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” MIT Press Conference on Neural Information
Processing Systems (NeuraIPS), 2018.

[12] N. Niknami, A. Sawwan, and J. Wu, “Smartpipe: Intelligently freezing
layers in pipeline parallelism for distributed dnn training,” IEEE In-
ternational Conference on Parallel and Distributed Systems (ICPADS),
2023.

[13] Y. Duan and J. Wu, “Optimizing job offloading schedule for collabora-
tive dnn inference,” IEEE Transactions on Mobile Computing (TMC),
2023.

[14] S. Shi, X. Pan, X. Chu, and B. Li, “Pipemoe: Accelerating mixture-
of-experts through adaptive pipelining,” IEEE Conference on Computer
Communications (INFOCOM), 2023.

[15] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. A. Zaharia, “Efficient large-scale language
model training on gpu clusters using megatron-lm,” IEEE International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC), 2021.

[16] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng,
X. Li, C. Xie, S. Nong, Y. Jia, S. He, H. Chen, Z. Bai, Q. Hou, S. Yan,
D. Zhou, Y. Sheng, Z. Jiang, H. Xu, H. Wei, Z. Zhang, P. Nie, L. Zou,
S. Zhao, L. Xiang, Z. Liu, Z. Li, X. Jia, J. jun Ye, X. Jin, and X. Liu,
“Megascale: Scaling large language model training to more than 10, 000
gpus,” Symposium on Networked Systems Design and Implementation
(NSDI), 2024.

[17] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast pipelined context
switching for deep learning applications,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[18] S. Zhao, F. Li, X. Chen, X. Guan, J. Jiang, D. Huang, Y. Qing,
and S. Wang, “vpipe: A virtualized acceleration system for achieving
efficient and scalable pipeline parallel dnn training,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), 2022.

[19] Z. Liu, S. Cheng, H. Zhou, and Y. You, “Hanayo: Harnessing wave-
like pipeline parallelism for enhanced large model training efficiency,”
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2023.

[20] S. Li and T. Hoefler, “Chimera: efficiently training large-scale neural
networks with bidirectional pipelines,” Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2021.

[21] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018.

[22] H. Li, H. Zhao, Z. Xu, X. Li, and H. Xu, “Explsched: Maximizing
deep learning cluster efficiency for exploratory jobs,” IEEE International
Conference on Cluster Computing (CLUSTER), 2023.

[23] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, and W. Xiao,
“Analysis of large-scale multi-tenant gpu clusters for dnn training
workloads,” USENIX Annual Technical Conference (ATC), 2019.

[24] P. Mendes, M. Casimiro, and P. Romano, “Hyperjump: Accelerating
hyperband via risk modelling,” in AAAI Conference on Artificial Intel-
ligence (AAAI), 2021.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations (ICLR), 2015.

[26] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Deva-
nur, G. R. Ganger, P. B. Gibbons, and M. A. Zaharia, “Pipedream:
generalized pipeline parallelism for dnn training,” ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[27] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia, L. Diao, X. Liu, and W. Lin, “Dapple: a pipelined data
parallel approach for training large models,” ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPopp), 2020.

[28] X. Li, Q. Guo, G. Zhang, S. Ye, G. He, Y. Yao, R. Zhang, Y. Hao,
Z. Du, and W. Zheng, “Fasttuning: Enabling fast and efficient hyper-
parameter tuning with partitioning and parallelism of search space,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2024.

[29] “Auto ML. retrieved 04/16/2023,” https://www.ml4aad.org/automl/.
[30] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,

“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” MIT Press Journal of Machine Learning Research (JMLR),
2016.

[31] H. Wang, Z. Liu, and H. Shen, “Machine learning feature based
job scheduling for distributed machine learning clusters,” IEEE/ACM
Transactions on Networking (TON), 2023.

[32] P. Michael, “Scheduling. theory, algorithms and systems,” 1995.
[33] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with

sublinear memory cost,” ArXiv, 2016.
[34] L. Liu, H. Wang, A. Wang, M. Xiao, Y. Cheng, and S. Chen, “vcpu as a

container: towards accurate cpu allocation for vms,” ACM International
Conference on Virtual Execution Environments (VEE), 2019.

[35] F. Strati, X. Ma, and A. Klimovic, “Orion: Interference-aware, fine-
grained gpu sharing for ml applications,” European Conference on
Computer Systems (EuroSys), 2024.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations (ICLR), 2015.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” IEEE/CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2016.

[38] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics
(NAACL), 2019.

[39] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[40] Z. Luo, X. Yi, G. Long, S. Fan, C. Wu, J. Yang, and W. Lin,
“Efficient pipeline planning for expedited distributed dnn training,” IEEE
International Conference on Computer Communications (INFOCOM),
2022.

[41] H. Li, H. Zhao, T. Sun, X. Li, H. Xu, and K. Li, “Interference-
aware opportunistic job placement for shared distributed deep learning
clusters,” Journal of Parallel and Distributed Computing (JPDC), 2023.

