
1

Minimum-Cost Edge-Server Location Strategy in
Mobile Crowdsensing

Dongming Luan, En Wang, Wenbin Liu∗, Yongjian Yang, Jie Wu, Fellow, IEEE

Abstract—Mobile crowdsensing has become a significant sens-
ing technique which takes advantage of mobile devices to collect
information about the surrounding. The traditional cloud-based
centralized mobile crowdsensing architecture generates signifi-
cant traffic on networks and computation burden on the cloud.
In this paper, we investigate the edge-based mobile crowdsensing
architecture, where a group of mobile edge servers is deployed
at network edge as the bridge between the central server and
mobile users for data filtering and aggregation. Each user
may collect multiple types of data in mobile crowdsensing. To
facilitate data aggregation, the same type of data carried by
different users is supposed to be uploaded to the same mobile
edge server. In this scenario, a problem emerges: which server
should be activated for processing each type of data in order
to minimize the total cost? The cost consists of the facility
cost (activating server and processing data) and the service cost
(the users’ movement cost for uploading data). Furthermore,
the problem is formulated as a variant of the uncapacitated
multi-commodity facility location problem. In particular, two
situations of the problem are studied in our work: (1) for the
situation where each user carries at most two types of data, we
propose a relaxation based approximation algorithm, which is
proved to have a bound to the optimal solution; (2) for a more
generalized situation where each user can carry multiple types
of data, we propose a connected multi-agent simulated annealing
algorithm. Finally, we conduct extensive simulations based on
the widely-used real-world datasets: roma/taxi, epfl/mobility and
geolife trajectory. The simulation results show that the proposed
algorithms demonstrate their superiority over baseline methods
and are consistent with the theoretical analysis.

Index Terms—Facility location, mobile crowdsensing, linear
relaxation, simulated annealing.

I. INTRODUCTION

IN recent years, the proliferation of mobile devices with
powerful sensing capabilities in everyday life has led to

an appealing sensing paradigm, named Mobile CrowdSensing
(MCS) [2], [3], [4], [5]. MCS exploits mobile devices to
collect sensing data over urban environments [6], [7]. The
collected data gives rise to diverse services ranging from
constructing radio environment map [8] and road surface
assessment [9] to roadside parking management [10].

The traditional MCS architecture is centralized where mo-
bile users directly upload the sensing data to the central

A conference version of the paper has appeared in Proceedings of IEEE
MASS 2019 [1].

Dongming Luan, En Wang, Wenbin Liu and Yongjian Yang are with
the Department of Computer Science and Technology, Jilin University,
Changchun, Jilin 130012, China. (E-mail: luandm17@mails.jlu.edu.cn; wan-
gen@jlu.edu.cn; liuwenbin@jlu.edu.cn; yyj@jlu.edu.cn)

Jie Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA. (E-mail:jiewu@temple.edu)
∗The corresponding author is Wenbin Liu.

 c2

 c1

c3

c4

A user may
upload data

through
multiple
servers.

 A single
server

processes
each type of

data.

Which server
is activated to
process each
type of data ?

Mobile user

Activated
edge server

Unactivated
edge server

c5

s1 s2

s3

C(S1) +C1(b1) C(S2) +C2(b2)

u1

b2

b1 u1

b2

b1 u2

b2

b1
u2

b2

b1

Fig. 1: Problem description in edge-based mobile crowdsens-
ing. For user u1, it spends movement costs C1, C2 and C3 to
upload data. For server s1, it costs C(S1) to activate server and
C1(b1) to process data b1.

server. In large-scale MCS scenarios, the central server is
expected to receive huge data volumes from mobile users,
which brings much burden to the central server and networks.
Besides, all the sensing data is stored on the central server,
which increases the risk of the user privacy leak. Fortunately,
driven by the rapid development of Internet of Things and
5G communications, the emergence of mobile edge computing
[11], [12], [13] is helpful to compensate for the deficiency of
the traditional centralized MCS architecture.

Mobile Edge Computing (MEC) [14] moves the computa-
tion tasks that are originally executed on the central server
to the vicinity of the data source [15]. In view of this, we
propose an edge-based MCS architecture which introduces a
new intermediate layer by deploying the mobile edge servers
as the bridge between mobile users and the central server.
In this way, mobile users upload the sensing data through the
mobile edge servers instead of directly uploading to the central
server. Then, the intermediate layer processes and aggregates
the uploaded data. Each type of data is aggregated on a
single mobile edge server. In other words, the MCS platform
will guide users to move to different edge servers for data
uploading according to the types of data carried by users.
Subsequently, the processed and aggregated data is sent to
the central server to provide MCS services. Aggregating the
same type of data on a single mobile edge server can filter
the redundant sensing data. Compared to the raw sensing
data uploaded by the users, the data aggregation removes the
redundant and erroneous data. This process reduces the amount
of data that is sent to the cloud, which decreases the network
traffic and the computation load of the cloud.

In order to collect crowdsensing data in the edge-based

2

MCS scenario, we need to cover the following two costs:
facility cost and service cost. The facility cost includes the
server activation cost and the data processing cost. The service
cost is the users’ movement costs for uploading data. Since
mobile users usually spend most time in only a few places
such as home and workplace in daily life, they tend to leave
their home or workplace to upload data and return to the
initiation. Hence, the service cost is the total distance for
the user traveling from the initiation, sequentially passing
by corresponding mobile edge servers and returning to the
initiation. As shown in Fig. 1, the service cost for user u1 is
the sum of costs C1, C2 and C3. The facility cost for mobile
edge server s1 is C(S1) + C1(b1), which includes the cost for
activating server and processing b1 type of data, respectively.
In this scenario, a problem emerges: which server should be
activated for processing each type of data in order to minimize
the total cost.

The edge-aided MCS architecture has been studied within
different fields, such as task allocation [16], user recruitment
[17], [18], and vehicular crowdsensing [19]. However, none of
them studies the data offloading cost minimization problem in
the edge-based MCS scenario. The previous research regarding
task offloading in MEC mainly focused on minimizing the
makespan [20], [21] or the overhead [22], [23] of task exe-
cution. They did not consider the user movement cost during
the process of data offloading, and thus can not be directly
applied to the case studied in this paper. On the other hand, we
should note that the previous research in MCS was devoted to
minimizing the data uploading cost from the user perspective
[24], [25]. They did not take the data processing overhead into
consideration. Different from the aforementioned research, we
propose an edge server location strategy to minimize the
data offloading cost from both server (facility cost) and user
perspective (service cost).

In this paper, we formulate the problem as a variant of
the uncapacitated multi-commodity facility location problem.
Furthermore, we design the facility location strategies for the
following two situations: two-type scenario and multi-type
scenario. For the two-type scenario, each user carries no more
than two types of sensing data. This case is very common
because a person usually spends most of the time in several
places every day (e.g., workplace and home). A user tends to
collect a type of data when going to work (home to workplace)
and collect another type of data on the way home (workplace
to home). Therefore, each user carries at most two types of
data in this situation. For the multi-type scenario, each user
can carry multiple types of data without constraints, which is
a generalized extension of the two-type scenario.

The above research ideas raise the following challenges: (1)
the simplest facility location problem is NP-hard; (2) different
from the traditional facility location problem (there is one
kind of data), there are multiple data types and the travelling
distance among the edge servers is taken into consideration
in the paper, so it is more difficult to decide a minimum cost
facility location strategy; (3) for the two-type scenario, it is
difficult to find a solution with a bound of total cost to the
optimal solution; (4) for the multi-type scenario, the problem
becomes more complex and the solution space is so large that

Cloud

Edge Server

Provide MCS

services

Partial data

Aggregated

data

Global Knowledge

Aggregated

data
Edge Server

Partial data

Partial data
Partial data

Fig. 2: An example of the edge-based MCS architecture. The
edge servers receive the uploaded sensing data from the user.
Then, they send the aggregated data to the cloud.

the traditional combination optimization techniques could not
work well any more.

For the two-type scenario, we propose a relaxation-based
approximation algorithm. Firstly, we relax the constraints.
Then, we solve the relaxed problem and obtain the fractional
solution. Finally, we filter the solution and round the fractional
solution into integer solution. The relaxation-based algorithm
is proved to have a bound to the optimal solution. For the
generalized multi-type scenario, we propose an improved
connected multi-agent simulated annealing algorithm. The
algorithm utilizes multiple agents to search for the solution in
parallel. Each agent applies a different search method, and the
useful information is passed among the parallel search agents.

The main contributions of this paper are briefly summarized
as follows:
• We formally define the edge-server location problem in

the edge-based MCS scenario, and formulate it as a
uncapacitated multi-commodity facility location problem.

• We propose a relaxation based approximation algorithm
and prove that it has a bound to the optimal solution.

• Furthermore, we propose an improved multi-agent sim-
ulated annealing algorithm for a generalized case where
each user carries multiple types of data.

The remainder of the paper is organized as follows. We re-
view the related works in Section II. In Section III, we present
the model and problem. A relaxation based approximation
algorithm is proposed in Section IV. In Section V, we prove
that the relaxation based algorithm has a bound to the optimal
solution. We propose the simulated annealing based algorithm
in Section VI. In Section VII, the simulation is conducted
to evaluate the performances of the proposed algorithms. We
conclude the paper in Section VIII.

II. RELATED WORKS

A. Edge-based Mobile Crowdsensing

There have been some research works focusing on MCS
based on distributed architectures. Marjanovic et al . [26]
propose a mobile edge computing architecture for MCS that
can increase the quality of MCS service. The authors in
[27] propose two privacy preserving reputation management
strategies in MCS based on edge computing to preserve
privacy and handle malicious participants. In [19], the authors

3

s1

s3
C(𝑠2, 𝑠3)

C(𝑢1, 𝑠1)

C(𝑠3,𝑢2)

C(𝑠1 , 𝑠3)

C(𝑠3 ,𝑢1)

𝐶 𝑠1 + 𝐶1(𝑏1)

𝐶 𝑠2 + 𝐶2(𝑏4)

C 𝑠3 + 𝐶3 𝑏2 + 𝐶3(𝑏3) s5

s2

C(𝑢2, 𝑠2)

s4

u1b1

b2

b1

b2
b3

b4

b3

b4

u2u2

Fig. 3: An example of edge-based MCS system model. Servers
s1 and s2 are selected to process data type b1 and b4 respec-
tively. Server s3 is selected to process data type b2 and b3.

propose an energy-efficient edge-based framework for large-
scale vehicular crowdsensing applications, which aims to
minimize the energy consumption of vehicles participating in
heterogeneous crowdsensing applications. In [28], the authors
propose an edge-based network selection scheme in vehicular
crowdsensing. Specifically, they formulate the problem as a
double objective optimization problem considering maximiz-
ing user satisfaction. In [29], in order to support decentralized
incentives, the authors propose a distributed ledger framework
based on edge computing in MCS scenario. In [30], the authors
propose an incentive mechanism for the edge-assisted MCS
system, which can achieve the truthfulness and individual
rationality. In [16], the authors propose a fog-assisted task
allocation method for MCS. Furthermore, a fog-assisted secure
data deduplication scheme is proposed to improve commu-
nication efficiency. In addition, there are also some research
focusing on user recruitment in edge-aided MCS [17], [18],
[31]. In [17], the authors investigate the user recruitment for
sparse data collection. In [18] and [31], the authors propose the
incentive-aware recruitment mechanism for edge-aided MCS.
The aforementioned research investigate the edge-based MCS
from different aspects. However, none of them studies the
edge-server location problem in MCS scenario. To address
this problem, we propose an edge-server location strategy to
minimize the crowdsensing cost.

B. Facility Location Problem

The facility location problem has attracted many re-
searchers’ attention. According to whether considering the
capacity of the facility, the facility location problem can be
classified into the uncapacitated facility location [32], [33],
[34], [35] and capacitated facility location[36], [37], [38].
Moreover, there are many variants of the classical facility
location. The k-median problem is a kind of facility location
problem, where there is the restriction on the number of
facilities opened. The authors in [39] formulate the problem
of minimizing the total movement of facilities and clients
a k-median problem. The authors in [40] propose a greedy
local search algorithm to solve the k-median algorithm. In the
k-level uncapacitated facility location problem, the demands
must be routed among the facilities in a hierarchical order.
There is some research [32], [33] proposing the approximation

TABLE I: Main notations

Symbol Meaning
U,S,B the sets of mobile users, mobile edge servers, and

data types.
Bj the set of data types carried by user j.
Ci the activation cost for edge server i.
Ci(b) the processing cost for edge server i processing

data type b.
β a combination of data types.
Ci(β) the facility cost for activating edge server i in

configuration β.
Cj the service cost of user j.
ub
j

the virtual user of user j carrying data type b.
ci j the distance between edge server i and user j.
Db the set of virtual users carrying data type b.
jb the representative of b type of data.
R the representative set of all data types.

algorithm for the 2-level facility location problem. Further-
more, [41] gives logarithmic approximation algorithms for
the multilevel facility location problem. Different from above
research, a client can demand a subset of commodities. We call
this multi-commodity facility location (MFL). The authors in
[34], [42] propose approximation algorithms for uncapacitated
MFL and the authors in [37] propose a large-scale model for
capacitated MFL. In addition, some research takes the facility
disruption into consideration, where some facilities may be
subject to failures [43], [44], [45].

The facility location problem in this paper can be seen as
a variant of the multi-commodity facility location problem.
However, different from the classical multi-commodity facility
location problem, we consider the traveling distance among
different facilities and each commodity can be served only
on a single facility. These constraints make the problem more
difficult than the classical MFL, thus the existing methods
cannot be directly applied to solve this problem.

III. MODEL AND PROBLEM

A. Model

We consider an edge-based MCS architecture in Fig. 2.
After collecting the sensing data, the users upload the data
to the edge servers. Then, the edge servers perform the data
filtering and aggregation. Finally, the aggregated data is sent to
the cloud. The cloud analyzes the data and generates the global
knowledge that will be used to provide the MCS service.

The group of mobile users is denoted by the set U =

{1,2, . . . ,n} and a set of mobile edge servers S = {1,2, . . . ,m}.
Moreover, after collecting the sensing data, mobile users may
carry multiple types of data. All the types of data are denoted
as B = {1,2, . . . ,r} and the data types carried by user j
are Bj ⊆ B. Each mobile edge server i can operate in any
configuration β(i) ∈ 2B, specifying the combination of data
types it processes with the cost Ci(β). Each mobile edge server
i has an activation cost C(i) and for each data type b, there
is an incremental processing cost Ci(b). Therefore, the facility
cost for activating mobile edge server i in configuration β is
Ci(β) = C(i) +

∑
b∈β Ci(b).

4

The service cost for the mobile user is regarded as the
mobile users’ travel distance in the process of uploading data.
Each user begins with an initial location, then heads for the
corresponding edge servers one by one and returns to the initial
location in the end. As shown in Fig. 3, for user u1 that will
go to server s1, s3 for uploading data, u1 will consume the
cost C(u1, s1)+C(s1, s3)+C(s3,u1), which is equal to the total
distance u1 travels. Specifically, the cost for traveling between
server and initiation is named as u-s service cost such as
C(u1, s1)+C(s3,u1) and the cost for traveling between servers
is named as s-s service cost such as C(s1, s3). The facility
cost for server s1 is C(s1) + C1(b1). Specifically, C(s1) is the
activation cost for s1 and C1(b1) is the processing cost for s1
to process data type b1. The main notations used throughout
the paper are in Table I.

B. Problem

In this paper, we aim to find a solution to determine which
mobile edge servers to activate and which data types are
assigned to the activated mobile edge servers for minimizing
the total cost. Let Cj denote the service cost of user j. Variable
y0
i indicates whether mobile edge server i is activated or not. It

is 1 when activated and 0 otherwise. Variable ybi = 1 indicates
that mobile edge server i processes b type data and it is 0
otherwise. Variable xbij is 1 if user j with b type data is
assigned to server i to upload data. Note that when b = 0, Ci(b)
denotes the cost for activating server i. Hence, our purpose
is to find the best facility location strategy for the following
optimal problem:

Minimize
m∑
i=1

r∑
b=0

Ci(b)ybi +
n∑
j=1

Cj (1)

s.t.
m∑
i=1

xbij = 1 ∀b ∈ Bj,∀ j ∈ U

m∑
i=1

ybi = 1 ∀b ∈ B

xbij ≤ ybi ∀b ∈ B,∀i ∈ S,∀ j ∈ U

ybi ≤ y0
i ∀b ∈ B,∀i ∈ S

x, y ∈ {0,1}

The first constraint ensures that there exists a mobile edge
server that can process each data type carried by each user.
The second constraint ensures that each data type is processed
by a single mobile edge server. The third constraint means that
only when the mobile edge server has the ability to process
the corresponding data, can the user upload data through it.
The fourth constraint guarantees the mobile edge server has
the ability to process data only when it is activated. We aim
at finding a strategy to minimize the total cost satisfying the
above constraints.

IV. FACILITY LOCATION STRATEGY FOR
TWO-TYPE SCENARIO

In this section, we propose the relaxation-based algorithm
for the scenario where users carry two types of data in detail.

User Virtualization

Linear Relaxation

Representatives

Selection

Obtain feasible

fractional solutions
Filtering Technique

Rounding Technique

Round fractional

solution into integer

solution

Obtaining an

Approximate Solution Filter solutions

Select a

representative for

each data type

Fig. 4: Workflow of the relaxation-based algorithm for two-
type scenario.

The workflow of the algorithm is shown in Fig. 4. Since the
optimization problem (1) is difficult to solve directly, we first
relax the constraints and transform a user into a set of virtual
users where each virtual user has one data type. Then, we
solve the relaxation version of the problem (1) and obtain
the fractional solution. Next, we filter the solution so that
each virtual user is fractionally assigned to the mobile edge
servers that are relatively close to it. Furthermore, we select
a group of representatives from virtual users and assign the
remaining virtual users to the corresponding representatives.
Finally, we round the fractional solution to the integer solution.
More specifically, we first assign the representatives to the
edge servers and then assign the remaining virtual users to the
servers that serve their representatives. Each mobile user will
upload data through the mobile edge servers that are allocated
to its virtual users.

A. User Virtualization and Linear Relaxation

Due to the fact that the objective function (1) is hard to solve
directly in polynomial time, we relax the constraint as shown
in function (2). Moreover, we only consider minimizing the
u-s service cost instead of the total service cost temporarily
and perform the user virtualization in this step.

Minimize
m∑
i=1

r∑
b=0

Ci(b)ybi +
n∑
j=1

Cj (2)

s.t.
m∑
i=1

xbij ≥ 1 ∀b ∈ Bj,∀ j ∈ U

m∑
i=1

ybi ≥ 1 ∀b ∈ B

xbij ≤ ybi ∀b ∈ B,∀i ∈ S,∀ j ∈ U

ybi ≤ y0
i ∀b ∈ B,∀i ∈ S

0 ≤ x, y ≤ 1

The process of user virtualization is as follows: we replicate
a set of virtual users for each mobile user so that each virtual
user has one data type. The virtual user set for user j is defined
as {ub

j : ∀b ∈ Bj}. It is worth noting that, for the user with only
one data type, we will transform the user into two virtual users
with the same data type. The u-s service cost for the virtual
user is the distance between the mobile edge server and the
initiation. So the u-s service cost for the user is equal to the

5

sum of its virtual users’ u-s service costs. For a user with only
one data type, the u-s service cost is the roundtrip from the
initiation to the mobile edge server, which is equal to the sum
of its two virtual users’ u-s service costs.

Then, we aim to find a solution to minimize the sum
of facility costs and virtual users’ u-s service costs. After
performing the linear relaxation, we will get some fractional
solutions where the user is permitted to be splittable and
assigned to several edge servers. Although s-s service cost is
not considered in this step, according to the triangle inequality,
s-s service cost is lower than the sum of the u-s service costs.
Furthermore, we will prove that s-s service cost of this solution
also has a bound to the optimal solution in the next section.

B. Filtering Technique

Then, we apply the filtering technique used in [46] to filter
the solution and obtain a new fractional solution, where the
new solution satisfies the property that the user is fractionally
assigned to mobile edge servers which are not too far away
from it.

We fix a constant 0 < α < 1 and define the α−point, pbj (α),
for each virtual user ub

j . Then, we order the mobile edge
servers which serve ub

j according to non-decreasing distance to
j. Let ci j denote the distance between mobile edge server i and
virtual user ub

j . Let φ be a permutation of servers that serve ub
j

such that cφ(1)j ≤ cφ(2)j ≤ · · · ≤ cφ(k)j . Then, pbj (α) = cφ(i∗)j ,

where i∗ = min{i
′ :

∑i
′

i=1 xb
φ(i)j
≥ α}. For each virtual user ub

j ,
let αb

j =
∑

i:ci j ≤pb
j (α)

xbij . Obviously, αb
j ≥ α. We merely set

xbij =

{
xbij/α

b
j , ci j ≤ pbj (α);

0 otherwise.
(3)

And for each i ∈ S, we set ybi = min{1, ybi /α}. After the filter-
ing process, we will obtain a new fractional solution, which
has the property that when a virtual user ub

j is fractionally
assigned to a mobile edge server si , the corresponding cost
ci j is not too large.

C. Representatives Selection

After filtering the fractional solution, we select a set of
virtual users as representatives. The process of representatives
selection is similar to [42]. Specifically, For each data type,
we classify the virtual users who carry that type of data into
a group and select a representative from each group. The
process of representatives selection of different data types is
independent.

The detailed process is described as follows: for a data
type b, let Db denote the set of virtual users who carry b
type data. Let the selection cost of a virtual user j ∈ Db

be ĉj =
∑

j
′
∈Db

cj j′ , where cj j′ is the distance between user
j and j

′

. Variable jb signifies the user with the minimum
selection cost among all users in Db and jb is selected to be
the representative of b type of data. The representative set of
all data types is denoted as R.

D. Rounding Technique

The rounding technique is used to round the fractional
solution into the integer solution. The algorithm executes
iteratively and it keeps a feasible fractional solution (x̂, ŷ).
Initially, let (x̂, ŷ) = (x, y). In the process of the algorithm, we
denote Ŝ as the set of partially activated mobile edge servers,
specifically, Ŝ = {i ∈ S : ∃b, ŷbi > 0}. For each jb ∈ R, we
define S

′

as the set of mobile edge servers for which x̂bij > 0,
that is, S

′

= {i ∈ Ŝ : x̂bij > 0}. Then the algorithm will find
the server i ∈ S

′

so that Ci(b) is the smallest and let i
′

denote
this server. Following this, assign jb to i

′

and round the value
ŷb
i
′ = 1 and ŷbi = 0 for each i ∈ S − i

′

. Accordingly, x̂b
i
′
j

is set

to be 1 and x̂bij is 0 for each i ∈ S − i
′

.
The algorithm executes iteratively until all the represen-

tatives are assigned to a mobile edge server. Note that this
rounding process guarantees that each data type must be
processed by a single mobile edge server. Finally we assign the
other virtual users to the servers that serve their representatives
and each mobile user will go to the mobile edge servers that
are allocated to its virtual users.

V. THEORETICAL ANALYSIS

In this section, we prove the relaxation based approximation
algorithm has a bound to the optimal solution.

Firstly, we use the filtered fractional solution and represen-
tatives to construct a k-set cover instance and prove that y

is a feasible fractional solution of the constructed k-set cover
instance. The k-set cover problem is a special case of the
weighted set cover problem in which each set has no more
than k elements. We use the following IP formulation for the
instance of k-set cover problem. Here we define a server-
configuration pair (i, β) where i ∈ S and β ∈ 2B. There is
a cost Ci(β) for each server-configuration pair (i, β). Note that
we only consider the virtual users in R and a virtual user ub

j is
covered by (i, β) if and only if xbij > 0 and b ∈ β. Let variable
zβi be 1 if the server-configuration pair (i, β) is included in the
solution. The IP formulation for the instance of k-set cover is
as follows:

Minimize
∑
i,β

Ci(β)z
β
i (4)

s.t.
∑

(i,β):xbi j>0,b∈β

zβi ≥ 1 ∀ jb ∈ R

The fractional solution y can be transformed as a fractional
solution of an instance of k-set cover problem so that only
polynomially many server-configuration pairs have non-zero
values [42]. Given a mobile edge server i ∈ S, sort the data
types in the non-decreasing order of ybi , that is, y0

i ≥ y1
i ≥

y2
i ≥ . . . ≥ yki . Let [b]={1,2, . . . , b}. We activate mobile edge

server i in configuration [b] to extent z[b]i = ybi − yb+1
i for

b = 1,2, . . . , k − 1 and z[k]i = yki . Hence, for each mobile edge
server si , there are at most k configurations that zβi > 0.

Then, we prove the bound of the proposed approximation
algorithm using the following lemmas.

6

TABLE II: User-server distance.

s
u

u1 u2 u3 u4

s1 5 6 18 6
s2 5 6 13 10
s3 5 13 13 6

TABLE III: Facility cost.

s
b

b0 b1 b2

s1 3 8 11
s2 3 10 5
s3 3 5 11

Lemma 1. Function (4) is an instance of k-set cover and
z = y is a feasible fractional solution of the linear relaxation
version for the instance, the cost of which is no more than∑

i,β Ci(β)y
β
i .

Proof. Since we select only one representative for each data
type, the total number of representatives is equal to the total
number of data types and the cardinality of each set in the
formulated k-set cover instance is no more than k (let k be
the total number of data types r). Since (x, y) is a feasible
solution of the linear relaxation of the formulated objective
function, there exists

∑
i xbij ≥ 1 for each jb ∈ R and zβi ≥ xbij

for each b ∈ β, which ensures that z is a feasible fractional
solution of the formulated k-set cover instance and bounds the
cost of the fractional solution. �

Lemma 2. There is an integer solution (x̂, ŷ) satisfying the
following properties: (1)x̂bij ≤ ŷ

β
i ,∀b ∈ β; (2) x̂bij = 1 only

if xbij > 0; (3) ŷ
β
i = 1 only if y

β
i > 0; (4)

∑
i,β Ci(β)ŷ

β
i ≤

log k
∑

i,β Ci(β)y
β
i .

Proof. Due to the fact that the integrality gap of k-set cover
problem is no more than log k [47], there is an integer solution
ẑ for the formulated k-set cover instance and its cost is no more
than log k

∑
i,β Ci(β)y

β
i and let ŷ = ẑ. Hence, property (3) and

(4) are proved. It is clear that for each representative jb ∈ R,
there must exist y

β
i = 1, b ∈ β such that xbij > 0. Let x̂bij be 1

and 0 otherwise. So property (1) and (2) are proved. �

Finally we activate the mobile edge server and fix the data
type for which ŷ

β
i = 1. When considering the constraint that

each data type is processed by a single mobile edge server,
the solution is a special case of the k-set cover problem
where each element is covered by only one set. Due to the
fact that ybi = min{1, ybi /α}, hence ybi ≤ ybi /α. Due to
the fact that the optimal solution of integer programming
problem is not superior to the optimal solution of its relaxation,
we use the optimal solution of the linear relaxation for the
objective function as our lower bound. Hence, the facility cost
is bounded within log k

α of the optimal facility cost.
Then we prove that u-s service cost has a bound to the

optimal. Let ϕ(j) be the server that is assigned to process
virtual user j in the solution. Variable ϕ∗(b) denotes the server
that processes data type b in the optimal solution. Variable
cj ,ϕ(j) is u-s service cost of virtual user j.

Lemma 3. The u-s service cost of the proposed solution is
no more than (3

1−α + 4) ·Copt in which Copt is the u-s service
cost of the optimal solution.

Proof. Let j∗
b

be the virtual user that minimizes cj ,ϕ∗(b) in Db .
Since the inequality cj∗

b
,ϕ∗(b) ≤ cj ,ϕ∗(b) for all j ∈ Db , there

u2

b2

u1

S2

b1b2

S3

S1

u4
b1

u3
b2

Mobile edge
server

Mobile user

 b1, b2 Two data types

Mobile edge
server

Mobile user

 b1, b2 Two data types

Fig. 5: The scenario for proving the bound of s-s service cost.

exists ĉj∗
b
≤ 2

∑
j∈Db

cj ,ϕ∗(b). Due to the fact that the represen-
tative jb minimizes ĉj in Db , we have ĉjb ≤

∑
j∈Db

2cj ,ϕ∗(b).
Then, consider a virtual user j ∈ Db and ϕ

′

(j) is the server
that processes j while ignoring the constraint that each data
type is processed by a single server. Because of the triangle
inequality, we have cjb ,ϕ′ (j) ≤ cj , jb + cj ,ϕ′ (j). Furthermore,
cj ,ϕ(j) ≤ 2cj , jb + cj ,ϕ′ (j). The virtual user set is V . As
ĉjb =

∑
j∈Db

cj , jb , by summing cj ,ϕ(j) over all virtual users,
we have

∑
j∈V cj ,ϕ(j) ≤ (3

1−α + 4) · Copt , where 3
1−α is the

approximation ratio of u-s service cost, ignoring the constraint
that each data type is processed by a single mobile edge server
and it is proved in [42]. The total u-s service cost is equal to
the sum of u-s service costs of all virtual users.

�

Finally, we prove the bound of s-s service cost. Let dmax

denote the maximum distance among edge servers and dmin

denote the minimum distance among edge servers.

Lemma 4. The s-s service cost of the proposed approximation
solution is bounded within dmax

dmin
of the optimal.

Proof. There is a situation as shown in Fig. 5 in which there
are four mobile users u1,u2,u3,u4 and three candidate mobile
edge servers s1, s2, s3. There are two data types: b1 and b2.
The distance between server s1 and s2 is 6, which is the
minimum distance among servers and denoted as dmin. The
distance between s2 and s3 is 10, which is the maximum
distance and denoted as dmax . The distance between s1 and s3
is 8. The distance between users and servers and facility cost
configuration are shown in Table. II and III. It is worth noting
that b0 denotes the activation costs for servers in Table. III.
So in this case, the proposed solution will configure server s2
and s3 to process data b2 and b1 respectively. The s-s service
cost is dmax . However, the s-s service cost of the optimal
solution is the distance between s1 and s2, which is dmin.
In other situations, the ratio between s-s service cost of the
proposed algorithm and the optimal solution is no more than
dmax

dmin
. Hence, the s-s service cost is bounded within dmax

dmin
of

the optimal. The lemma is proved. �

Hence, in conclusion, our proposed algorithm is a constant-
factor approximation algorithm and has a bound to the optimal
solution. The approximation ratio is the maximum value of
{

log k
α , 3

1−α + 4, dmax

dmin
}.

7

Algorithm 1 The construction algorithm to produce the initial
solution.
Input: the data type set B, the candidate server set S.
Output: the initial solution h.

1: while |B | , 0 do
2: for all data type b ∈ B do
3: sb = arg mins∈S C(b, s).
4: end for
5: b

′

= arg minb∈B C(b, sb)
6: assign data type b

′

to server sb′ for constructing h.
7: B← B − b

′

.
8: end while
9: return h.

VI. FACILITY LOCATION STRATEGY FOR
MULTI-TYPE SCENARIO

For the situation where mobile users can carry multiple
types of data without limitations, the problem becomes more
intractable. Compared with the situation where each mobile
user has at most two data types, its solution space is much
larger. Specifically, when each user has at most two types
of data, it will go to at most two mobile edge servers to
upload data. For the same combination of servers assigned
to a user, the service cost is unique. However, when each user
carries multiple data types, it tends to go to multiple servers.
The route planning problem should be considered. The same
combination of servers may correspond to different service
costs, because of the different sequences that the mobile user
visits. Hence, the problem for this situation is very complex.

The computational complexity and the large solution space
make it difficult for the traditional combination optimization
technique to work well. Hence, we propose a Connected Multi-
agent Simulated Annealing algorithm (CMSA) to address this
problem. The traditional simulated annealing algorithm only
utilizes one thread to search for the solution. To improve the
searching capability and convergence rate, CMSA uses multi-
ple threads, named agents, to search for the solution in parallel.
To diversify the searching direction, each agent applies a
different method to modify its current state. Moreover, the
useful information is passed among the parallel search agents
at regular intervals. Then, the agents abandon the unfruitful
searches and start the search from the state where the best
agent has reached.

A. The Construction Algorithm
We use a heuristic algorithm to construct the initial solution.

As shown in Algorithm. 1, the algorithm assigns the data types
to the mobile edge server iteratively. We define C(b, s) as the
change of the current total cost after assigning data type b to
server s. The construction algorithm selects one data type and
assigns it to the corresponding server in each iteration. It firstly
selects the server sb that minimizes C(b, s) from the candidate
server set for each unassigned data type b. Then, we select
data type b

′

that minimizes cost C(b, sb) and assign it to the
corresponding server sb′ . The initial solution is constructed by
this means iteratively.

To reduce the computational complexity, the service cost
for a user in C(b, s) is computed as the sum of the distance

Algorithm 2 Successor search algorithm of one agent.
Input: the initial solution h, T , Tmax , γ, δ.
Output: the best solution h∗.

1: initialize the best solution h∗ ← h;
2: j ← 0.
3: while stopping condition not met do
4: generate a new successor h

′

of current solution h.
5: if C(h

′

) < C(h) then
6: h← h

′

.
7: else
8: h← h

′

with probability exp((C(h) − C(h
′

))/T).
9: end if

10: if C(h) < C(h∗) then
11: h∗ ← h, Tr ← T .
12: end if
13: if j%δ = 0 then
14: obtain the current global best solution ĥ among all

agents.
15: if C(h∗) > C(ĥ) then
16: h← ĥ, h∗ ← ĥ
17: end if
18: end if
19: T ← γ × T .
20: if T < 0.01 then
21: Tr ← 2 × Tr ,T ← min{Tr ,Tmax}.
22: end if
23: j ← j + 1.
24: end while
25: return h∗.

from the user to each of the corresponding servers. According
to the triangle inequality, it is easy to find out that the real
service cost of the final solution is lower than the double of
the service cost computed in the algorithm. It is worth noting
that the service cost used in the successor search algorithm is
computed in the same way as in C(b, s).

B. Successor Search Algorithm

Since the combination of the mobile edge servers is not
considered in the construction algorithm, the initial solution
is merely a local optimal solution. Therefore, we propose a
successor search algorithm to modify the initial solution and
get the successor of the current solution to search for a better
approximate solution.

As presented in Algorithm. 2, the algorithm aims to opti-
mize the initial solution by searching the successor solution
until the stopping condition is met. It first initializes the best
solution h∗ to be the initial solution h. The main loop of
lines 3-24 consists of the main part of the algorithm. In each
iteration of the loop, a new successor h

′

of the current solution
is generated by removing some data types from activated
servers and reinserting them into other servers (line 4). It is
worth noting that different agents apply different methods to
modify the current solution in this paper. Then, the algorithm
determines whether the solution h

′

is accepted or not (lines
5-12). Specifically, if the cost of the new solution h

′

is lower
than that of the current solution h, h

′

is accepted. Otherwise,

8

TABLE IV: Facility cost.

Server
Type

0 1 2 3

s1 2 1 3 3
s2 5 3 2 1
s3 2 3 1 2
s4 4 4 2 5

TABLE V: User-server distance.

Server
User

u1 u2 u3 u4

s1 1 3 5 7
s2 5 3 1 3
s3 5 5 4 3
s4 7 5 3 1

TABLE VI: Server-server distance.

Server
Server

s1 s2 s3 s4

s1 0 5 5 7
s2 5 0 4 3
s3 5 4 0 3
s4 7 3 3 0

s1

s2

s3

s4

u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

(a) The scenario for using APX method.

s1

s2

s3

s4
u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

(b) The scenario for using DIS method.

s1

s3

s4

u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

s2

(c) The scenario for using LF method.

Fig. 6: An example for the comparison of APX, DIS and LF algorithms. The mobile edge servers in black color denote the
activated servers and the rest are unactivated servers.

the probability of accepting h
′

is exp((C(h) −C(h
′

))/T) (lines
5-9), where C(h) is the cost of the solution h and T is the
temperature. Subsequently, if the cost of the current solution
is lower than that of the current best solution h∗, the current
best solution is set to be h and Tr is set as T (lines 10-12).
Tr is used to record the temperature when the best solution is
updated. The agent compares its current local best solution h∗

with the current global best solution ĥ among all agents at a
predefined interval δ. If C(h∗) > C(ĥ), h is updated to be ĥ and
h∗ is set to be ĥ (lines 13-18). In each iteration, the temperature
T is updated as γ × T where 0 < γ < 1 (line 19). To avoid
the search getting stuck in a local minimum, the temperature
will increase when the temperature is lower than 0.01, which
can increase the probability of escaping from the trap [48].
The temperature is limited to Tmax to limit the probability of
accepting a solution that is not good. The stopping condition is
satisfied when the iteration number is equal to the predefined
maximum iteration number. Then the searching process stops
and each agent returns its current best solution. Finally, CMSA
algorithm returns the best solution among all agents.

In the successor search algorithm, each agent modifies the
current solution by applying the data type removal method
and insertion method. We introduce two data type removal
methods and two data type insertion methods in this paper.
The different agents can apply different combinations of the
removal method and insertion method to modify the current
solution. Besides, the agent can also randomly select a mobile
edge server and remove all the data types on it. Then, the
agent randomly inserts each removed data type to a server.
The random method can help diversify the solution.

C. Data Type Removal Method

In successor search algorithm, in order to modify the current
solution, we first select some data types and then remove them
from the current solution. This subsection gives a description
of some heuristics for data type removal.

1) One Server Removal (OSR): We define Cs as the total
cost of all data types processed by server s and Ns as the
number of data types assigned on server s. It is worth noting
that Cs includes the sum of facility cost and service cost.
OSR method calculates the average cost Cs

Ns
for each activated

server. Then OSR selects the server with the highest average
cost and removes all its assigned data types.

2) Largest Change Removal (LCR): LCR removes q data
types iteratively. In each iteration, LCR calculates the change
of total cost when removing each unremoved data type and it
removes the data type with the largest change of total cost.

D. Data Type Insertion Method

After removing some data types from the current solution,
we have to reinsert them to servers for constructing a new
successor solution. This subsection introduces some heuristics
to reinsert data types.

1) One Server Insertion (OSI): Given some data types to
be inserted, OSI inserts them into a single server. Specifically,
OSI selects the server that minimizes the total cost and assigns
all the data types on it.

2) Lowest Change Insertion (LCI): LCI is similar to the
construction algorithm and it inserts the data type iteratively.
In each iteration, LCI selects the data type with the minimal
insertion cost and inserts it into the corresponding server.
Specifically, for each data type, the insertion cost is the

9

20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

3000
To

ta
l c

os
t

Number of Users

 APX
 DIS
 IF
 RAN
 PSO
 GMU

(a) roma/taxi set

20 30 40 50 60 70 80 90 100

500

1000

1500

2000

To
ta

l c
os

t

Number of Users

 APX
 DIS
 IF
 RAN
 PSO
 GMU

(b) epfl/mobility set

20 30 40 50 60 70 80 90 100
500

1000
1500
2000

2500
3000
3500

To
ta

l c
os

t

Number of Users

 APX
 DIS
 IF
 RAN
 PSO
 GMU

(c) geolife trajectory set

Fig. 7: The simulation results in terms of number of users.

 GMU

(a) roma/taxi set

 GMU

(b) epfl/mobility set

 GMU

(c) geolife trajectory set

Fig. 8: The simulation results in terms of number of candidate servers.

minimum change of total cost after inserting the data type
into the candidate server set.

VII. PERFORMANCE EVALUATION
A. Data Preparation

Three widely-used real-world traces, roma/taxi set[49],
epfl/mobility set [50] and geolife trajectory set [51] were used
to evaluate the performances of the proposed facility location
strategies for minimizing the sensing cost. The roma/taxi set
contains about 320 taxis’ GPS coordinate mobility traces in
Rome, Italy collected over 30 days. The epfl/mobility set
records the GPS trajectories of approximately 500 taxis in
the San Francisco Bay Area, USA, which are collected over
30 days. The geolife trajectory set was collected in Geolife
project by 182 users. It contains 17,621 GPS trajectories with
a distance of 1.2 million kilometers.

We construct five strategies LF, DIS, RAN, PSO, and GMU.
The performances of the proposed algorithms are compared
with these strategies in the paper. For each data type b, LF
strategy selects the mobile edge server i which processes the
data type with the lowest cost, Ci(b). For each data type, DIS
strategy selects the mobile edge server which has the minimum
average distance to the set of mobile users with this data type.
RAN strategy randomly selects a mobile edge server for each
data type. We modify the algorithms in [45] and [31] to apply
to our scenario, and the algorithms are denoted as PSO and
GMU respectively. We take the total cost as the evaluation

metric, which is the sum of the facility cost and service cost
for all activated mobile edge servers and mobile users. In the
simulation, the facility costs are generated randomly following
a uniform distribution and the service costs for the users are
set as the travel distance when uploading the sensing data in
the real-world dataset. We select the first GPS location of the
user’s trajectory as the initial location, and we randomly select
POI locations as the candidate mobile edge server locations.

B. Simulation Results for Two-Type Scenario

Firstly, we give an example to illustrate the differences in the
execution results of APX, DIS and LF strategies, where APX is
our proposed strategy. Secondly, we evaluate the performances
along with the changes in the number of candidate servers,
number of mobile users and number of data types. The specific
evaluation results are demonstrated in Figs. 7-9. Then, an
example of simulation result of APX in roma/taxi set is
presented. Finally, the optimal results are compared with the
proposed approximation algorithm. The value of parameter α
used in Figs 4-7 is set as 0.4.

Firstly, we give an example to illustrate the difference
among APX, DIS and LF algorithms. The example consists
of four candidate mobile edge servers s1, s2, s3, s4, four mobile
users u1,u2,u3,u4 and three data types from 1 to 3. Note that
in Table. IV, when the data type is 0, it denotes the activation
cost for each server. The configuration information are shown
in detail in Table. IV-VI respectively.

10

 GMU

(a) roma/taxi set

 GMU

(b) epfl/mobility set

 GMU

(c) geolife trajectory set

Fig. 9: The simulation results in terms of number of data types.

Fig. 10: A presentation of the simulation result of APX in
roma/taxi set. The mobile edge servers in black color denote
the activated servers and the rest are unactivated servers.

Fig. 6 illustrates the scenarios for using three algorithms
respectively. When using APX algorithm, server s1 is activated
to process type 1 of data and server s2 is activated to process
type 2 and 3 of data. The service cost and facility cost are
21 and 11 respectively. The total cost is 32. When using DIS
algorithm, server s1, s2 and s4 are activated to process type 1,
2 and 3 of data respectively. The service cost and facility cost
are 17 and 19 respectively. The total cost is 36. When using
LF algorithm, server s1, s2 and s3 are activated to process
type 1, 3 and 2 of data respectively. The service cost and
facility cost are 29 and 12 respectively. So the total cost is
41. In this case, although the service cost of DIS is lowest,
the performance of APX is best. Since each mobile edge
server has an activation cost and LF algorithm only focuses on
minimizing the processing cost, it may have more activation
cost than that of APX. Furthermore, this results in the fact that
the facility cost of LF is more than that of APX sometimes.
In conclusion, the APX algorithm minimizes the total cost by
considering the facility cost and service cost comprehensively,
which performs better than DIS and LF algorithms, though
DIS and LF may have relatively low service cost and facility
cost sometimes.

Secondly, we compare the total cost in terms of number of
users in Fig. 7. The simulation results show that the total costs
of all six algorithms increase with the growth of the number
of users. More specifically, the total cost performance ranks

TABLE VII: The comparison of facility cost between APX
and the optimal solution.

Data type number APX Optimal Ratio Bound
2 109 79 1.37 1.38
3 154 140 1.10 2.19
4 227 200 1.14 2.77
5 270 185 1.46 3.21
6 439 253 1.74 3.58

TABLE VIII: The comparison of u-s service cost between
APX and the optimal solution.

α APX Optimal Ratio Bound
0.2 712 678 1.05 7.50
0.3 712 678 1.05 8.28
0.4 712 678 1.05 9.00
0.5 712 678 1.05 10.00
0.6 712 678 1.05 16.50

as follows in most cases: APX<GMU<DIS<PSO<LF<RAN,
though the performance of GMU and APX is close.

Thirdly, we evaluate the performances of the five algorithms
with the change of number of candidate servers in Fig. 8. It
is easy to find out that the total cost of APX is lowest in
all three datasets. The error bars in Fig. 8 measure the value
of standard deviation and show that the simulation results are
accurate. The total costs of all algorithms decrease along with
the increase of number of candidate servers. The reason is that
when the number of candidate servers increases, there will be
more chance to activate the proper servers to minimize the
total cost.

Then, as illustrated in Fig. 9, the performances of all
five algorithms are evaluated with the change of the number
of data types. It is worth noting that the number of data
types here means the total number of data types carried
by all mobile users. The simulation results show that the
total cost performances of all six algorithms rank as follows:
APX<GMU<DIS<PSO<LF<RAN. Since APX, GMU and
PSO consider minimizing both facility cost and service cost,
they perform better than other algorithms. The total costs of
all algorithms increase with the growth of the number of

11

50 100 150 200 250 300 350 400 450
2000
3000
4000
5000
6000
7000
8000
9000

10000
To

tal
 co

st

Number of Users

 CMSA
 DIS
 LF
 RAN
 PSO
 GMU

(a) roma/taxi set

50 100 150 200 250 300 350 400 450

2000

3000

4000

5000

6000

7000

8000

To
tal

 co
st

Number of Users

 CMSA
 DIS
 LF
 RAN
 PSO
 GMU

(b) epfl/mobility set

50 100 150 200 250 300 350 400 450

4000

8000

12000

16000

20000

To
tal

 co
st

Number of Users

 CMSA
 DIS
 LF
 RAN
 PSO
 GMU

(c) geolife trajectory set

Fig. 11: The simulation results in terms of number of users.

 GMU

(a) roma/taxi set

 GMU

(b) epfl/mobility set

 GMU

(c) geolife trajectory set

Fig. 12: The simulation results in terms of number of candidate servers.

 GMU

(a) roma/taxi set

 GMU

(b) epfl/mobility set

 GMU

(c) geolife trajectory set

Fig. 13: The simulation results in terms of number of data types.

data types. The reason is that when the number of data types
increases, each user may carry more data types and they may
travel to more mobile edge servers to upload data.

Furthermore, as shown in Fig. 10, we give an example of the
simulation result of APX in roma/taxi set, where the number
of candidate mobile edge servers is 10, the number of mobile
users is 10 and the total number of data types carried by all
mobile users is 5.

Finally, we conduct some simulations to compare the results
of the proposed approximation algorithm with the optimal
results in roma/taxi set. Specifically, we compare the facility
cost and u-s service cost between APX algorithm and the

optimal results. Besides, we calculate the ratio between the
cost of APX and the optimal solution. We set α = 0.6, the
number of candidate servers is 15 and the number of mobile
users is 50. The detailed results are shown in Table VII-VIII.
In Table VII, we compare the facility cost of APX and the
optimal in terms of the change of number of data types. Due
to the fact that the value of data type number changes little,
the value of ratio fluctuates slightly. But the ratio is always
less than the bound. In Table VIII, we compare the u-s service
cost between APX and the optimal results. Since many of the
fractional solutions obtained in roma/taxi set are close to 1,
the filtering technique will filter few fractional solutions and

12

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8

Ac
tiva

ted
 se

rve
r n

um
be

r A c t i v a t e d s e r v e r n u m b e r
 A v e r a g e o v e r h e a d

N u m b e r o f U s e r s
0
5 0
1 0 0
1 5 0
2 0 0
2 5 0

Average overhead

(a) roma/taxi set

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
2 . 6
2 . 8
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0 A c t i v a t e d s e r v e r n u m b e r

 A v e r a g e o v e r h e a d

N u m b e r o f U s e r s

Ac
tiva

ted
 se

rve
r n

um
be

r

0

5 0

1 0 0

1 5 0

2 0 0

Average overhead

(b) epfl/mobility set

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
2 . 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0
3 . 2
3 . 4
3 . 6 A c t i v a t e d s e r v e r n u m b e r

 A v e r a g e o v e r h e a d

N u m b e r o f U s e r s

Ac
tiva

ted
 se

rve
r n

um
be

r

0
5 0
1 0 0
1 5 0
2 0 0
2 5 0

Average overhead

(c) geolife trajectory set

Fig. 14: The trend of activated server number and average overhead in terms of number of users.

TABLE IX: The promotion ratio in terms of number of users.

Number of users Ratio Number of users Ratio
30 7.6% 60 5.4%
40 7.0% 70 4.0%
50 5.4% 80 4.5%

the impact of the value of α to the cost is limited. The cost
of APX is the same when changing α. However, the ratio is
also less than the bound. The experimentation results show
that the proposed algorithm performs much better than what
its worst-case bound suggests.

C. Simulation Results for Multi-Type Scenario

To evaluate the performance of the proposed facility location
strategy for the situation where each user can carry multiple
types of data without limitations. Firstly, we compare the total
costs of the proposed CMSA algorithm with DIS, LF, RAN,
PSO and GMU algorithms with the change of number of
users, number of candidate servers and number of data types.
Then, we investigate the trend of activated server number and
average overhead with the change of the number of users.
Finally, we evaluate the promotion ratio of the final solution
of CMSA against the initial solution. In the simulation, the
CMSA parameters are set as follows: The input of algorithm
2, (T,Tmax, γ, δ), is set as (10000, 5000, 0.99, 1000).

Firstly, we compare the total cost of the CMSA with DIS,
LF, RAN, PSO and GMU algorithms with the growth of
number of users. The number of users varies from 50 to
450. As shown in Fig. 11, it is obvious that GMU and
CMSA perform better than other baseline algorithms. More
specifically, CMSA achieves a lower cost than GMU when
the user number is small and GMU outperforms CMSA with
the growth of number of users.

Secondly, we evaluate the performances of algorithms with
the change of number of candidate servers on three datasets.
The simulation results are shown in Fig. 12. Since the user
may go to a nearer edge server when the number of servers
increases, the total cost decreases slightly with the growth
of the number of candidate servers. It is easy to find out
that CMSA and GMU perform better than other baseline
algorithms. Although GMU achieves a lower cost than CMSA

TABLE X: The promotion ratio in terms of number of types.

Number of types Ratio Number of types Ratio
14 6.1% 17 5.8%
15 6.3% 18 6.2%
16 6.2% 19 5.4%

on geolife trajectory set when the server number is low, CMSA
performs better than GMU on other two datasets.

Thirdly, as shown in Fig. 13, we compare the total cost
with the change of number of data types. The number of data
types varies from 5 to 25. It is worth noting that the number
of data types here refers to the total number of data types
carried by all mobile users. GMU performs better than CMSA
in the beginning on geolife trajectory set, but it achieves a
higher cost than CMSA with the growth of the number of
data types. Moreover, CMSA has the best performance on
other two datasets.

Then, we investigate the trend of activated server number
and average overhead with the change of number of users.
The average overhead here is the average number of users
served by each activated server. We set the candidate server
number as 40 and the total data type number as 20. We repeat
the simulation 100 times and obtain the average results. As
shown in Fig. 14, the activated server number decreases and
the average overhead increases with the growth of number of
users in all three datasets. As the number of users increases, the
service cost outnumbers the facility cost. Hence, the proposed
strategy tends to guide users to upload data through one server
for minimizing users’ movement costs. Each activated server
will serve more users when the number of activated servers
decreases, which matches the theoretical analysis.

Finally, we evaluate the promotion ratio of the solution of
CMSA against the initial solution in terms of number of users.
We denote the total cost of the initial solution as Cinit and the
total cost of the final solution of CMSA as Cf inal . Therefore,
the promotion ratio is computed as Cinit−C f inal

Cinit
. As shown in

Table. IX, the promotion ratio is no less than 4.0%. Moreover,
we evaluate the promotion ratio in terms of number of data
types. The simulation results are demonstrated in Table. X. It
is easy to find out that the promotion ratio fluctuates between
5.4% and 6.1%.

13

VIII. CONCLUSION
We investigate the edge server location problem for min-

imizing cost in mobile crowdsensing. Firstly, we investigate
the edge-based mobile crowdsensing architecture and formally
define the edge server location problem. Then, the problem
is formulated as a variant of the multi-commodity facility
location problem. For the two-type scenario, a relaxation
based approximation algorithm is proposed, which is proved
to have a bound to the optimal solution. Furthermore, we
extend the problem to a generalized case. The computational
complexity and the large solution space make it difficult for
the traditional combination optimization technique to work
well. Hence, we propose the connected multi-agent simulated
annealing algorithm. Finally, the simulation results match the
theoretical analysis and prove that the proposed algorithms
perform better than other baseline algorithms.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundations of China under Grant No. 61772230, No.
61972450 and No. 62072209, Natural Science Foundations
of Jilin Province No. 20190201022JC, National Science Key
Lab Fund Project No. 61421010418, Innovation Capacity
Building Project of Jilin Province Development and Re-
form Commission No. 2020C017-2, Changchun Science and
Technology Development Project No.18DY005, Key Labo-
ratory of Defense Science and Technology Foundations No.
61421010418, Jilin Province Young Talents Lifting Project
No. 3D4196993421, and in part by NSF grants CNS 1824440,
CNS 1828363, CNS 1757533, CNS 1629746, CNS 1651947,
and CNS 1564128.

REFERENCES

[1] D. Luan, Y. Yang, E. Wang, and J. Wu, “Facility location strategy
for minimizing cost in edge-based mobile crowdsensing,” in The 16th
International Conference on Mobile Ad-hoc and Smart Systems, 2019.

[2] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowd sensing: Current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.
32–39, 2011.

[3] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient prediction-
based user recruitment for mobile crowdsensing,” IEEE Transactions on
Mobile Computing, vol. 17, no. 1, pp. 16–28, 2018.

[4] W. Liu, Y. Yang, E. Wang, and J. Wu, “Dynamic user recruitment with
truthful pricing for mobile crowdsensing,” in IEEE INFOCOM 2020,
April 2020.

[5] E. Wang, M. Zhang, X. Cheng, Y. Yang, W. Liu, H. Yu, L. Wang,
and J. Zhang, “Deep learning-enabled sparse industrial crowdsensing
and prediction,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2020.

[6] J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, “Task allocation in
mobile crowd sensing: State-of-the-art and future opportunities,” IEEE
Internet of Things Journal., vol. 5, no. 5, pp. 3747–3757, 2018.

[7] Y. Yang, W. Liu, E. Wang, and J. Wu, “A prediction-based user selection
framework for heterogeneous mobile crowdsensing,” IEEE Transactions
on Mobile Computing, vol. 18, no. 11, pp. 2460–2473, 2019.

[8] Z. Han, J. Liao, Q. Qi, H. Sun, and J. Wang, “Radio environment
map construction by kriging algorithm based on mobile crowd sensing,”
Wireless Communications and Mobile Computing, vol. 2019, pp. 1–12,
02 2019.

[9] L. Xiao and D. W. Goldberg, “Toward a mobile crowdsensing system for
road surface assessment,” Computers Environment and Urban Systems,
vol. 69, 2018.

[10] K. Banti, M. Louta, and G. Karetsos, “Parkcar: A smart roadside
parking application exploiting the mobile crowdsensing paradigm,” in
International Conference on Information, Intelligence, Systems and
Applications, 2017, pp. 1–6.

[11] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet of
things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91,
2016.

[12] K. Taik Kim, C. Joe-Wong, and M. Chiang, “Coded edge computing,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations, 2020, pp. 237–246.

[13] J. Zhang, L. Zhou, F. Zhou, B. C. Seet, H. Zhang, Z. Cai, and J. Wei,
“Computation-efficient offloading and trajectory scheduling for multi-
uav assisted mobile edge computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 2114–2125, 2020.

[14] X. Li, W. Li, Q. Yang, W. Yan, and A. Y. Zomaya, “Edge computing
enabled unmanned module defect detection and diagnosis system for
large-scale photovoltaic plants,” IEEE Internet of Things Journal, 2020.

[15] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[16] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen, “Providing task allocation
and secure deduplication for mobile crowdsensing via fog computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 3,
pp. 581–594, 2020.

[17] X. Xia, Y. Zhou, J. Li, and R. Yu, “Quality-aware sparse data collection
in mec-enhanced mobile crowdsensing systems,” IEEE Transactions on
Computational Social Systems, vol. 6, no. 5, pp. 1051–1062, 2019.

[18] J. Xiong, X. Chen, Q. Yang, L. Chen, and Z. Yao, “A task-oriented
user selection incentive mechanism in edge-aided mobile crowdsensing,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 2347–2360, 2020.

[19] L. Pu, X. Chen, G. Mao, Q. Xie, and J. Xu, “Chimera: An energy-
efficient and deadline-aware hybrid edge computing framework for
vehicular crowdsensing applications,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2018.

[20] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading depen-
dent tasks in mobile edge computing with service caching,” in IEEE
INFOCOM 2020.

[21] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016.

[22] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communications,
2017.

[23] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, 2017.

[24] W. Gong, X. Huang, G. Huang, B. Zhang, and C. Li, “Data offloading
for mobile crowdsensing in opportunistic social networks,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[25] L. Wang, D. Zhang, Z. Yan, H. Xiong, and B. Xie, “effsense: A novel
mobile crowd-sensing framework for energy-efficient and cost-effective
data uploading,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 12, pp. 1549–1563, 2015.

[26] M. Marjanovic, A. Antonic, and I. P. Zarko, “Edge computing architec-
ture for mobile crowdsensing,” IEEE Access, vol. PP, no. 99, pp. 1–1,
2018.

[27] L. Ma, X. Liu, Q. Pei, and X. Yong, “Privacy-preserving reputation
management for edge computing enhanced mobile crowdsensing,” IEEE
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2018.

[28] L. Liu, L. Wang, and X. Wen, “Joint network selection and traffic allo-
cation in multi-access edge computing-based vehicular crowdsensing,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2020, pp. 1184–1189.

[29] P. Bellavista, M. Cilloni, G. Di Modica, R. Montanari, P. Carlo Maiorano
Picone, and M. Solimando, “An edge-based distributed ledger architec-
ture for supporting decentralized incentives in mobile crowdsensing,” in
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), 2020, pp. 781–787.

[30] C. Ying, H. Jin, X. Wang, and Y. Luo, “Chaste: Incentive mechanism
in edge-assisted mobile crowdsensing,” in 2020 17th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON), 2020, pp. 1–9.

[31] L. Liu, X. Wen, L. Wang, Z. Lu, W. Jing, and Y. Chen, “Incentive-aware
recruitment of intelligent vehicles for edge-assisted mobile crowdsens-
ing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp.
12 085–12 097, 2020.

[32] J. Zhang, “Approximating the two-level facility location problem via a
quasi-greedy approach,” Mathematical Programming, vol. 108, no. 1,
pp. 159–176, 2006.

14

[33] D. B. Shmoys, V. Tardos, and K. Aardal, “Approximation algorithms for
facility location problems,” in Twenty-ninth Acm Symposium on Theory
of Computing, 1997.

[34] A. M. Nezhad, H. Manzour, and S. Salhi, “Lagrangian relaxation heuris-
tics for the uncapacitated single-source multi-product facility location
problem,” International Journal of Production Economics, vol. 145,
no. 2, pp. 713–723, 2013.

[35] Z. Svitkina, “Lower-bounded facility location,” Acm Transactions on
Algorithms, vol. 6, no. 4, pp. 1–16, 2010.

[36] F. A. Chudak and D. B. Shmoys, “Improved approximation algorithms
for capacitated facility location problems,” in Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January
1999, Baltimore, Maryland, 1999.

[37] M. T. Melo, S. Nickel, and F. S. Gama, “Largescale models for dynamic
multicommodity capacitated facility location,” 2003.

[38] S. S. R. Shariff, N. H. Moin, and M. Omar, “Location allocation
modeling for healthcare facility planning in malaysia,” Computers and
Industrial Engineering, vol. 62, no. 4, pp. 1000–1010, 2012.

[39] Z. Friggstad and M. R. Salavatipour, “Minimizing movement in mobile
facility location problems.” in IEEE Symposium on Foundations of
Computer Science, 2008.

[40] M. Charikar and S. Guha, “Improved combinatorial algorithms for
facility location problems,” SIAM J. Comput., vol. 34, no. 4, pp. 803–
824, 2005.

[41] R. Fleischer, J. Li, S. Tian, and H. Zhu, “Non-metric multicommodity
and multilevel facility location,” in International Conference on Algo-
rithmic Aspects in Information and Management, 2006.

[42] R. Ravi and A. Sinha, “Multicommodity facility location,” in Fifteenth
Acm-siam Symposium on Discrete Algorithms, 2004.

[43] E. L. Mooney, Y. Almoghathawi, and K. Barker, “Facility location for
recovering systems of interdependent networks,” IEEE Systems Journal,
vol. 13, no. 1, pp. 489–499, 2019.

[44] A. A. Abin, “Querying beneficial constraints before clustering using
facility location analysis,” IEEE Transactions on Cybernetics, vol. 48,
no. 1, pp. 312–323, 2018.

[45] L. P. Meng, Q. Kang, C. F. Han, and M. C. Zhou, “Determining the
optimal location of terror response facilities under the risk of disruption,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–11,
2018.

[46] D. B. Shmoys, E. Tardos, and K. Aardal, “Approximation algorithms
for facility location problems,” in Annual ACM Symposium on Theory
of Computing, vol. 3, no. 3, 1997, pp. 265–274.

[47] V. V. Vazirani, Approximation Algorithms, 2001.
[48] Y. Liu, B. Guo, C. Chen, H. Du, Z. Yu, D. Zhang, and H. Ma,

“Foodnet: Toward an optimized food delivery network based on spatial
crowdsourcing,” IEEE Transactions on Mobile Computing, vol. 18,
no. 6, pp. 1288–1301, June 2019.

[49] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,
“CRAWDAD dataset roma/taxi (v. 2014-07-17),” Downloaded from
https://crawdad.org/roma/taxi/20140717, Jul. 2014.

[50] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset epfl/mobility (v. 2009-02-24),” Downloaded from
https://crawdad.org/epfl/mobility/20090224, Feb. 2009.

[51] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in Proceedings of the 18th
International Conference on World Wide Web, ser. WWW ’09. New
York, NY, USA: ACM, 2009, pp. 791–800.

Dongming Luan received his B.E.degree in Soft-
ware Engineering and M.E.degree in computer
science and technology from Jilin University,
Changchun, Jilin, China, in 2017 and 2020. He is
currently a Ph.D. candidate in College of Com-
puter Science and Technology in Jilin University,
Changchun, Jilin, China. His current research inter-
est is Mobile Crowdsensing and Mobile Computing.

En Wang received his B.E. degree in software engi-
neering from Jilin University, Changchun, in 2011,
his M.E. degree in computer science and technology
from Jilin University, Changchun, in 2013, and his
Ph.D. in computer science and technology from Jilin
University, Changchun, in 2016. He is currently a
Professor in the Department of Computer Science
and Technology at Jilin University, Changchun. He
is also a visiting scholar in the Department of Com-
puter and Information Sciences at Temple University
in Philadelphia. His current research focuses on the

efficient utilization of network resources, scheduling and drop strategy in
terms of buffer-management, energy-efficient communication between human-
carried devices, and mobile crowdsensing.

Wenbin Liu the corresponding author, received the
B.S. degree in physics and the Ph.D. degree in com-
puter science and technology from Jilin University,
China, in 2012 and 2020. He was also a joint Ph.D.
student in the Wireless Networks and Multime-
dia Services Department, Telecom SudParis/Institut
Mines-Telecom, Evry, France. He is currently a
Postdoctoral Researcher in Dingxin Scholar Program
with the College of Computer Science and Technol-
ogy, Jilin University, China. His research interests
include Mobile CrowdSensing, Mobile Computing,

and Ubiquitous Computing.

Yongjian Yang received his B.E. degree in au-
tomatization from Jilin University of Technology,
Changchun, Jilin, China in 1983; his M.E. degree
in computer communication from Beijing University
of Post and Telecommunications, Beijing, China
in 1991; and his Ph.D. in software and theory of
computer from Jilin University, Changchun, Jilin,
China in 2005. He is currently a professor and a
PhD supervisor at Jilin University, the Vice Dean
of the Software College of Jilin University, Direc-
tor of Key lab under the Ministry of Information

Industry, Standing Director of the Communication Academy, and a member
of the Computer Science Academy of Jilin Province. His research interests
include: network intelligence management, wireless mobile communication
and services, and wireless mobile communication.

Jie Wu is the Associate Vice Provost for Interna-
tional Affairs at Temple University. He also serves
as Director of the Center for Networked Computing
and Laura H. Carnell professor in the Department of
Computer and Information Sciences. Prior to joining
Temple University, he was a program director at
the National Science Foundation and was a distin-
guished professor at Florida Atlantic University. His
current research interests include mobile computing
and wireless networks, routing protocols, cloud and
green computing, network trust and security, and

social network applications. Dr. Wu regularly publishes in scholarly journals,
conference proceedings, and books. He serves on several editorial boards,
including IEEE Transactions on Service Computing and the Journal of Parallel
and Distributed Computing. Dr. Wu was general cochair/chair for IEEE
MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc
2014, as well as program co-chair for IEEE INFOCOM 2011 and CCF
CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

