

Cost-Efficient Resource Provisioning in Delay-Sensitive Cooperative Fog Computing

Shuaibing Lu^{a,b}, Jie Wu^b, Yubin Duan^b, Ning Wang^b, and Zhiyi Fang^a

^aCollege of Computer Science and Tech., Jilin University ^bDept. of Computer and Info. Sciences, Temple University

Outline

- 1. Background and Motivation
- 2. Model and Formulation
- 3. RP With Unlimited-Processor Fog Node (UPFN)
- 4. RP With Limited-Processor Fog Node (LPFN)
- 5. Evaluations
- 6. Conclusions

1. Background

Cloud Data Center Networks (DCNs)

 Supporting cloud-based applications for large enterprises

Fog Computing

 Providing computation, storage, and networking services between end devices and traditional cloud DCNs.

2. Model and Formulation

Motivation

- IoT devices generate data constantly and the analysis must be very rapid
- Meeting computation and communication demands
- Reduce the transmission latency and decrease monetary cost

Objective

 Find an appropriate scheme for the set of users with minimum cost, and support all users' demands in both resource and deadline constraints.

2. Model and Formulation

Formulation

Resource provisioning (RP) problem for delay-sensitive users under the capacity constraints by considering the cooperation of fog nodes, while realizing cost efficiency of network operators in fog computing.

minimize	$\sum_{j \in X} 1_{\left[\sum_{i \in U} \lambda_{ij} w_i > 0\right]} \tau_j$	(1)
subject to	$D_i \leq T$, $\forall i \in \mathbf{U}$	(2)
	$D_i = \max_{j \in \mathbf{X}_i} \{ d_{ij} + p_{ij} \}$	(3)
	$0 \leq \lambda_{ij} \leq 1$, $\sum_{i \in \mathbf{U}, j \in \mathbf{G}} \lambda_{ij} = 1$	(4)
	$\sum_{i\in\mathbf{U}}\lambda_{ij}w_i\leq c_j$	(5)

NP-hard Problem

3. RP With Unlimited-Processor Fog Node (UPFN)

Feasibility Checking

 whether there exists a provision for users that can support users' demands within the constraint of their deadline

Steps

- Construct an auxiliary graph with respect to the connections between users and fog nodes;
- Obtain the maximum flow using Edmonds-Karp algorithm

3. RP With Unlimited-Processor Fog Node (UPFN)

Cooperative Influence

• Local Cooperative Influence

$$\psi_i = \left| \overline{M}_{G^*/\nu_j} - \overline{M}_{G^*} \right| \text{ where } M_{G^*} = \max_{j \in G^*} \{ p_j \}$$

• Global cooperative influence

$$\varphi_i = \left| \overline{R}_{G_{/v_j}} - \overline{R}_G \right|$$
 where $\overline{R}_G = \frac{\sum_{v_j \in G} p_j}{|G|}$

Fig 2. Cooperative Influences.

Local Influence Greedy (LIG) Algorithm

Step 1

• Find a feasible solution using feasibility checking.

Step 2

Calculate the latest finished completion time of fog nodes.

Step 3

• Calculate φ_i for each fog node and rebuild the set G with fog nodes by an increasing order $j = argmin\{\psi_i/\tau_j\}$;

🗆 Step 4

 Check the feasibility of G by using feasibility checking and remove fog node from set V until there is no feasible solution.

Global Influence Greedy (GIG) Algorithm

□ Step 1, 2, 4, same to LIG

Step 3

• Calculate φ_i for each fog node; Rebuild the set G with fog nodes by an increasing order $j = argmin\{\varphi_i/\tau_j\}$;

Time Complexity

• $O(|V|^5 \cdot (|V| + |U|))$

4. RP With Limited-Processor Fog Node (LPFN)

Delay Function: $d_v(x_v) = \alpha \cdot x_v + b$

- Optimal Provision Finding (OPF) Problem
 - Given U, G, and $d_v(x_v)$, an OPF Problem is how to find a provision in G to minimize the delay of users U.
 - Convert the OPF problem into a Continuous Symmetric Network Congestion Game (CSNCG) problem.

Fig 3. A converted graph based on CSNCG

Local Influence Greedy LPFN (GIG-LPFN)

Step 1

• Construct graph G" based on the connections of G and U.

Step 2

• Replace each edge in G" with n parallel edges between each node, with weight $d_v(1)$, $d_v(2)$, ..., $d_v(n)$.

🗆 Step 3

Find a minimum delay provision with min-cost flow for each fog node.

🗆 Step 4

• Calculate φ_j for each fog node and rebuild set G with fog nodes by an increasing order $j = argmin\{\varphi_j/\tau_j\}$.

🗆 Step 5

Remove fog node from set G until there is no feasible solution

Global Influence Greedy LPFN (GIG-LPFN)

□ Step 1, 2, 3, 5 same to LIG-LPFN

Step 4

• Calculate ψ_j for each fog node and rebuild set G with fog nodes by an increasing order $j = argmin\{\psi_j/\tau_j\}$;

Property

• GIG-LPFN and LIG-LPFN are bounded by $\frac{8}{3}opt + \frac{\epsilon^2}{8m\alpha}$.

Time Complexity

• $O(|V|^5 \cdot (|V| + |U|))$

5. Evaluations

Basic Setting-Synthetic Dataset

- Unit weight of users' workloads: 1GB
- Sizes of workloads: [0,50] (uniform randomly distribution).

Three Comparison algorithms

- Random: remove fog nodes iteratively by random order.
- Set-up Cost Greedy Algorithm (SCG): greedy remove fog nodes iteratively by an increasing order of the set-up cost
- Processing Rate Greedy Algorithm (PRG): greedy remove fog nodes iteratively by an increasing order of the maximum processing rate.

Experiment Results (UPFN)-Synthetic Dataset

Cost under the UPFN case

- Three Comparison algorithms
- Lower average costs: 15.2% (LIG) and 20.3% (GIG).

(a) The fluctuation of 30 users.

Fig 4. The cost under the UPFN case.

Experiment Results (LPFN)-Synthetic Dataset

Cost under the LPFN case

- Three Comparison algorithms.
- Lower average costs: 10.8% (LIG) and 14.9% (GIG).

(a) The fluctuation of 30 users.

(b) Average cost of users.

Fig 5. The cost under the LPFN case.

Experiment Results (LPFN)-Real Dataset

Dataset

- Subway locations with users distribution in NYC.
- Combine three datasets: NYC Wi-Fi hotspot locations, entrances of the subway stations, and the transit subway entrance data.

Fig 6. Subway locations with users distribution in NYC.

Experiment Results (LPFN)-Real Dataset

Cost under the LPFN case - read dataset

- Three Comparison algorithms
- Lower average costs: 11.4% (LIG) and 12.8% (GIG).

(a) The average makespan of users.

Fig 7. The average cost of users.

6. Conclusions

Objective

 Find an appropriate scheme for the set of users with minimum cost, and support all users' demands in both resource and deadline constraints.

RP with two cases

- Unlimited-Processor Fog Node (UPFN)
- Limited-Processor Fog Node (UPFN)

Experiments

- Synthetic Dataset
- Real Dataset

Q&A