

On Maximum Elastic Scheduling of Virtual Machines for Cloud-based Data Center Networks

Jie Wu^b, Shuaibing Lu^{a,b}, and Huangyang Zheng^a

^aCollege of Computer Science and Tech., Jilin University ^bDept. of Computer and Info. Sciences, Temple University

Outline

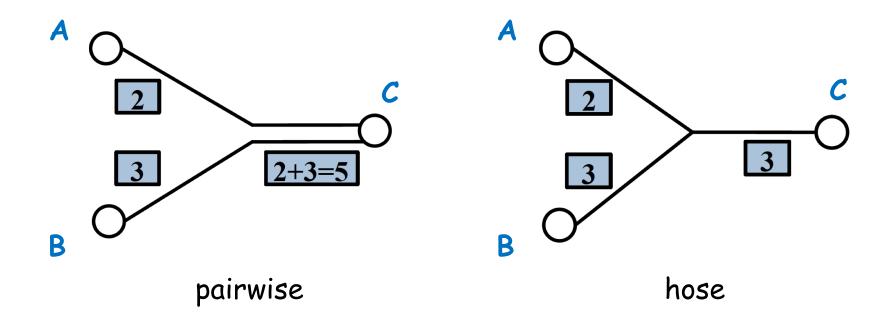
- 1. Background
- 2. Model and Formulation
- 3. Simple and Optimal Solutions
- 4. Properties
- 5. Simulation Comparisons
- 6. Conclusions

1. Background

Cloud Data Center Networks (DCNs)

Supporting cloud-based applications for large enterprises

Virtual Machine Placement


• Solving the resource utilization problem in a cloud DCN

Motivation

- Allocating physical machines (PMs) to virtual machines (VMs)
- Meeting computation and communication demands
- Avoiding load redistribution during a run time

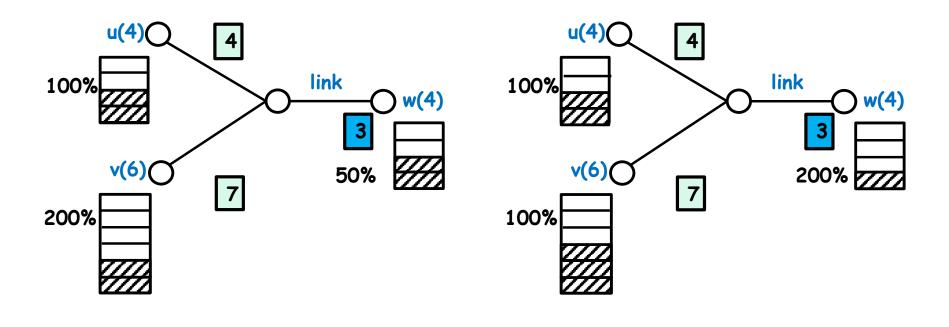
Hose Model

Each hose has aggregated performance guarantees instead of pairwise performance guarantees^[1].

[1]. Duffield, Nick G., et al. "A flexible model for resource management in virtual private networks." ACM SIGCOMM Computer Communication Review. Vol. 29. No. 4. ACM, 1999.

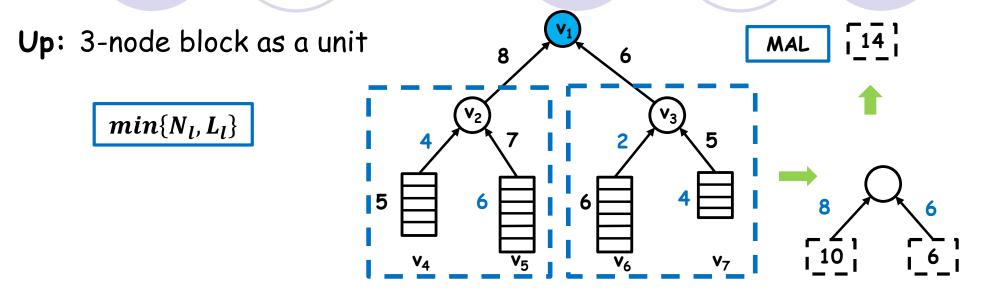
2. Model and Formulation

Problem

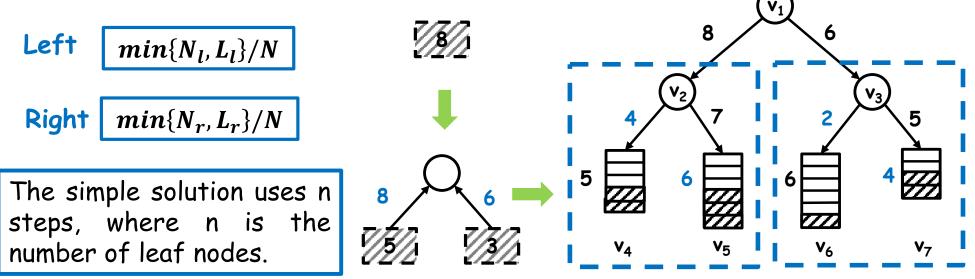

• Provisioning the maximum admissible load (MAL) of VMs in PMs with tree-structured DCNs using the hose model.

Maximum Elastic Scheduling

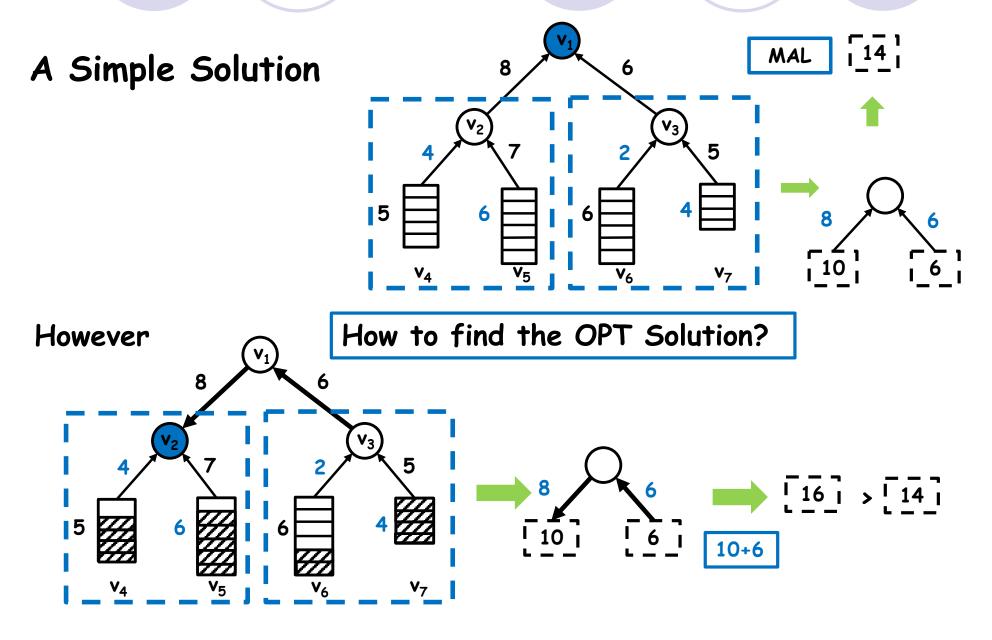
 A task assignment scheme that supports maximum uniform growth in both computation and communication without resorting to task reassignment.


Hose-based Elastic Scheduling

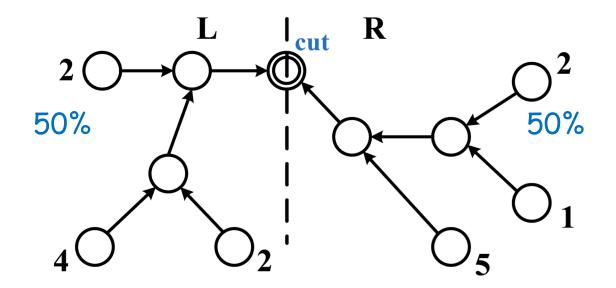
Schedule 6 VMs



overall: 50% < overall: 100%

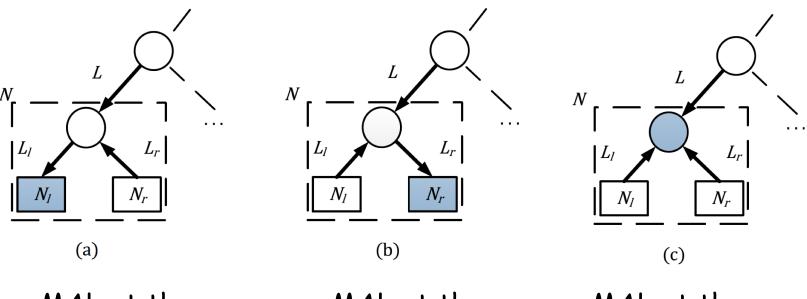

3. A Simple Up-Down Solution

Down: Given a load < MAL at root


Why Simple Solution may Fail?

How to Calculate?

Hose-model-based orientation


- Link orientation is important
- min{L,R} where L + R is a constant

An Optimal Distributed Solution

Insights

- Apply the simple solution to different orientations
- Select the best orientation

MAL at the left leaf node

MAL at the right leaf node

MAL at the center node

Optimal Solution: Details

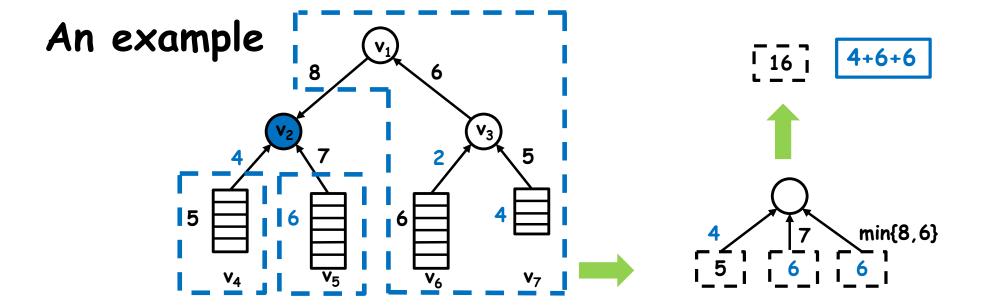
Step 1 (leaf node)

- Send its load to the connected internal node
- Calculate its MAL: $min\{N, \infty\} + min\{N_1, L_1\}$

Step 2 (internal node with two branches)

- Send virtual load $min\{N_i, L_i\}$ to the other branch
- Calculate its MAL: $min\{N_1, L_1\} + min\{N_2, L_2\}$

Step 3 (internal node with three branches)


- Send $min\{N_i, L_i\} + min\{N_j, L_j\}$ to the third branch
- Calculate its $MAL:min\{N_1, L_1\} + min\{N_2, L_2\} + min\{N_3, L_3\}$

leaf node

tree root


internal node

Optimal Solution: Example

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
Step 1	-	-	-	send 5 to v_2	send 6 to v_2	send 6 to v_3	send 4 to v_3
Step 2		send $\min\{5, 4\}$ +	send $\min\{6, 2\}+$				
	-	$\min\{6,7\}=10$ to v_1	$\min\{4,5\}$ =6 to v_1	-	-	-	-
Step 3	send $\min\{6, 6\}$						
	=6 to v_2	-	-	-	-	-	-
	send $\min\{10, 8\}$						
	=8 to v_3						
Step 4		send min{6,8}+	send min{8,6}+				
		$\min\{6,7\}=12$ to v_4	$\min\{4,5\}=10$ to v_6	-	-	-	-
		send $\min\{6,8\}$ +	send $\min\{8,6\}$ +				
		$\min\{5,4\}$ =10 to v_5	$\min\{6,2\}=8$ to v_7				
MAL	$\min\{10, 8\}+$	$\min\{5,4\}+\min\{6,7\}$	$\min\{6,2\}+\min\{4,5\}$	$\min\{12,4\}+$	$\min\{10,7\}+$	$\min\{10, 2\}$ +	$\min\{8,5\}+$
	$\min\{6, 6\}=14$	$+\min\{8,6\}$ =16	$+\min\{8,6\}=12$	$\min\{5,\infty\}=9$	$\min\{6,\infty\}=13$	$\min\{6,\infty\}$ =8	$\min\{4,\infty\}=9$

4. Properties

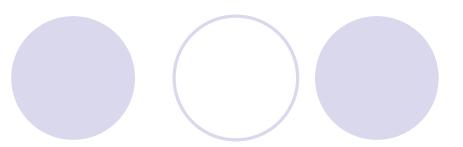
Theorem 1: The optimal solution determines the MAL.

Theorem 2: Hierarchical load distribution generates a schedule with maximum elasticity.

Theorem 3: The optimal solution uses $2\log n+1$ steps. The computation complexity is 5(n-1), and the communication complexity is 4(n - 1).

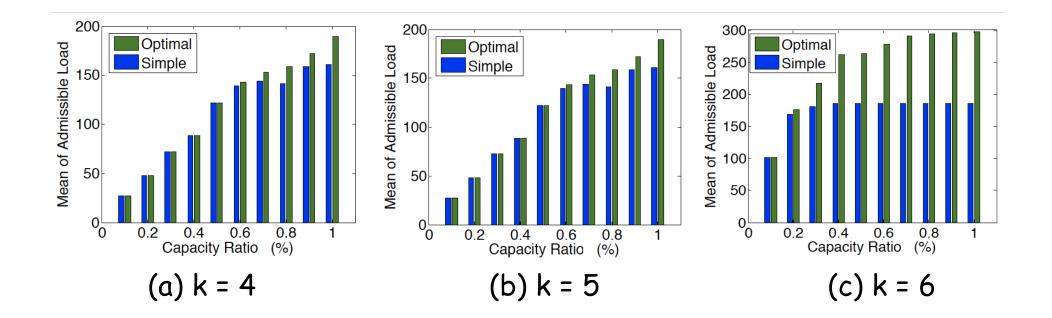
Theorem 4: Simple solution is optimal for a fat-tree.

5. Simulation Comparisons


Basic Setting

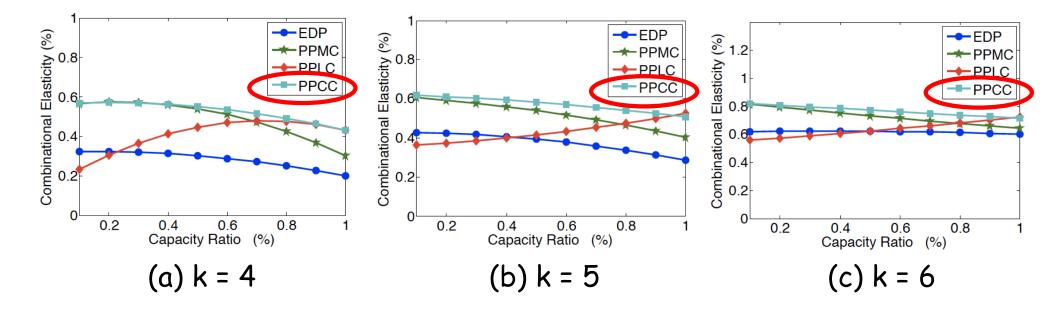
- A strict binary tree with levels k = 4 , 5 , and 6
- Heterogeneous node space from 0 to 100 units
- Bandwidth demand per-pair of VMs is 1 Gbps

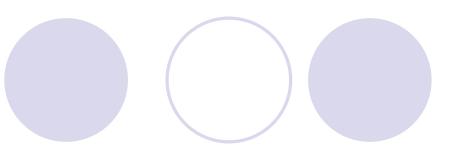
Three Comparison algorithms


- Equally Distributed Placement (EDP)
- Proportion with PM Capacities (PPMC)
- Proportion with Physical Link (PL) Capacities (PPLC)
- Proportion with Physical Combinational Capacities (PPCC)

Experiments

Comparison of the elasticities


simple and optimal solutions


Experiments (cont'd)

Comparison of the elasticities

• Three comparison algorithms and PPCC

6. Conclusions

Objective of maximum communication elasticity
Hose model

Maximum elastic scheduling (distributed, optimal solution)
 Maximum admissible load (MAL)

Maximum elastic scheduling of admissible load

Experiments

Efficiency and effectiveness

Q&A

Journal of *Sensor and Actuator Networks* an Open Access Journal by MDPI

Journal's Aims and Scope:

- System architecture, operating systems and network hardware for sensor and actuator networks
- Communication and network protocols
- Data processing, data storage and data management within sensor and actuator networks
- Programming models and middleware for sensor/actuator networks
- Embedded systems
- Security and privacy

Publication: 143

Page view:

2015 (43,034) 2016 (62,526) 2017 (160,876) 2018 (77,310) Editor-in-Chief

Prof. Dr. Dharma P. Agrawal University of Cincinnati, Cincinnati, OH 45221-0030, USA

Founding Editor-in-Chief

Prof. Dr. Stefan Fischer Director of Institute of Telematics, University of Luebeck, Lübeck 23562, Germany