
TileSR: Accelerate On-Device Super-Resolution
with Parallel Offloading in Tile Granularity

Ning Chen1, Sheng Zhang1∗, Yu Liang2, Jie Wu3, Yu Chen1, Yuting Yan1, Zhuzhong Qian1 and Sanglu Lu1
1State Key Lab. for Novel Software Technology, Nanjing University, P.R. China

2School of Computer and Electronic Information and the School of AI, Nanjing Normal University, P.R. China
3Center for Networked Computing, Temple University, USA

Email: {ningc, DZ1933005, yuting.yan}@smail.nju.edu.cn, {sheng, qzz, sanglu}@nju.edu.cn,
jiewu@temple.edu, liangyu@njnu.edu.cn

Abstract—Recent years have witnessed the unprecedented
performance of convolutional networks in image super-resolution
(SR). SR involves upscaling a single low-resolution image to
meet application-specific image quality demands, making it vital
for mobile devices. However, the excessive computational and
memory requirements of SR tasks pose a challenge in mapping
SR networks on a single resource-constrained mobile device,
especially for an ultra-high target resolution. This work presents
TileSR, a novel framework for efficient image SR through tile-
granular parallel offloading upon multiple collaborative mobile
devices. In particular, for an incoming image, TileSR first uni-
formly divides it into multiple tiles and selects the top-K tiles with
the highest upscaling difficulty (quantified by mPV). Then, we
propose a tile scheduling algorithm based on multi-agent multi-
armed bandit, which attains the accurate offload reward through
the exploration phase, derives the tile packing decision based on
the reward estimates, and exploits this decision to schedule the
selected tiles. We have implemented TileSR fully based on COTS
hardware, and the experimental results demonstrate that TileSR
reduces the response latency by 17.77-82.2% while improving the
image quality by 2.38-10.57% compared to other alternatives.

Index Terms—image super-resolution, tile granularity, parallel
offloading, multi-agent multi-armed bandit

I. INTRODUCTION

Popular social media networks like Facebook [1], Insta-
gram [2], and Reddit [3] rely heavily on images as users
scroll through their feeds or post messages. Given the growing
popularity of data-saving alternatives [1], coupled with the
increasing need for responsiveness in congested network con-
ditions, enabling mobile devices to download low-resolution
images and upscale them locally, is not only feasible but also
highly desirable. Despite the superior performance of convo-
lutional neural networks (CNNs) [4]–[6] for image upscaling,
deploying and running them on local mobile devices poses
significant challenges as super-resolution (SR) models require
an excessive number of operations and run-time memory.

Currently, service providers typically use cloud computing
solutions [27] where users offload images to a powerful server
for upscaling, resulting in high response latency and security
risks. Consequently, there is an emerging need to develop
systems that support on-device SR. However, as running SR

∗ The corresponding author is Sheng Zhang (sheng@nju.edu.cn). This work
was supported in part by NSFC (62202233, 61832008), Double Innovation
Plan of Jiangsu Province (JSSCBS20220409), and Collaborative Innovation
Center of Novel Software Technology and Industrialization.

SR Model Zoo

Cloud
Access PointLocal

Device

Device 1 Device 2 Device 3

Model Update
Tile Offloading

Base Station

Image Tiles

Fig. 1. System architecture of collaborative image SR with parallel offloading.

model is resource-intensive, it can hardly meet users’ demands
for time efficiency by using only local constrained resources,
especially for an ultra-high target resolution (i.e., 4k). Instead,
we seek a collaborative method that utilizes multiple mobile
devices with parallel offloading. As Fig. 1 shows, the local
device divides the image into multiple tiles and offloads them
to each participating device for tile SR, and each device
periodically retrieves the latest SR model from the cloud side.

It is, however, non-trivial to effectively run such a collabora-
tive framework upon multiple mobile devices, as it necessitates
seamless management of various aspects, including model de-
ployment due to device heterogeneity, image dividing method,
and offloading scheme. In particular, this image SR system
with parallel offloading encounters three critical challenges:

First and foremost, since local and collaborative devices
are resource-constrained, offloading all the tiles is likely to
cause an expensive overhead in terms of power consumption,
resource occupancy and response latency. More tiles leads
to more data transfers and neural inference. This challenge
becomes even more pronounced when upscaling images with
larger original resolutions and upscaling factors, or when
dealing with unreliable inter-device network connections and
intense resource contention among multiple applications. Con-
sequently, there is a vital need to develop methods that
effectively alleviate this resource overuse by filtering out tiles
that contribute minimally to the overall system improvement.

Second, without prior and accurate knowledge of the of-
floading revenue mapping between selected tiles and par-
ticipating devices, making an informed offloading decision
becomes challenging. In addition to the complexity of the SR

(a) Structured image (b) Unstructured image
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

50

100

150

200

250

(c) mPV heatmap for image (a)
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

100

200

300

400

(d) mPV heatmap for image (b)

Fig. 2. Two images from the DIV2K dataset. (a) and (b) show their visual differences; (c) and (d) present the mPVs for each tile.

model, other factors like image content and run-time resource
contention also significantly affect the SR performance. While
users are aware of the concrete model deployment for each
device, capturing the impact of run-time resource contention
and image content is difficult, making it hard to attain the
actual offloading revenue. In such a dilemma, finding a way
to approximate the actual revenue is of utmost importance.

Third, given the accurate reward estimates, making optimal
tile scheduling to maximize the overall reward gains remains
challenging. With the tile size and referenced SR models,
it is straightforward to calculate the computational demands
(i.e., weights) for each device, coupled with the above reward
mappings (profits) and device capacities, the proposed tile
offloading problem constitutes a multi-knapsack problem [19],
which has been proven NP-hard and cannot be solved opti-
mally in polynomial time. Thus it is vital to find an alternative
to approximate the optimal solution as accurately as possible.

Existing research falls short of addressing these challenges.
Some studies [31], [41] use multiple processors within a local
device to run parallel SR. As the image-centric rather than
tile-centric input, coupled with the limited capacity of single
processor, they fail to meet user demands for time efficiency.
Others focus on on-device optimizations [42], [44], [45], such
as model compression, model early exit, selective frame for
SR, and result reuse, which inevitably lead to a SR quality
degradation. A large body of research [27]–[30] has explored
edge-server or cloud-based frameworks to alleviate resource
constraints on edge devices. For instance, ELF [30] also adopts
the parallel offloading method to handle video analytics tasks,
but it turns to the edge server rather than the mobile device,
thus causing extra latency and privacy risks. To the best of our
knowledge, we are the first to propose a multi-device collabo-
rative image SR framework, which effectively addresses these
challenges without compromising user experience or privacy.

This work presents TileSR, a new collaborative framework
with tile-granular parallel offloading upon multiple devices
for accelerating image SR. In particular, TileSR consists of
three key designs, e.g., mPV-aware tile selection, exploration-
based reward estimation and MKP-like tile packing, which
correspond to each of the above three challenges, respectively.

First of all, to reduce the useless tile offloading, we propose
a selective mechanism based on the fact derived from our
experimental preliminaries: tiles vary in upscaling difficulty
quantified by mPV (mean Pixel Variation), and high-mPV tiles
yield higher quality (i.e., PSNR) when using CNN models

compared to interpolation-based methods, while low-mPV
tiles attain high quality regardless of the upscaling method
used. Using this property, TileSR selects only the top K
tiles with the highest mPV for offloading and tile SR in
collaborative devices, while upscaling the remaining tiles using
interpolation methods with local resources.

Then, we model and formulate the problem of offloading
top-K tiles upon multiple participating devices, with the goal
of maximizing the overall reward in terms of SR quality,
response latency and energy consumption in the long run.
Furthermore, the sum of demanding computations of the
offloaded tiles in each device should not exceed its capacity,
and the frame-level response time should meet the threshold.
Considering that the offloading reward is indeed stochastic
and time-varying, but bounded up and down within a range,
we design an exploration-based method in a multi-agent bandit
framework to attain the expected value as the reward estimates.

Finally, based on the resource demand, the concrete reward
mapping between selected tiles and collaborative devices,
and the device capacities, we consider the tile offloading
problem as a multi-knapsack problem (MKP), and propose a 2-
approximation algorithm, which decouples the MKP problem
into a series of knapsack sub-problems and recursively solves
each sub-problem to update the final offloading decision.

We have implemented TileSR fully based on COTS hard-
ware including four collaborative devices, and each device is
deployed a SR model from models CARN [5], EDSR [7],
MSRN [8] and RCAN [9] that best matches its capacity. The
experimental results measured in Set5 [25], Set14 [26] and
DIV2K [24] demonstrate that TileSR reduces the response
latency by 17.77-82.2% while improving the image quality
by 2.38-10.57% compared to other alternatives.

II. MOTIVATING STUDIES FOR TILE SELECTION

This section first introduces a metric called upscaling diffi-
culty that plays a key role in image SR. Then, based on this,
we present a tile selection mechanism.

A. Difficulty Analysis for Neural Super-Resolution

To maintain high quality, more powerful CNN models
are used for super-resolution, ignoring the fact that not all
images have the same upscaling difficulty. That is, using the
same model to upscale different images could yield different
qualities. To verify this, we collect two images from DIV2K
dataset [24], including: (1) Fig. 2(a), which is highly structured
and smooth, and (2) Fig. 2(b) that contains unstructured

Frame (a) Frame (b)
Frame Type

0

10

20

30

40

A
ch

ie
ve

d
PS

N
R

 (d
B

)

4.57 dB

7.09 dB

CARN
EDSR

RCAN
AREA

CUBIC
LINEAR

(a) Quality under diverse methods

0 250 500 750 1000
mPV value

20

30

40

50

60

Q
ua

lit
y

(d
B

)

2.7 dB

9.7 dB

AREA_x2
CARN_x2

(b) Quality distribution in DIV2K

Fig. 3. Quality comparison of CNN-based and interpolation-based methods.

fine details and texture. Then, six methods, including (1)
CNN-based CARN [5], EDSR [7], and RCAN [9] and (2)
interpolation-based AREA, CUBIC, and LINEAR provided in
OpenCV, are applied to upscale Fig. 2(a) and Fig. 2(b).

Fig. 3(a) illustrates the achieved SR quality measured by
PSNR. It is clear that both CNN-based and interpolation-based
methods work well to upscale Fig. 2(a), while achieving sig-
nificantly lower quality for Fig. 2(b), indicating that Fig. 2(a)
is much easier to upscale than Fig. 2(b). To quantify such
upscaling difficulty similar to the prior work [31], we first
define the Pixel Variant Matrix PVf for image f ,

PVf [i, j]=
∑min{i+1,W}

w=max{1,i−1}

∑min{j+1,H}

h=max{1,j−1}
|pi,j−pw,h|, (1)

where pi,j is the pixel value, and W and H represent the frame
width and height, respectively. To this end, we define the mean
pixel variant (mPV) mPVf =

∑W
i=1

∑H
j=1 PVf [i, j]/(WH),

which is used to indicate the upscaling difficulty for image
f . For instance, Fig. 2(a) has a lower mPV (i.e., 125) than
Fig. 2(b) (i.e., 275), meaning that Fig. 2(a) is easier to upscale.

B. mPV-aware Top-K Tiles Selection

Without loss of generality, the eq. (1) can also be used to
define the mPV for image tiles. Within a frame, we observe
that there are likely to be tiles that are both easy and difficult
to upscale for super-resolution. As shown in Fig. 2(c) and
Fig. 2(d), we divide Fig. 2(a) and Fig. 2(b) equally into 10×10
tiles and calculate their mPVs individually. It is clear that even
though Fig. 2(a) is easily upscaled, it still contains several tiles
with higher mPVs. On the other hand, Fig. 2(b) has a high
mPV, but it consists of substantial low-mPV tiles.

Goal: Among these tiles {m} with different mPVs, the
goal of TileSR is to select partial tiles that benefit the overall
performance (described in section III) the most in terms of
SR quality, response latency, and energy consumption. Since
TileSR splits the images uniformly, each tile has the same
size and thus has the identical impact on response latency and
energy consumption [10], [11]. Therefore, we only consider
the contribution of each tile to the SR quality, which relies
heavily on its upscaling difficulty mPV.

Heuristics: To explore the relationship between tile mPV
and SR quality in-depth, we conduct a large-scale preliminary
experiment. We first uniformly divided each image in the
DIV2K training and validation sets [24] into multiple tiles with
the same size 20x20, and then we calculated the mPV of each
tile together with the achieved PSNR by running our reference

TABLE I
SUMMARY OF NOTATIONS USED FOR SYSTEM MODEL

Inputs Description
K {1, . . . , k, . . . ,K}, set of selected top-K Tiles
D {1, . . . , d, . . . , D}, set of involved Devices
T {1, . . . , t, . . . , T}, set of time slots with equal length

Kd,t Set of tiles that are offloaded to device d at slot t
Cd Computing capacity of device d
ck,d Computation demand to run tile k in device d
Qk,d Achieved SR quality (PSNR) to run tile k in device d
Ek,d Energy consumption to inference tile k in device d
Lk,d Response latency to inference tile k in device d

Decisions Descriptions
xk,t Device selection for tile k ∈ K in time slot t ∈ T

model (i.e., CARN [5]) and interpolation-based method (i.e.,
AREA). Based on the results in Fig. 3(b), we conclude that: (1)
for low-mPV tiles, both CNN-based and interpolation-based
methods yield high and similar PSNR values, and (2) for
high-mPV tiles, both these two methods acquire lower PSNR
values, but the CNN-based method gets significantly higher
PSNRs than the interpolation-based method. For example, in
Fig. 3(b), CARN achieves 9.7 dB higher PSNR than AREA
when the mPV is 750, which is significantly higher than that
(2.7 dB) when the mPV is only 100.

Method: Above all, we propose a mPV-aware tile selection
mechanism as follows: (1) calculate the upscaling difficulties
{mPV } for each tile mi ∈ {m}, and sort {m} in descending
order by the mPV value; (2) select the top-K tiles with the
highest mPV values as the offload targets for CNN-based
super-resolution, and locally upscale the remaining tiles with
the interpolation-based method. Next, we focus on how to
schedule these selected tiles to the participating edge devices.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Settings and Models

We summarize the major notations used in Table I.
Inter-Device Networks: We consider a set of edge devices

accessed by a local device, denoted as D = {1, . . . , D},
each of which supports lightweight neural inference through
highly compressed models that best match its capacity. These
devices are connected to users via wireless local area networks
(WLANs), such as WiFi, ZigBee, and Bluetooth, to ensure
fast response times and to mitigate privacy and security risks.
Examples of such devices include smart home devices such as
cell phones, iPads, electronic picture frames and televisions,
which are ideal for this purpose. Another scenario involves
multiple unmanned aerial vehicles (UAVs) within a WLAN
that can collaborate to perform various computing tasks.

Tile-Granular Parallel Offloading: By mPV-aware selec-
tion, we get the top-K tile set, denoted by K={1, . . . ,K}. The
entire time horizon is divided into several slots, represented
by T ={1, . . . , T}. We use xt=(x1,t, . . . , xK,t) to indicate
the overall offload decision for K in time slot t, where xk,t
represents the device selected for tile k. In each time slot
t ∈ T , based on the control decision, TileSR handles tiles K
in three steps: (1) for each tile k ∈ K, TileSR offloads it to
device d = xk,t ∈ D; (2) then device d runs the SR model to
upscale tile k to the target resolution and returns the output

to the user side; and (3) finally, TileSR merges these upscaled
tiles into a complete high-resolution frame.

Super-Resolution Quality: For image quality assessment,
the most commonly used metrics are the comparative scores
such as VMAF, PSNR, and SSIM, which calculate the dif-
ference between the enhanced image and the baseline frame
(i.e., ground truth). For a given tile k, due to the unavailability
of the high-resolution tile (i.e., ground truth) k′, we cannot
directly obtain the difference of the tile pair (k, k′). Instead, we
model the SR quality based on the following two observations
derived from the preliminary experiment: (1) the SR quality is
negatively related to the tile mPV value, which can be modeled
as a concave function; (2) a larger upscale factor leads to lower
quality; and (3) the mPV value and the upscale factor affect
the SR quality independently. In particular, we compute Qk,d

Qk,d = φd (Vk)ψd (Pk) , (2)
where the functions φd (Vk) and ψd (Pk) represent the quality
with respect to the mPV value Vk and the upscaling factor
Pk of the tile k, respectively. Considering the heterogeneity
of participating devices, we prepare multiple SR CNN models
by controlling the compression and pruning level, and each
device uses a model that best matches its maximum resource.

Energy Consumption: CNN-based super-resolution is ex-
pensive in power consumption, but edge devices have inher-
ently limited power, so the energy consumption should be
considered [10]. Since two main procedures, including tile
transfer and CNN inference, account for most of the energy
consumption, we model the energy consumption Ek,d as

Ek,d = (α+ βd) γ (pk,l ∗ pk,w) , (3)
where γ (pk,l ∗ pk,w) is the data scale of tile k with size pk,l×
pk.w, and compression rate γ, and α and βd denote the energy
per bit for transmission and inference [11], respectively.

Constraint of Response Latency: For each tile k ∈ K,
its response latency Lk,d consists of three components, i.e.,
the tile transfer time lupk,xk,t

from the user side to the target
device xk,t, the tile super-resolution time lsrk,xk,t

, and the result
feedback time ldown

k,xk,t
. Considering that all devices perform

CNN super-resolution on their received tiles in parallel, the
response latency to handle tiles K in slot t is defined as the
completion time of the last tile. To ensure the time efficiency
of multi-device parallel SR, the response time must hold,

max
{
lupk,xk,t

+ lsrk,xk,t
+ ldown

k,xk,t
|k ∈ K

}
≤ Lmax. (4)

Constraint of Devices Capacity: Each heterogeneous edge
device d ∈ D is provisioned with a limited computational
capacity Cd. If too many tiles are offloaded to device j that
the computational demand exceeds Cd, some of the tiles will
have to wait for idle resources, resulting in a longer response
time. In particular, for each participating device, it holds that,∑

k∈Kd,t

ck,d ≤ Cd, (5)

where Kd,t is the set of tiles that are offloaded to device d at
slot t. Similarly to the research in [12], the number of opera-
tions is proportional to the input tile scale γ (pk,l ∗ pk,w), so
the computational demand ck,d is denoted as λdγ (pk,l ∗ pk,w)
with the proportionality λd to indicate model complexity.

Reward: From the user’s perspective, SR quality and re-
sponse latency play a key role in the quality of the viewing
experience; from the system’s perspective, power consumption
has a significant impact on overall performance. Thus, we
define the reward uk,d as the weighted sum of them,

uk,d = δ1Qk,d − δ2Ek,d − δ3Lk,d, (6)
where δ1, δ2 and δ3 are parameter weights to tradeoff SR qual-
ity, response latency and energy consumption, respectively.
Given the unknown and uncertain system-side information,
including 1) the runtime quality functions (i.e., φd and ψd

in each device), which are largely affected by image content
and resource contention, and 2) the energy consumption rate
(i.e, βd) for participating devices, each tile can only derive an
independent identical distribution (i.i.d) random reward value
ũk,d(t) in time slot t, with uk,d = E [ũk,d(t)] , ũk,d(t) ∈
[u, ū],∀k ∈ K,∀d ∈ D, where u and ū are the lower and
upper bounds of the reward, respectively.

B. Problem Formulation

With the above system models, we formulate the following
optimization problem to control the tile offloading decision xt
upon such a multi-device parallel offloading framework:

P : max
{xt|t∈T }

∑
t∈T

∑
k∈K

E
[
ũn,xk,t

(t)
]

s.t.
∑

k∈Kd,t

ck,d ≤ Cd,∀d ∈ D,∀t ∈ T ,

max
{
Lk,xk,t

|k ∈ K
}
≤ Lmax,∀t ∈ T .

Model Discussion: To aggressively maximize the utilitarian
compound reward in P, tiles that perceive high rewards are
likely to be offloaded to devices with lower energy consump-
tion and high super-resolution quality, thereby depriving other
tiles of the opportunity to select “better” devices and causing
unfair device selection for neural super-resolution. Despite the
constraint of response latency, which mitigates such unfairness
to some extent, multiple tiles are likely to be offloaded to the
same devices, making the response latency close to the time
threshold and making it run out of energy quickly.

Problem Transformation: Therefore, to avoid these unde-
sired results, we explore the proportional fairness maximiza-
tion [13], [14] to achieve a fair reward distribution among
the frame tiles by modifying the reward function rk,xk,t

as
ln
(
1 + ηuk,xk,t

)
, η > 0. Above all, we take into account the

proportional fairness and transform P into P1, i.e,
P1 : max

{xt|t∈T }

∑
t∈T

∑
k∈K

E
[
r̃k,xk,t

(t)
]

s.t. r̃k,xk,t
(t) = ln

(
1 + ηũk,xk,t

(t)
)
,∑

k∈Kd,t

ck,d ≤ Cd,∀d ∈ D,∀t ∈ T ,

max
{
Lk,xk,t

|k ∈ K
}
≤ Lmax,∀t ∈ T .

Accordingly, the user perceives the i.i.d random reward
function r̃n,xk,t

(t) instead of ũn,xk,t
(t), with rk,d =

E [r̃k,d(t)] , r̃k,d(t) ∈ [r, r̄],∀k ∈ K,∀d ∈ D, where r and
r̄ are the lower and upper bounds of the reward, respectively.

Key Challenge: The goal is to maximize the long-run total
reward. It is not yet trivial to derive the optimal solution
for P1, since the observed reward r̃n,xk,t

(t) is uncertain and

Algorithm 1 Decentralized Online Tile Offloading
Input: K, D, T , Texplore, Texploit

1: R(π) ←
{
r̃
(π)
k,d= 0,∀k ∈ K,∀d ∈ D

}
, ∀π ∈ Π;

2: Ξ(π) ←
{
χ
(π)
k = 0,∀k ∈ K

}
, ∀π ∈ Π;

3: for epoch π = 1 to πT do
4: Invoke Alg. 2: R̃(π)= Exploring

(
R(π), Texplore

)
;

5: Invoke Alg. 3: Ξ̃(π) = Packing
(
R̃(π),Ξ(π)

)
;

6: for each of the remaining Texploit time slots do
7: Offloading tiles to device by Exploiting Ξ̃(π);

Algorithm 2 Reward Exploring with Multi-Agent Bandit

Input: R(π), Texplore, K, K, D
1: for time slot t = 1 to Texplore do
2: for group g to

⌈
K
KD

⌉
do

3: Each tile k in group g is offloaded to target
4: device d = ⌊((k + t)% (KD)) /K⌋+ 1;
5: Update r̃πk,d ← r̃π−1

k,d +
(
r̃k,d − r̃π−1

k,d

)
/π;

Output: R̃(π) =
{
r̃
(π)
k,d ,∀k ∈ K,∀d ∈ D

}

time-varying. Fortunately, we observe that the changes in
SR quality, latency, and energy consumption remain bounded
within a specific range. For example, in Fig. 3(b), the achieved
PSNR fluctuates within a certain range for a given upscaling
difficulty. The other two metrics show a strong correlation
with the tile size, resulting in their bounded behavior as well.
As a result, their expected values can effectively represent a
device’s SR performance, inspiring us to develop an algorithm
based on exploration and exploitation to solve problem P1.

IV. DECENTRALIZED TILE OFFLOADING ALGORITHM

In this section, we detail the algorithm design for TileSR. In
particular, the local side tile scheduling is modeled as a multi-
agent multi-armed bandit problem by treating offloading to
an edge device as playing an arm. The overall workflow is
presented in Alg. 1, where Alg. 2 is responsible for exploring
the potential reward variants, and Alg. 3 is invoked to derive
the final solution by solving a series of knapsack subproblems.

A. Decentralized Tile Offloading

Given that the offloading reward is uncertain but bounded,
we develop an exploration and exploitation-based algorithm.
Prior research [15]–[18] has shown that multi-armed ban-
dit methods effectively learn random rewards from multiple
“bandits”. However, directly applying the multi-armed bandit
method to each tile may cause conflicts of interest due to
the decentralized nature. Besides, since tiles vary in mPV, it
is essential to devise an extended multi-armed bandit method.
Thus, as Alg. 1 shows, we introduce a decentralized algorithm
based on the multi-agent multi-armed bandit for tile offloading.

Regret: Since we apply bandit-based Alg. 1 to solve P1,
we define the regret to quantify the offloading performance as

R(T)=T
∑

k∈K
rk,x∗

k,t
−
∑T

t=1

∑
k∈K

E
[
r̃k,xk,t

(t)
]
, (7)

Algorithm 3 Tile Packing upon Multi-Knapsack Problem

Input: R̃(π), Ξ̃(π), K, D, C
1: R1 ← R̃(π), Ŝ ← ∅, d← 1;
2: while d ≤ D do
3: Run algorithm Π(Rd, Cd) and return Sd;
4: for tile i ∈ Sd do
5: if ∃d′, 1 ≤ d′ < d s.t. i ∈ Sd′ then
6: Update Sd′ ← Sd′\ {i};

Update decision Ŝ ← Ŝ
⋃
{Sd};

7: for tile k to K do
8: for device j to D do

9: R1
d[k, j] =

{
Rd[k, j], if k ∈ Sd or j = d,

0, otherwise,

10: Set R2
d ← Rd −R1

d, Rd+1 ← R2
d, d← d+ 1;

Output: Ŝ

where the offloading decision {xk,t, k ∈ K, t ∈ T } is derived
from Alg. 1, and {x∗k,t, k∈K, t∈T } is the optimal solution.
To minimize the regret R(T), striking exploration-exploitation
balance is crucial. As the total time T is not predetermined,
we divide the time horizon into distinct epochs {1, 2, . . . , πT },
with each epoch containing a variable number of time slots,
and πT indicating the last epoch. This epoch-based structure
allows us to effectively address the exploration-exploitation
tradeoff, with each epoch encompassing an exploration phase,
a packing phase, and an exploitation phase.

B. Reward Exploration and Exploitation

Exploration: During the exploration phase, which spans
Texplore time slots in each epoch, there is a concern that the
total computational demand for CNN super-resolution of tiles
K may surpass the available computational capacity of the
participating devices. To prevent potential issues like tile queu-
ing or abandonment, we introduce a group-based offloading
scheme in a round-robin fashion for reward exploration. As
illustrated in lines 2-4 of Alg. 2, for each tile k belonging to
a group in time slot t, it is sent to device xk,t computed as

xk,t = ⌊((k + t)%(KD))/K⌋+ 1, (8)

where K is calculated as mind∈D,k∈K{ Cd

ck,d
, }, and KD is the

group size so not to violate any device capacity. The perceived
reward r̃πk,d is initially set to 0 and updated (line 5) with

r̃πk,d ← r̃π−1
k,d +

(
r̃k,d − r̃π−1

k,d

)
/π, (9)

which includes the explored reward r̃π−1
k,d along with the

reward gain or loss of the current epoch π compared to the
reward of the previous epoch π − 1. As π rises, the reward
variant achieves a diminishing marginal benefit.

Exploitation: Using the reward estimates {r̃(π)k,d}, TileSR
employs Alg. 3 to generate the offloading scheme Ξ̃(π), which
will be further elaborated in the following subsection. During
the remaining Texploit time slots in epoch π, we offload the
selected top-K tiles by exploiting the packing scheme Ξ̃(π).
Notably, the number of time slots allocated to Texploit is

1-th recursion Iteration for 𝑑𝑑2 Iteration for 𝑑𝑑3

1
2
2
1

2
3
2
1

2
4
4
4

Reward

5
2
12
20

1
2
25
10

4
2
30
14

5
2
12
20

1
2
25
10

4
2
30
14

5
2
12
20

0
0
20

0
0
20

0
0
0
0

-4
2

25
-10

-1
2

30
-6

𝒌𝒌𝟏𝟏
𝒌𝒌𝟐𝟐
𝒌𝒌𝟑𝟑
𝒌𝒌𝟒𝟒

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑

𝒌𝒌𝟏𝟏
𝒌𝒌𝟐𝟐
𝒌𝒌𝟑𝟑
𝒌𝒌𝟒𝟒

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑

Demand

𝑹𝑹𝟏𝟏 =

𝑹𝑹𝟏𝟏𝟏𝟏 =

𝑹𝑹𝟏𝟏𝟐𝟐 =

𝑹𝑹𝟐𝟐 =

𝑹𝑹𝟐𝟐𝟏𝟏 =

𝑹𝑹𝟐𝟐𝟐𝟐 =

-1
2
5
-6

-1
2
5
-6

0
0
0
0

𝑹𝑹𝟑𝟑 =

𝑹𝑹𝟑𝟑𝟏𝟏 =

𝑹𝑹𝟑𝟑𝟐𝟐 =

-4
2
25
-10

-1
2
30
-6

-4
2
25
-10

0
0

0

0
0
0
0

-1
2
5
-6

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟑𝟑

5 5

Capacity
2 3 4
𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑

25

1st recursion 2nd recursion 3rd recursion

Fig. 4. Running example of Alg. 3 with 4 tiles and 3 devices.

significantly larger than Texplore, and it continuously increases
throughout epoch π.

C. Tile Packing upon Multi-Knapsack Problem

After obtaining the reward estimation {r̃(π)k,d} through the
exploration phase, this phase aims to obtain the tile packing
decision {χ(π)

k }. In particular, for each time slot t, tile packing
can be modeled as a multi-knapsack problem (MKP) [19]:

P2 : max
xt

∑
k∈K

r̃k,xk,t

s.t.
∑

k∈Kd,t

ck,d ≤ Cd,∀d ∈ D,

max
{
Lk,xk,t

|k ∈ K
}
≤ Lmax,

which has been proven NP-hard [20] and cannot obtain the
optimal solution in polynomial time. Instead, as Alg. 3 shows,
we propose a multi-knapsack based approximation algorithm.

MKP Packing: For problem P2 with K tiles and D devices,
let R be a K × D profit matrix derived from the reward
estimations {r̃(π)k,d}, where R[k, d] represents the profit of tile
k when selected for device d. Let Π be an algorithm (e.g.,
branch-and-band or dynamic programming methods [21], [22])
that effectively solves the single-knapsack problem.

Considering that a recursive method is adopted to update the
selected tiles in each device, we use Rd to denote the profit
matrix at the d-th recursive call. Initially, we set R1 to R, and
each recursion follows two steps:
• Lines 3-6: Run algorithm Π on device d with profit function
Rd, obtain the initial selected item set Sd, and update Ŝ;

• Lines 7-11: Based on Sd, decompose the profit function
into two functions R1

d and R2
d for each k ∈ K and d ∈ D.

In particular for R1
d, ∀j ∈ D, R1

d[k, j] is set to Rd[k, d]
if tile k ∈ Sd or j = d; otherwise, R1

d[k, j] is set to 0.
Then, we set R2

d to Rd − R1
d. In short, R1

d is identical to
Rd in first column; besides, if item k ∈ Sd, then R1

d[k, j]
for all devices are the same; other entries are set to zero.
Finally, we set Rd+1 to R2

d and abandon the column values
for device d in Rd+1, and begin (d+ 1)-th recursion.
The final union set Ŝ indicates the final packing result. Fig. 4

illustrates a running example of the proposed algorithm on
4 tiles {k1, k2, k3, k4} and three devices {d1, d2, d3}. At the
first (e.g., d1-th) recursion, based on the values in the first
column in R1, algorithm Π returns the current best item sets

TABLE II
DEVICE DESCRIPTION IN TILESR IMPLEMENTATION.

Device Description SR Model
Dell Desktop Intel Core i5-11500, 2.70GHz AREA

Raspberry Pi 4B 500 MHz VideoCore VI CARN [5]
Jetson NANO 128-core NVDIA Maxwell RCAN [9]

Jetson TX2 256-core NVDIA Pascal MSRN [8]
Jetson Xavier NX 385-core Volta +48 Tensor Cores EDSR [7]

S1 = {k1, k4} for device d1. Then, in R1
1, it sets the entries

in rows 1 and 4 to R1
1[1, 1] and R1

1[4, 1], respectively, but
assigns 0 to other entries. The operations are similar for d2-th
and d3-th recursions. Finally, it outputs the packing decision
Ŝ = {{k1, k4}, {}, {k3}}, which can be used for exploitation.

V. PERFORMANCE ANALYSIS

This section theoretically analyzes the performance of
TileSR, including the Error Probability of exploration, the
Packing Accuracy given the explored and expected reward,
the overall regret and the approximation of tile packing.
Lemma 1 (Exploration Error Bound): After the π-th reward
exploration in Alg. 2, the Error Probability is bounded:

Pr
(∣∣r̃τk,d − rk,d∣∣ > 2µmin/9K

)
≤ 2KDe−π, (10)

where item K=max{ Cd

ck,d
, d ∈ D, k ∈ K}, and item µmin =

{µ1, µ2, µ3}, in which µ1 = mink ̸=k′∈∥,d∈D {|rk,d − rk′,d|},
µ2 = mink ̸=k′∈K,d ̸=d′∈D {|(rk,d − rk,d′)− rk′,d|}, and µ3 =
mink ̸=k′∈K,d′ ̸=d ̸=d′′∈D {|(rk,d − rk,d′)− (rk′,d − rk′,d′′)|}.

Proof. See Appendix A.

Lemma 2 (Packing Accuracy Guarantee): The packing scheme
Ξ̃(π) derived from the explored reward estimates {r̃(π)k,d} is the
same as that from the expected rewards {rk,d,∀k ∈ K,∀d ∈
D} if the inequality |r̃τk,d − rk,d| ≤

2µmin

9K
holds.

Proof. See Appendix B.

Theory 1 (Regret Bound): The regret is bounded as R(T) ≤
O(log2T) when using exploration method to estimate the
reward in Alg. 2 without certain prior information.

Proof. See Appendix C.

Lemma 3 (Approximation Ratio): Alg. 3 outputs a 2-
approximate solution for the multi-knapsack problem P2 by
recursively tackling the tile packing for each device.

Proof. See Appendix D.

Discussion: Lemma 1 ensures that after several epochs in
the exploration phase, the reward estimates {r̃(π)k,d} are close
to the expected reward {r(π)k,d} with a high probability. To
guarantee a lower error, i.e. 2µmin/9K, a larger number of
time slots for reward exploration is required. Lemma 2 states
that if {r̃(π)k,d} are close enough to {r(π)k,d}, they will yield the
same results when entered into Alg. 3 individually. Theorem 1
shows that the logarithmic regret bound is tight, since a lower
log2T regret bound can be derived. Finally, by decoupling
the multi-knapsack problem into a series of single-knapsack
problems and using a recursive method to update the packing
decision, Alg. 3 obtains a 2-approximation solution for P2.

5 10
Frame Index in Set14

0.35

0.40

0.45

0.50
N

or
m

al
iz

ed
 R

ew
ar

d TileSR
MobiSR

Supremo
Strawman

(a) Performance in Set14

0.25 0.50 0.75 1.00
Normalized Reward

0.00

0.25

0.50

0.75

1.00

C
D

F

Better
TileSR
RAScheduler
MobiSR
Supremo
Strawman

(b) CDF of reward in DIV2K

Fig. 5. Overall performance of TileSR and other designs.

VI. IMPLEMENTATION AND EVALUATION

We have implemented TileSR fully based on commodity
hardware. This section demonstrates its performance.

A. Experimental Setup

Hardware and Software Settings: Table II showcases the
commodity devices utilized for image super-resolution. Specif-
ically, the Dell Desktop acts as the local device responsible
for collecting images and performing parallel-offloading. The
other devices serve as collaborative devices, receiving tiles
from the local device and executing specific neural super-
resolution algorithms. All devices are connected within a
WLAN, sharing the same WiFi network and communicat-
ing through Socket using the TCP protocol. To best match
computational capacity, we assign suitable models to each
device, resulting in the deployment of four models (CARN [5],
RCAN [9], MSRN [8], and EDSR [7]) within the TensorFlow
framework. Additionally, the AREA interpolation method is
provided in OpenCV for comparison. Moreover, we monitor
energy consumption using the AITEK AWE2101 [23].

Training and Testing Dataset: The DIV2K [24] dataset
consists of 800 images for training, 100 images for validation,
and 100 images for testing. Thus, we use the first part to pre-
train the above models on two powerful Tesla V100 GPUs, and
we use the last two parts in combination with the Set5 [25]
and Set14 [26] datasets to test the performance of TileSR.

We compare our proposed TileSR with following schemes:
• Supremo [27]: A cloud-based image super-resolution

system that offloads multiple image blocks with the
highest edge intensity to a cloud server for neural SR,
while using interpolation locally upscales other areas.

• MobiSR [31]: An on-device framework that routes in-
coming image patches to the appropriate model-engine
pair based on the estimated upscaling difficulty of the
patch to balance image quality and processing speed.

• Strawman upscales the whole image with the referred
cheapest SR model (e.g., CARN) using local GPUs.

• RASchduler (Resource-Aware Scheduler) offloads tiles
to each device purely based on its computational capacity,
regardless of the upscaling difficulty.

B. Performance Analysis

Fig. 5 illustrates the reward measurement of TileSR and
other alternatives on the Set14 and DIV2K datasets. Fig. 5(a)
shows the normalized reward of TileSR to process each image
in Set14, with improvements of 6.43%, 9.36%, and 14.18%

20 40
Response Latency (ms)

34

36

38

A
ch

ie
ve

d
PS

N
R

 (d
B

) TileSR
RAScheduler

Supremo

MobiSR

Strawman

Better

(a) Under upscaling factor x2

20 40 60 80 100
Response Latency (ms)

30

32

34

A
ch

ie
ve

d
PS

N
R

 (d
B

)

TileSR

RAScheduler

Supremo

MobiSR

Strawman

Better

(b) Under upscaling factor x4

Fig. 6. The response latency vs. SR quality of TileSR and other alternatives.

in average normalized reward compared to MobiSR, Supremo
and Strawman. In particular, for frames 1, 7 and 8, TileSR
yields more than 15% reward compared to other approaches.
Then, in Fig. 5(b) we test these methods on the validation data
that contains 100 images in DIV2K. TileSR allows more than
70% of the images to achieve at least 0.4 reward, which is
higher than RAScheduler, MobiSR, Supremo, and Strawman
(i.e., 58%, 45%, 31%, and 28%, respectively). In addition,
more than 28% of images get at least 0.5 reward using TileSR.

Tradeoff between Latency and Quality: Next, we conduct
an analysis of TileSR’s performance with a focus on SR
quality and processing latency. As Fig. 6(a) shows, given
upscaling factors x2, TileSR impressively reduces response
latency by 17.77%, 57.63%, 69.66%, and 82.2% on average
compared to RAScheduler, Supremo, MobiSR, and Strawman,
respectively. Besides, TileSR achieves a 2.38%, 9%, 3.2%, and
10.57% higher PSNR. Supremo offloads selected tiles to a
remote cloud, causing unpredictable latency; MobiSR utilizes
multiple local processors for parallel inference, resulting in
long inference times to perform frame-level SR. Strawman
runs the cheapest model on the entire frame, leading to long
inference times and lower SR quality. Given the upscaling
factor x2 in Fig. 6(b), despite a significant decrease in SR
quality and latency, TileSR still outperforms other alternatives.

Processing Rate (fps): As demonstrated in Fig. 7(a), we
further illustrate the time efficiency by comparing the concrete
executions of TileSR, Supremo, and MobiSR under the up-
scaling factor x2. In Fig. 7(a), TileSR initiates the new super-
resolution process only after the local device has received all
upscaled tiles from each participating device, resulting in an
average latency of 9.254 ms. For Supremo (top in Fig. 7(b)),
its latency mainly stems from data transfer, totaling 21.84 ms
to process each frame. On the other hand, MobiSR (bottom
in Fig. 7(b)) utilizes both GPU and CPU to perform SR in
parallel, leading to an average latency of 30.5 ms. We calculate
the corresponding processing rate in frames per second (fps)
as shown in Fig. 7(c). It is evident that TileSR achieves
processing rates of 0.22x, 1.36x, 2.3x, and 4.62x compared to
RAScheduler, Supremo, MobiSR, and Strawman, respectively.

Energy Efficiency: In Fig. 8, we present the energy con-
sumption analysis, which primarily results from data transfer
between the local device and other devices or a remote cloud,
as well as the concrete neural inference. Fig. 8(a) demonstrates
that TileSR achieves nearly 40% and 28% energy savings com-
pared to MobiSR and Strawman, respectively. Both MobiSR
and Strawman perform SR on the entire frame without any

0 25 50 75
Time (ms)

D4

D3

D2

D1

Local
1 2 3 4 5 6 7 8 9 10

(a) TileSR execution

0 100 200
Cloud

Local
1 2 3 4 5 6 7 8 9 10

0 100 200 300
Time (ms)

GPU

CPU
1

2

3

4

5

6

7

8

9

10

(b) Supremo and MobiSR executions
TileSR RAScheduler Supremo MobiSR Strawman

0

25

50

75

100

Pr
oc

es
si

ng
 R

at
e

(f
ps

)

108.1

88.5

45.8
32.8

19.2

96.2

70.4

37.4
23.2

14.6

75.4

46.7

25.7
15.5 10.3

Upscale Factor = 2
Upscale Factor = 3
Upscale Factor = 4

(c) Processing rate in fps of Tile and other alternatives

Fig. 7. Latency efficiency and corresponding processing rate in fps of TileSR compared to other alternatives.

TileSR
RAScheduler

Supremo
MobiSR

Strawman
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

0.36 0.39

0.12

0.6
0.5

Transmission
Inference

(a) Under upscaling factor x2
TileSR

RAScheduler
Supremo

MobiSR
Strawman

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 E

ne
rg

y

0.52 0.55

0.1

0.8 0.75
Transmission
Inference

(b) Under upscaling factor x4

Fig. 8. Impact of tile number and tile size on the response latency and quality.

inter-device data transfer. On the other hand, Supremo offloads
the inference task to the cloud, but it overlooks the cloud-side
power consumption. It is worth noting that a higher upscal-
ing factor corresponds to a lower resolution of the original
image, resulting in reduced data transmission consumption
in Fig. 8(a). However, it also leads to a significant increase
in neural inference consumption. Specifically, TileSR saves
35% and 30.67% energy compared to MobiSR and Strawman,
respectively, highlighting its superior energy efficiency.

C. Sensitivity to Tile Settings

Impact of Tile Quantity K: We conducted experiments
by setting K to {10, 15, 20, 25, 30, 35}, then run TileSR in
the validation data in DIV2K, and calculate the average SR
quality, response latency, and energy consumption. Fig. 9(a)
shows the normalized values under the upscaling factor x2.
As K increases, TileSR first shows significant quality gains
but gradually achieves diminishing returns. This is attributed
to the fact that increasing K results in more lower-mPV tiles
being offloaded, whereas they yield approximate quality using
local interpolation-based methods. As for energy consumption,
it exhibits a proportional relationship with K. Additionally, the
response latency is hardly affected when increasing K from 10
to 20 but presents a proportional relationship when K exceeds
20. This is mainly because the device has sufficient resources
to execute all tiles in parallel when K is small, but it needs
to wait when unloading an excessive number of tiles.

Impact of Tile Size: We varied the tile size from the set
{5x5, 10x10, 15x15, 20x20} and analyzed the corresponding
response latency and SR quality, as depicted in Fig. 9(b).
Clearly, enlarging the tile size leads to higher response latency,
with latency ranging from 0.12 for a 5x5 size to 0.95 for
a 20x20 size. As for SR quality, it initially improves as
the size increases (e.g., from 5x5 to 10x10), but the benefit
gradually becomes incremental (e.g., from 15x15 to 20x20).
This behavior is largely due to the fact that excessively large

10 20 30
Assignment of K

0.2

0.4

0.6

0.8

 L
at

en
cy

 a
nd

 E
ne

rg
y

 Latency
 Energy

0.25

0.50

0.75

A
ch

ie
ve

d
 P

SN
R

PSNR

(a) Impact of tile quantity K

0.00 0.25 0.50 0.75 1.00
Normalized Response Latency

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
SN

R

5x5

10x10

15x15
20x20

Better

(b) Impact of tile size

Fig. 9. Impact of tile quantity and size on the response latency and quality.

tile sizes may contain substantial lower-mPV regions, which
provide little quality gains from neural super-resolution.

VII. RELATED WORK

Efficient Image Super-Resolution: Recent studies have
proposed efficiency-optimized model architectures, incorpo-
rating various prominent techniques. These approaches range
from avoiding the computation of large feature maps [32]
and reducing upsampling costs by employing pixel-shuffle
layers [33], [34], to utilizing more efficient blocks like group
convolutions [8] and channel splitting [4], [35]. Furthermore,
the field of neural architecture search for efficient SR is
gaining traction [36]–[38]. Despite these advancements, the
on-device execution of these models still remains impractical,
leading to the need for numerous system-based solutions [39].

On-Device Deep Super-Resolution: Many works aim to
deploy SR models on mobile devices. One approach [41],
[43] utilizes the heterogeneous processors within a device. For
example, MobiSR [41] quantifies the difficulty of each patch
and dispatches it to the appropriate processor. Another ap-
proach [42] uses image feature to reduce computation. For in-
stance, NEMO [42] utilizes inter-frame dependencies to cache
and reuse previously super-resolved patches. SplitSR [44]
combines efficient model design with compiler optimizations
to enhance CPU-based SR, and XLSR [45] introduces a hand-
crafted lightweight model. To mitigate the quality degradation,
some works reduce utilization rate of NPUs [41], [42], [44], re-
sulting in reduced efficiency compared to NPU-only execution.
An attempt to bridge this gap and allow existing techniques to
leverage the full capabilities of modern NPUs can be found in
[40], focusing on smartphones [46]–[49]. However, achieving
a perfect tradeoff between SR quality and inference efficiency
remains challenging for these methods. In contrast, TileSR
meets both latency and quality requirements effectively.

Hardware Acceleration: Several research works have ex-
plored the design of custom hardware architectures to ef-

ficiently execute CNN workloads in resource- and power-
constrained environments [50]. In the context of SR, He et
al. [51] proposed a highly optimized FPGA-based hardware
accelerator specifically tailored to the FSRCNN [52] network.
Additionally, Kim et al. [53] adopted a hardware-software
co-design method to develop a CNN-based SR model and
implemented it on an FPGA-based platform. However, TileSR
gets real-time SR without relying on any hardware accelerator.

VIII. CONCLUSION

To overcome the resource barrier of a single mobile device,
we introduce TileSR, a collaborative image SR framework that
leverages multiple accessible mobile devices. Upon receiving
an incoming image, TileSR uniformly divides it into multiple
tiles and selects the top-K tiles with the highest upscaling dif-
ficulties. Then TileSR incorporates a tile scheduling algorithm
based on the multi-agent multi-armed bandit, which effectively
obtains accurate offload rewards through an exploration phase,
determines the tile packing decision, and exploits this solution
to schedule the selected tiles. Rigorous proof ensures a sub-
linear regret for reward. The experimental results show the
superiority of TileSR compared to other designs.

APPENDIX

A. Proof of Lemma 1

Proof. We first denote event set E as {∃k ∈ K, d ∈ D, |r̃πk,d−
rπk,d|>2µ/(9K)}. In Alg. 2, the group-based scheme allows
each tile k ∈ K to receive reward observations from the same
device d∈D at least N≥Texplore

D π≥ 81K
2
(r−r)2

8(µ)2 π times after
π-th epoch exploration. Thus, the error probability Pr(E|N)

Pr(E|N) ≤
∑

k∈K

∑
d∈D

Pr(|r̃πk,d − rπk,d| > 2µ/9K)

≤ KDk∈K,d∈D Pr
(
|r̃πk,d − rπk,d| > 2µ/9K

)
(a)

≤ 2KDe
− 8(µ)2N

81K2(r−r)2 ≤ 2KDe−π,

where (a) is derived from Hoeffding’s inequality.

B. Proof of Lemma 2

Proof. Based on Lemma 1, for the packing phase in Alg. 3,
the probability of |r̃πk,d− rπk,d| ≤

2µ

9K
is at least 1− 2KDe−π .

Then, we denote ρk,d = r̃πk,d − rπk,d. In addition, similarly to
the packing output Ξ̃(π) given r̃πk,d, we denote the the packing
output under the expected rewards {rk,d, k ∈ K, d ∈ D} as
Ξ̂(π) = {χ̂(π)

k , k ∈ K} and the corresponding decision derived
from Ξ̂(π) is x̂ = {x̂t, t ∈ T }. Now, for each device d ∈ D,
we analyze the reward improvements ∆rk,d and ∆r̃k,d under
the packing schemes Ξ̃(π) and Ξ̂(π), respectively.

Under the packing scheme Ξ̃(π), we introduce two metrics,

OPTd(x) =
∑

k∈K
∆rk,d =

∑
k∈K

rπk,d − rπk,χ(π)
k ∈Ξ̃(π)

.

ÔPTd(x) =
∑

k∈K
∆r̃k,d =

∑
k∈K

r̃πk,d − r̃πk,χ(π)
k ∈Ξ̃(π)

,

Then, based on the above probability 1− 2KDe−π , we get

OPTd(x)− ÔPTd(x) ≤ Kmax{|ρk,d|+ |ρk,χ(π)
k ∈Ξ̃(π) |}

≤ (K4µ)/(9K) ≤ (4µ)/9.

Under the packing scheme Ξ̂(π) = {χ̂(π)
k , k ∈ K}, we have,

OPTd(x̂) =
∑

k∈K
∆rk,d =

∑
k∈K

rπk,d − rπk,χ̂(π)
k ∈Ξ̂(π)

,

ÔPTd(x̂) =
∑

k∈K
∆r̃k,d =

∑
k∈K

r̃πk,d − r̃πk,χ̂(π)
k ∈Ξ̂(π)

.

Then, similarly we get OPTd(x̂)− ÔPTd(x̂)≤(4µ)/9, thus

OPTd(x̂)−OPTd(x)

=OPTd(x̂)− ÔPTd(x̂) + ÔPTd(x̂)−OPTd(x)

(b)

≤ OPTd(x̂)− ÔPTd(x̂) + ÔPTd(x)−OPTd(x)
(c)

≤ 8µ/9,

where (b) is derived since ÔPTd(x̂)≤OPTd(x) always holds
given the input {∆r̃k,d, k∈K} for device d. Besides, based on
the definition of µ, we get OPTd(x̂)−OPTd(x)≥µ,∀d∈D,
which contradicts (c), hence it must hold that OPTd(x̂)=
OPTd(x),∀d∈D. Thus, the output Ξ̃(π) under the explored
estimates improvement {∆r̃k,d} is the same as Ξ̂(π) derived
from {∆rk,d} if |r̃τk,d−rk,d|≤2µ/9K holds.

C. Proof of Theorem 1
Proof. Recall that πT is the last epoch and Texplore is set to
be 2π for epoch π. We have T ≥

∑πT

π=1 2
π=2πT+1−2, hence

πT≤log(T+2). The regret of P2 consists of the regrets in the
exploration, packing and exploitation phase, thus,

R(T) ≤
∑πT

π=1
(TexploreKr+KDr + 2KDe−π+TexploitKr)

≤(TexploreKr+KDr)πT + (K2Dr)
∑πT

π=1
(2πe−π)

≤ (TexploreKr+KDr) log2(T + 2) + 4K2Dr

= O(log2T).

Above all, we bound the regret as R(T) ≤ O(log2T).

D. Proof of Lemma 3
Proof. This lemma is proved by induction on the number of
devices. Let R(Ŝ) represent the profit under decision Ŝ.

For the inductive step, we denote the solution after the d-th
recursion as Ŝd+1 and assume that Ŝd+1 has a 2-approximation
for Rd+1. We shall prove that Ŝd also has a 2-approximation
with respect to Rd. Considering the R2

d is identical to Rd+1,
except that it contains a column whose values are 0, Ŝd+1 also
has an 2-approximation to R2

d. Since Ŝd+1 contains the tiles
in Ŝd, Ŝd is also a 2-approximation with respect toR2

d. Next
we shall prove Ŝd is 2-approximate to R1

d.
Matrix R1

d includes (a) a column, i.e, the first column in
Rd, (b) the rows corresponding the tiles in Sd, and (c) the
remaining entries. Only components (a) and (b) contribute
profit to a decision. (a) is used as input for Π, therefore the
best possible solution S∗

a gains at most R1
d(Sd) with respect

to (a). As the profits of each row in (b) are identical, the
best possible solution S∗

b also gains at most R1
d(Sd) with

respect to (b). This implies that Sd has a 2-approximation
with respect to R1

d. Since Sd are a subset of tiles of Ŝd, we
have R1

d(Ŝd) ≥ R1
d(Sd), therefore Ŝd is 2-approximate to R1

d.
As defined, Rd = R1

d + R2
d, Rd(Ŝd) = (R1

d + R2
d)(Ŝd) ≥

2R1
d(S

∗
a) + 2R2

d(S
∗
b) ≥ 2(R1

d(S
∗) + R2

d(S
∗)) = 2Rd(S

∗),
where S∗ indicates the optimal solution.

REFERENCES

[1] Facebook official website. https://www.facebook.com/.
[2] Instagram official website. https://www.instagram.com/.
[3] Reddit official website. https://www.reddit.com/.
[4] Z. Hui, X. Wang, and X. Gao. 2018. “Fast and Accurate Single Image

Super-Resolution via Information Distillation Network,” in IEEE CVPR,
2018, pp. 723–731.

[5] Y. Zhang, K.g Li, K. Li, L. Wang, B. Zhong, Y. Fu, “Image Super-
Resolution Using Very Deep Residual Channel Attention Networks,” in
ECCV, 2018, pp. 286-301

[6] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu. 2018. “Residual Dense
Network for Image Super-Resolution,” in IEEE CVPR, 2018, pp. 2472-
2481.

[7] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in IEEE CVPR Workshops,
2017, pp. 1132–1140.

[8] N. Ahn, B. Kang, and K. A. Sohn, “Fast, accurate, and lightweight
super resolution with cascading residual network,” in ECCV, 2018, pp.
252–268.

[9] J. C. Li, F. M. Fang, and K. F. Mei, “Multiscale residual network for
image super-resolution,” in ECCV, 2018, pp. 517–532.

[10] Y. Chen, S. Zhang, Y. Jin, Z. Qian, M. Xiao, N. Chen, and Z. Ma,
“Learning for crowdsourcing: Online dispatch for video analytics with
guarantee,” in IEEE INFOCOM, 2022, pp. 1908–1917.

[11] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
ACM MM, 2017, pp. 1663–1671.

[12] T. X. Tran, K. Chan, and D. Pompili, “Costa: Cost-aware service caching
and task offloading assignment in mobile-edge computing,” in IEEE
SECON, 2019, pp. 1–9.

[13] L. Li, M. Pal, and Y. R. Yang, “Proportional fairness in multi-rate
wireless lans,” in IEEE INFOCOM, 2008, pp. 1004–1012.

[14] R. Srikant and L. Ying, “Communication networks: an optimization,
control, and stochastic networks perspective,” in Cambridge University
Press, 2013.

[15] G. Xiong, S. Wang, G. Yan, and J. Li, “Reinforcement learning for
dynamic dimensioning of cloud caches: A restless bandit approach,” in
IEEE INFOCOM, 2022, pp. 2108–2117.

[16] G. Gao, J. Wu, M. Xiao, and G. Chen, “Combinatorial multi-armed ban-
dit based unknown worker recruitment in heterogeneous crowdsensing,”
in IEEE INFOCOM, 2020, pp. 179–188.

[17] Y. Song and H. Jin, “Minimizing entropy for crowdsourcing with
combinatorial multi-armed bandit,” in IEEE INFOCOM, 2021, pp. 1–10.

[18] J. Yang and S. Ren, “Bandit learning with predicted context: Regret
analysis and selective context query,” in IEEE INFOCOM, 2021, pp.
1–10.

[19] A. R. Kan, L. Stougie, and C. Vercellis, “A class of generalized
greedy algorithms for the multi-knapsack problem,” Discrete Applied
Mathematics, vol. 42, no. 2-3, 1993, pp. 279–290.

[20] K. Pak and R. Dekker, “Cargo revenue management: Bid-prices for a
0-1 multi knapsack problem,” Available at SSRN 594991, 2004.

[21] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Information Processing Letters, vol.
100, no. 4, 2006, pp. 162–166.

[22] R. Neapolitan and K. Naimipour, “Foundations of algorithms using java
pseudo code, jones and bartleet publishers,” ISBN-978-443-5000, Tech.
Rep., 2004.

[23] Aitek Technology. https://www.aitek.com.tw/EN/shouye.html.
[24] DIV2K dataset. https://data.vision.ee.ethz.ch/cvl/DIV2K/.
[25] Set5 dataset. http://people.rennes.inria.fr/Aline.Roumy/results

/SR BMVC12.html.
[26] Set14 dataset. https://github.com/jbhuang0604/SelfExSR.
[27] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-assisted low-

latency super-resolution in mobile devices,” IEEE TMC, vol. 21, no. 5,
2022, pp. 1847–1860.

[28] S. Huang, J. Xie and M. M. A. Muslam, ”A Cloud Computing Based
Deep Compression Framework for UHD Video Delivery,” IEEE TCC,
vol. 11, no. 2, 2023, pp. 1562-1574.

[29] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang and K. Chen, ”Enabling
Edge-Cloud Video Analytics for Robotics Applications,” IEEE TCC,
vol. 11, no. 2, 2023, pp. 1500-1513.

[30] W. Zhang, Z. He, L. Liu, Z. Jia, Y. L, M. Gruteser, D. Raychaudhuri
and Y. Zhang. “Elf: Accelerate High-resolution Mobile Deep Vision
with Content-aware Parallel Offloading,” in ACM MobiCom, 2021, pp.
201-214.

[31] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
“MobiSR: Efficient on-device super-resolution through heterogeneous
mobile processors,” in ACM MobiCom, 2019, pp. 1–16.

[32] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using
Deep Convolutional Networks,” IEEE TPAMI, vol. 38, no. 2, 2016, pp.
295-307.

[33] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D.
Rueckert, and Z. Wang, “Real-Time Single Image and Video Super-
Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,”
in IEEE CVPR, 2016, pp. 1874–1883.

[34] T. Vu, C. Van Nguyen, T. X. Pham, T. M. Luu, and C. D. Yoo, “Fast
and Efficient Image Quality Enhancement via Desubpixel Convolutional
Neural Networks,” in ECCV Workshops, 2018.

[35] Z. Hui, X. Gao, Y. Yang, and X. Wang, “Lightweight Image Super-
Resolution with Information Multi-distillation Network,” in ACM MM,
2019, pp. 2024-2032.

[36] R. Lee, L. Dudziak, M. Abdelfattah, S. I. Venieris, H. Kim, H. Wen,
and N. Lane, “Journey Towards Tiny Perceptual Super-Resolution,” in
ECCV, 2020, pp. 85-102.

[37] X. Chu, B. Zhang, H. Ma, R. Xu and Q. Li, ”Fast, Accurate and
Lightweight Super-Resolution with Neural Architecture Search,” in
IEEE ICPR, 2021, pp. 59-64.

[38] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, and Y. Wang, “Efficient Residual
Dense Block Search for Image Super-Resolution,” in AAAI, 2020, pp.
12007-12014.

[39] R. Lee, S. I. Venieris, and N. D. Lane, “Deep Neural Network-based
Enhancement for Image and Video Streaming Systems: A Survey and
Future Directions,” ACM CSUR, vol. 54, no. 8, 2021, pp. 1-30.

[40] S. I. Venieris, M. Almeida, R. Lee and N. D. Lane, ”NAWQ-
SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-
Resolution,” in IEEE TMC, 2023, pp. 1-15.

[41] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
“MobiSR: Efficient on-device super-resolution through heterogeneous
mobile processors,” in ACM MobiCom, 2019, pp. 1–16.

[42] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han, “NEMO: Enabling
Neural-enhanced Video Streaming on Commodity Mobile Devices,” in
ACM MobiCom, 2020, pp. 1-14.

[43] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-assisted low-
latency super-resolution in mobile devices,” IEEE TMC, vol. 21, no. 5,
2022, pp. 1847–1860.

[44] X. Liu, Y. Li, J. Fromm, Y. Wang, Z. Jiang, A. Mariakakis, and S. Patel,
“SplitSR: An End-to-End Approach to Super-Resolution on Mobile
Devices,” ACM IMWUT, vol. 5, no. 1, 2021, pp. 1-20.

[45] M. Ayazoglu, “Extremely Lightweight Quantization Robust Real- Time
Single-Image Super Resolution for Mobile Devices,” in IEEE CVPR
Workshops, 2021, pp. 2472–2479.

[46] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D.
Lane, “EmBench: Quantifying Performance Variations of Deep Neural
Networks Across Modern Commodity Devices,” in EMDL Workshops,
2019.

[47] M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis, and
N. D. Lane, “Smart at what cost? Characterising Mobile Deep Neural
Networks in the wild,” in ACM IMC, 2021, pp. 658-672.

[48] A. Ignatov et al., “AI Benchmark: All About Deep Learning on Smart-
phones in 2019,” in IEEE ICCV Workshops, 2019.

[49] Qualcomm, “Snapdragon Neural Processing Engine,”
https://developer.qualcomm.com/sites/default/files/docs/snpe/.

[50] S. I. Venieris and C. -S. Bouganis, ”fpgaConvNet: Mapping Regular and
Irregular Convolutional Neural Networks on FPGAs,” in IEEE TNNLS,
vol. 30, no. 2, 2019, pp. 326-342.

[51] Z. He, H. Huang, M. Jiang, Y. Bai, and G. Luo, “FPGA-Based Real-
Time Super-Resolution System for Ultra High Definition Videos,” in
IEEE FCCM, 2018, pp. 181–188.

[52] C. Dong, C.e Loy, and X. Tang, “Accelerating the Super-Resolution
Convolutional Neural Network,” In ECCV, 2016, pp. 391-407.

[53] Y. Kim, J. Choi, and M. Kim, “A Real-Time Convolutional Neural
Network for Super-Resolution on FPGA with Applications to 4K UHD
60 fps Video Services,” in IEEE TCSVT, 2018, pp. 2521-2534.

