
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Resource Provisioning in Collaborative Fog Computing for
Multiple Delay-Sensitive Users

Shuaibing Lu1 | Jie Wu2 | Ning Wang3 | Yubin Duan2 | Haiming Liu4 | Jiayue Zhang1 | Juan Fang*1

1Faculty of Information Technology, Beijing
University of Technology, Beijing, China

2Center for Networked Computing, Temple
University, Pennsylvania, USA

3Department of Computer Science, Rowan
University, New Jersey, USA

4School of Software Engineering, Beijing
Jiaotong University, Beijing, China
Correspondence
*Juan Fang. Email: fangjuan@bjut.edu.cn
Present Address
No.100 Pingleyuan, Chaoyang District,
Beijing 100124 P.R. China

Abstract

Fog computing is an emerging paradigm that supplies storage, computation, and net-
working resources between traditional cloud data centers and end devices. This paper
focuses on the resource provisioning problem in collaborative fog computing formul-
tiple delay-sensitive users. Our goal is to implement a resource provisioning strategy
for network operators to minimize the total monetary cost by considering the dead-
line and capacity constraints. Two scenarios are considered: Unlimited-Processor
Fog Nodes (UPFN) and Limited-Processor Fog Nodes (LPFN). In either scenario,
we prove that the resource provisioning problem is NP-hard. First, we consider the
UPFN scenario that the processors of fog nodes are unlimited and users’ requests can
be ideally processed in parallel. Two algorithms are proposed which greedily delete
fog nodes based on the local or global collaborative influences until there is no fea-
sible provisioning to guarantee the deadline of users. Then we extend the resource
provisioning problem to a more realistic and complicated scenario LPFN in which
the scheduling delay cannot be ignored. Two types of tasks are considered. One is
the arbitrarily divided tasks, and a near-optimal solution bounded by 8
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has been found. m is the number of fog nodes, and � is the upper bound on the Lips-
chitz constant of the delay function. Another one is the application-driven tasks, and
we propose a heuristic algorithm. Extensive experiments validate the efficiency of
the proposed algorithms.
KEYWORDS:
resource provisioning, collaborative fog computing, cost-efficiency, delay-sensitive users

1 INTRODUCTION

With the unprecedented volume and variety of data generated, users’ demand for high-quality services has been increasing. Fog
computing is an emerging paradigm that supplies storage, computation, and networking resources between traditional cloud data
centers and end devices. In fog computing, the basic infrastructures are fog nodes, which include industrial switches, controllers,
routers, video surveillance cameras, and embedded servers1,2,3,4,5. The analysis must be very rapid since the Internet of Things
(IoT) devices are continuously generating data. One important problem is to find a provisioning strategy for fog nodes that can
decrease the monetary cost of fog resources and reduce the transmission latency for users. Resource provisioning for users’
workload has been widely explored in most existing researches, such as offloading computational tasks to a single fog node or
cloud directly. In this paper, we concentrate on the resource provisioning problem by considering the collaboration of fog nodes
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FIGURE 1 A motivation example.

under the capacity constraints for delay-sensitive users. The resource provisioning problem is to determine the allocation of the
resources on the fog nodes to multiple users, so as to minimize the total cost while considering the constraints on the deadline
of users and the computing resources of fog nodes. The collaboration means that one fog node can exploit rented fog nodes to
provide service jointly. Our objective is to improve the cost-efficiency of network operators in fog computing while guaranteeing
the quality of services of users.
We first use an example to illustrate the motivation of our work in the following setting scenario. Some assumptions and

notations are not explicitly stated but will be explained in the later sections. We assume that there exist eight heterogeneous fog
nodes (v(1−8)), and the computing capability of each fog node provided to users (u(1−4)) is limited. For each user, the connection
scope is within a certain area as shown in the gray circle in Figure 1. In this area, users can offload tasks to the corresponding fog
node. The fog nodes of different suppliers support the collaborative services, and the monetary cost of the resource provisioning
strategy generates for the fog node depending on the set-up cost. Thus, the total cost is proportional to the number of fog nodes.
We suppose that the connections and locations of the fog nodes have been fixed by the third-party service providers or the cloud
data centers.Within a fixed deadline T , users can offload the workloads to their nearest fog nodes.We suppose that the workloads
are divided into the same service entities, and a service entity is represented by one unit. Thus, the provisioning strategy for
multiple users is allocating the service entities of workloads to the fog nodes. According to the scenario that we set up, there is
a trade-off between cost and efficiency. We use the following example to illustrate the trade-off. As Figure. 1 shows, an extreme
solution is the provisioning strategy by minimizing the delay for users’ set (u(1−4)), which offloads workloads to all connected
fog nodes (v(1−8)) in the network. However, the solution has the highest total cost among all possible provisioning strategies that
meet the deadline constraints. Another extreme solution is the provisioning strategy with minimal total cost, which means that
the number of fog nodes that support the set of users is the minimum, as shown in Figure. 1 where v1, v2, v3 and v4 are used. If the
volumes of workloads become heavy, the total completion time of users in the set may exceed deadline T . This paper proposes
cost-efficient resource provisioning strategies for multiple users that fall between these two extreme solutions. Two scenarios
are considered in this paper: Unlimited-Processor Fog Nodes (UPFN) and Limited-Processor Fog Nodes (LPFN). In the UPFN,
the processors of each fog node are unlimited and users’ requests can be ideally processed, i.e. without scheduling delays. In
the LPFN, we consider a more realistic and complicated scenario, in which the processors of each fog node are limited, i.e. the
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scheduling delay cannot be ignored. We consider two different types of tasks: one is the tasks that can be arbitrarily divided;
the other one is the application-driven task, which means that each task contains multiple sub-tasks and cannot be divided
arbitrarily. Our problem poses several unique challenges as follows: (i) Due to the computing capabilities of fog nodes being
limited and heterogeneous, when several groups of users with different sizes of workloads arrive, finding a feasible resource
provisioning strategy that can complete the workloads within deadlines for users is nontrivial. (ii) In our problem, fog nodes are
allowed to connect with a part of users, and the users have to offload their workloads to the fog nodes located in their efficient
regions. The resource provisioning strategy for a single user may not apply to multiple users. (iii) Even though the collaboration
of fog nodes can decrease the users’ latency, the communication cost may increase. To balance the trade-off between the cost
and delay, it is challenging to do the resource provisioning while satisfying the requests of multiple users with minimum cost.
This paper focuses on the resource provisioning problem that realizing the cost-efficiency for network suppliers in collaborative
fog computing of multiple sensitive users with the constraints on the capacities and delays.
The major novel contributions of this paper are as follows:
• We discuss the resource provisioning problem in collaborative fog computing for multiple delay-sensitive users. We con-

sider both the delays of users and the monetary costs, and we prove that the resource provisioning problem with minimum
cost in collaborative fog computing is NP-hard.

• We discuss two different scenarios which are UPFN and LPFN. For both scenarios, we take into account the deadlines
of users and the cost of suppliers as constraints to meet different requirements, and we put forward a novel idea by
continuously removing and adjusting the nodes to realize the optimization under the resource provisioning in collaborative
fog computing. Specifically, we first consider a simple scenario UPFN. We first propose a novel feasibility checking
method and define two new collaborative influence factors that are used to minimize the total cost by iteratively removing
the fog nodes. Based on that, we propose two greedy heuristic strategies and analyze their complexities. Then we extend
the resource provisioning problem a more realistic and complicated scenario LPFN and formulate it by converting an
optimal provisioning finding problem into a continuous congestion game problem. In the LPFN scenario, we consider two
types of tasks: the arbitrarily divided tasks and the application-driven tasks. For the arbitrarily divided tasks, we propose a
near-optimal algorithm bounded by 8
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. For the application-driven tasks, we propose a novel heuristic algorithm.

• We conduct various simulations on both synthetic and real datasets to compare our joint optimizationmethods with several
state-of-the-art ones. The results are evaluated from different perspectives to provide conclusions. The simulation results
show that our algorithms can reduce the resultant average costs of 12.9% and 17.8% in UPFN and LPFN, respectively. We
also evaluate our algorithms on the real dataset, the simulation results show that our algorithms can reduce the average
cost of 15.2% and 20.3%.

The remainder of this paper is organized as follows. Section II surveys related works. Section III describes the model and then
formulates the problem. Section IV investigates the resource provisioning problemwith Unlimited-Processor FogNodes (UPFN)
and introduces two greedy algorithms. Section V discusses the resource provisioning problem with Limited-Processor Fog
Nodes (LPFN) and proposes one algorithm for the arbitrarily divided tasks. Section VI discusses the LPFN case and proposes
one algorithm for application-driven tasks. Section VII presents the experiments. Finally, Section VIII concludes the paper.

2 RELATEDWORK

Fog computing2,3 as a new distributed paradigm6 enables a new breed of services and applications by extending cloud computing
to the edge of the networks. Unlike the cloud, there are lots of fog nodes distributed in wide-geographic locations and supplying
services closer to the users and IoT devices in fog computing. Many research efforts have focused on the resource provisioning
problem in fog computing7,8,9. Pham et al.8 study the resource scheduling problem in the cloud-fog computing architecture,
where fog providers can take advantage of the collaborations between their fog nodes and the rented cloud resources. Their
focus is on balancing the monetary cost of cloud resources and the makespan. Santos et al.9 propose a network-aware scheduling
approach for container-based applications in smart city deployments, and their proposal has been validated on the Kubernetes
platform. Yu et al.10 focus on the joint optimization problem on data routing and application placement to support all data streams
with both delay and bandwidth guarantees. However, these resource provisioning strategies do not consider the collaboration of
fog nodes. Another paradigm similar to fog computing, Wang et al.11 study the allocation and scheduling problem of computing
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TABLE 1 Notations
G Substrate topology, where G = {V,E}.
V Set of fog nodes in G, where V = {vj}.
vj Fog node j in V.
E Set of connections between fog nodes in G.
eij The connection between vi and vj in set E.
cj The capacity of vj in V.
rj The maximum processing rate of vj in set V.
U Set of users, where U = {ui}.
W Set of weights of users’ workload, whereW = {wi}.
T Deadline of the set of users U.
X Provisioning strategy for the job set U.
�j The set-up cost of vj .
dij Offloading delay between user i on fog node j.
pij Processing delay of user i on fog node j.
�ij The proportion of ui’s workload on vj .

requests on edge nodes, while minimizing total cost using the heterogeneity of the cloud in mobile edge computing. Sheng et
al.12,13 focus on the placement of service entities for applications of social virtual reality in edge computing.
Numerous novel studies take the collaboration of fog nodes into account. Xiao et al.4 use the distributed alternating direction

multiplier method to jointly optimize the user’s QoE under a given power efficiency, which proposes that fog nodes can cooperate
and jointly upload the workloads to the cloud data center. Naha et al.14 propose resource allocation and provisioning algorithms
by using ranking resources in a hybrid and hierarchical fashion to satisfy the requirement of users’ deadline. Bierzynski et al.15
provide the IoT solutions by proposing the methods used to distribute workloads among the cooperation of cloud, fog, and
edge. Huang et al.16 analyze the energy-efficient resource allocation problem in fog computing with candidate fog nodes to
ensure the network loading balance under the performance constraints. Chang et al.17 study a collaborative system in the mobile
social network which focuses on the allocation and partition of the workload. Song et al.18 use the graph partitioning theory
to build the load balancing algorithm based on the dynamic graph partitioning. The above studies focus on the performance
guarantee or load balancing based on the collaboration of fog nodes. Although the optimization objectives are different, the idea
of fog node cooperation provides inspiration for the design of our solution. Another thread of research has been focusing on
reducing the energy consumption for the resource provisioning problem in fog computing. Gu et al.19 formulate the resource
provisioning problem as a one-to-many matching game and propose a new mechanism to satisfy task owners’ heterogeneous
delay requirements and support good scalability. Badidi20 propose an architecture for the placement of IoT applications tasks on
a cluster of fog nodes in the application’s data sources. Yin el al.21 build a new task-scheduling model that ensures completion
time and optimizes the number of concurrent tasks for fog nodes. Ma et al.22 formulate the resource provisioning in a new
framework as an optimization problem, and they propose algorithms by exploiting the piecewise convex property. Most of these
works address the resource provisioning problem by only focusing on the latency, throughput, or energy consumption, while
ignoring the interdependency between the delays of users and the monetary costs.
What’s more, several studies propose new architectures through horizontal and vertical expansion based on deep learning.

Fatemeh et al.23 try to find a placement of the modules using deep reinforcement learning, which can find the best destination to
execute the module so as to create a compromise between the power consumption and execution time. Zhang et al.24 propose a
joint optimization framework for all fog nodes, data service operators, and data service subscribers to obtain the optimal resource
allocation schemes in a distributed fashion. Li et al.25 propose a deep learning based classification model which can improve
the computing efficiency of the manufacture inspection system with fog computing. The performance in the above studies is
improved, however, the model training time and algorithm complexity is not as good as the heuristic method.
This paper concentrates on the resource provisioning problem for multiple delay-sensitive users in fog computing, and our goal

is to achieve a feasible heuristic provisioning strategy that minimizes the total cost under the capacity constraints by considering
the collaboration of fog nodes.
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3 PROBLEM FORMULATION

The resource provisioning problem attempts to find an efficient strategy to upload data to the appropriate location for processing
for multiple users in the fog computing network. In this paper, we concentrate on the resource provisioning problem in collabora-
tive fog computing for multiple delay-sensitive users. Our goal is to minimize the total cost in the resource provisioning process
for multiple delay-sensitive users while meeting the constraints on the deadline of users, the communication and computations
resources in fog computing.

3.1 Fog Model
As illustrated in Figure 1, our fog model is constructed by a substrate distribution of nodes based on an undirected graph
G = {V,E}, whereV is a set of fog nodes, andE is a set of edges. Let vj denote the jtℎ fog node inV, i.e.,V = {vj}. We suppose
that the fog nodes in setV are heterogeneous and can be any devices with storage, computing capacity, and network connectivity.
eij denotes the connection between fog nodes i and j in E, i.e., E = {eij}. We suppose that the fog nodes’ distributions are
concentrated, and there are no communication delays. So the delays are nearly the same between fog nodes and users, which
depends on the offloading delay between access nodes and users. For each vj , it can only provide services to cj user who is in an
efficient region. It is an area where fog nodes can be connected to the users successfully. Since the fog nodes are heterogeneous,
and the form factors are different3, we use rj to denote the maximum processing rate of fog node vj . Let �j denote the set-up cost
of vj , which measures the efficiency of the resource provisioning strategy. We suppose that the connections and locations of fog
nodes in G are provided by the third-party service suppliers or the cloud data center in advance. We define two different types
of fog nodes in the set V. One is access node that connects with the base station in the set V, which offloads the workload from
the user layer. Users can only upload workloads to their near access fog node in an efficient region. Another one is collaborative
node that either processes the workload by itself or from their adjacent fog nodes which can be arrived via local communication
in the set V.
In this paper, we consider two scenarios, Unlimited-Processor Fog Nodes (UPFN) and Limited-Processor Fog Nodes (LPFN).

Due to the difference in the capacities of processors, they have different computation delays.
• Unlimited-Processor Fog Nodes (UPFN): Fog nodes in set V have unlimited numbers of processors which can process

requests parallelly, and the computation delay for the request with weight wi on vj is pij , i.e., pij = �ij ⋅wi

rj
. Let �ij denote

the proportion of workload of user ui on vj , where 0 ≤ �ij ≤ 1.
• Limited-Processor Fog Nodes (LPFN): Fog nodes in set V have limited numbers of processors, and there will be delays

when multiple jobs process tasks on one fog node. The computation delay is defined as pij = � ⋅ xv + b, which illustrates
that users’ delays have linear relationships with the numbers of fog nodes. Let b denote a constant delay of the fog node,
and � is a unit rising-rate12.

3.2 Users and Workloads
In this subsection, we describe the model of users and workloads. Let U = {ui} denote the delay-sensitive users that are
distributed on the user layer in fog computing. We use ui to denote the itℎ user andwi to denote the weight of ui’s task. The tasks
of users are fractional and continuous which is divided into two types. One is the arbitrarily divided tasks, which means that
the task can be divided into several same service entities, and each service entity is represented by one unit. Another one is the
application-driven tasks, which means that the task of each user contains several subtasks that can not be divided. The access
fog nodes provide service to these two types of tasks with shortest distance. The transmission costs between access fog nodes
and the corresponding connected collaborative fog nodes are ignored, and the users’ total completion time in U cannot exceed
the deadline T . The connection between fog nodes and users can be described by a connection graph in Figure 2. eij denotes the
connection between ui and vj , which means that ui’s workload can be processed on vj . According to the connection between
the user and the fog node, there exists a specified subset of fog nodes Gi that only allows to process ui’s workload, where Gi =
{vk ∈ G|eik ∈ L}. Fog node vj processes the specified workloads for the subset of users Uj , where Uj = {uk ∈ U|eki ∈ L}.
For the convenience of reference, we summarize the main notations throughout this paper in Table I.
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3.3 Problem Formulation
This paper considers the resource provisioning problem for multiple users, and we measure the efficiency of the provisioning
strategy by using the set-up cost for the collaborative fog computing networks. To formulate this problem, we use X to be the
provisioning strategy for U, which indicates the distribution of tasks to be processed on the fog nodes, i.e., X =

⋃

j∈U Xj . Xj
is a subset of Gj which denotes the provisioning strategy of each user, i.e., Xj ⊆ Gj . Recall the Gj which is the set containing
fog nodes that are available for uj . Given a set of users, our goal is to achieve a feasible strategy for users’ set U by minimizing
the total cost and supporting all users’ requests under both deadline and resource constraints. The formulation of the resource
provisioning problem is shown as follow:

minimize ∑

j∈X 1[∑i∈U �ijwi>0]�j (1)
subject to Di ≤ T ,∀i ∈ U (2)

Di = maxj∈Xi
{dij + pij} (3)

0 ≤ �ij ≤ 1,
∑

i∈U,j∈G �ij = 1 (4)
∑

i∈U �ij ⋅wi ≤ cj (5)
Our objective is to minimize the total provisioning cost for the set of usersU in Equation. 1. 1[⋅] is an indicator function, when

∑

i∈U �ijwi > 0 the value of this function will be 1, otherwise it will 0. Equations. 2 to 5 are the constraints. Equation. 2 states
the deadline constraint, which means that the completion time of the last user cannot exceed their deadline T . Equation. 3 states
the constraint on user’s delay.Di denotes the maximum delay of ui which includes the computation delay pij and the offloading
delay dij . Since the delays between users and their access nodes have no relation to the deployment decision12, we set them to
be the same. Equations. 4 and 5 state the constraint on the computing resource, which indicates that the offloading workloads
on the fog nodes cannot exceed their capacities.
Theorem 1. The resource provisioning problem with minimum cost in the collaborative fog computing is NP-hard.
Proof: Here we prove our theorem 1 and reduce the resource provisioning with minimum cost in the collaborative fog com-

puting to the set-covering problem in a polynomial-time26, which is NP-complete. For a set-covering problem, there exist an
instance (X, ) where X is a finite set and  is a family including the subsets of X. In this way, each element of X belongs to
at least a subset of  : X =

⋃

S∈ S. One set covers its elements S ∈  . The objective of a set-covering problem is to find a
subset  ⊆  whose members cover all elements of X with minimum size, i.e., X =

⋃

S∈ S. We map U as set X, a substrate
distributions fog nodes X =

⋃

j∈U{Pj} as  , which are the subsets of U, i.e., Pj ⊆ Gj . The fog nodes are reduced to the subsets
Gj ∈ U, which contain users that they can provide service. According to the reduction, we have a set covering problem that
can be reduced to the resource provisioning problem. The resource provisioning problem in collaborative fog computing with
minimum cost is to find a subset  ⊆ X whose fog nodes provide service for all elements in set U with minimum size, i.e.,
U =

⋃

j∈ Xj . Since the set covering problem is NP-complete, the resource provisioning problem with minimum cost in the
collaborative fog computing is NP-hard. ■

4 RESOURCE PROVISIONINGWITH UNLIMITED-PROCESSOR FOG NODE (UPFN)

In this section, we discuss the problem under the UPFN scenario, and two greedy algorithms are proposed as solutions. Both of
them use a feasibility checking method which is firstly introduced in this section. The difference between these two algorithms
is that they are based on distinct collaborative influences, the global and local collaborative influence, which are defined after
the checking method. In the last part of this section, we show the details of these two algorithms.

4.1 Feasibility Checking
This subsection proposes an algorithm for checking the feasibility by converting the original scenario into the maximum flow
problem in the weighted connectivity graph. Let U denote the set of users. The feasibility checking of this problem is to check
whether there is a provisioning strategy that can satisfy their requirements for users under the constraint of the deadline T . Based
on the information and connection between the fog node and the user, we construct a graph. On the basis of the connectivity
graph, two virtual nodes s and t are added, and the workloads’ sizes are indicated by the links’ weights between s and users.
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FIGURE 2 The conversion of Figure 1 for the arbitrarily divided tasks.

The maximum processing volumes of the fog nodes are indicated by the links’ weights between fog nodes and the destination t.
Based on the connections in Figure. 1, we have the relationship between fog nodes and users. Suppose that the communication
between the fog node and the user has no limitation, and the weight between the fog node and the user is∞. Due to the deadline
of users’ in U is T , the maximum processing volume of the fog node will be rj ⋅ T , which is the weight of the link between fog
node vj and t. The constructed graph is shown in Figure. 2. The specific description is represented in Algorithm 1, the inputs
include G and U. The output is the result of the feasibility for users in U on G, i.e., FC(G,U). We first construct an auxiliary
graph G′ in regard to the connectivities between fog nodes and users in line 1. The feasible provisioning strategy is based on
the maximum-flow that goes through the edges between the destination t and the fog nodes, and we obtain the maximum flow
Φ by using the Edmonds-Karp algorithm26 in line 2. Lines 3 to 7 include the process of the feasibility checking; if the total
users’ demands ∑i∈Uwi can be covered by the maximum flow, the set of users U is feasible with the resource provisioning of
G, otherwise, the demands of U will be rejected.

Algorithm 1 Feasibility Checking (FC)
Require: Users’ set U, topology G;
Ensure: Feasibility on G of U;
Construct G′ in regard to the connections between fog nodes and users;
Obtain Φ based on G′ using Edmonds-Karp algorithm;
if Φ ≥

∑

i∈Uwi then
It is feasible to U on G;

return Provisioning strategy X of U;
else

It is not feasible to U on G;
return False;
end if

4.2 Collaborative Influences
In this subsection, we define two different collaborative influences according to the mechanisms of fog nodes: the global and
local collaborative influence. Based on that, we further propose two greedy algorithms.
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4.2.1 Global Collaborative Influences
We introduce a definition of the global collaborative influence. We use pij to represent the completion time of ui on vj . Thus,
the total completion time of vj is pj = ∑

i∈Uj
pij , and the average completion time in G is R̄ =

∑

vj∈G pj
|G|

, where |G| denotes the
fog nodes’ number in G. For the fog nodes, the global influences are to describe the increments of the average completion time
for all the remaining ones after removing themselves. Here is the specific definition.
Definition 1 (Global collaborative influence). Let  j indicate the global collaborative influence of vj and  j = |

|

|

R̄G∕vj − R̄G
|

|

|

,
where G∕vj is the set of fog nodes after removing vj from G.

4.2.2 Local Collaborative Influences
This subsection further introduces the local collaborative influence. Based on the above definition, we have that the global
collaborative influence calculates the increment on the average completion time of all fog nodes except vj . However, when the
fog nodes connected by users are relatively sparse, the completion time of partial ones may not be affected by removing the fog
node vj , and there may be have an underestimation problem. Therefore, we define the local collaborative influence which ignores
the irrelevant fog nodes when calculating the local collaborative influence. The completion time of the fog nodes increases after
removing vj which is represented by G∗∕vj , where G∗ includes the fog node connected with the same set of users Uj , i.e.,
G∗ =

⋃

i∈Uj
Gi. Specifically, letMG∗ be the completion time of the last finished workloads in G∗, andMG∗ = maxj∈G∗{pj}.

For each fog node, the local collaborative influence is to describe the increment of the maximum completion time for the fog
nodes in G∗. Here is the specific definition.
Definition 2 (Local collaborative influence). Let 'j indicate the local collaborative influence of vj and 'j = |

|

|

M̄G∗∕vj − M̄G∗
|

|

|

,
where G∗∕vj is the set of fog nodes after removing vj from G∗.

4.3 Global Influence Greedy (GIG)
This subsection describes a greedy strategy for the resource provisioning problem, which iteratively removes the fog node by
its global collaboration influence. In Algorithm 2, the inputs are the users’ set U and the topology of fog nodes G. The resource
provisioning strategy X of the set of users U is the output. In line 1, Algorithm 2 first finds a feasible provisioning strategy using
Algorithm 1. Then it calculates the average completion time R̄ of each fog node in set V in line 2. Lines 3 to 6 calculate the
global influences for the fog nodes in V and reorder them with increasing values of  j ⋅ �j , i.e., j = argmin{ j∕�j}. After that,
Algorithm 2 iteratively removes the fog node according to its global collaboration influence until there is no feasible provisioning
strategy that can satisfy the deadlines of users in lines 7 to 11. In line 8, it checks the feasibility of the strategy using Algorithm
1. The iteration terminates once finding a feasible solution or the set of fog nodes is empty. Finally, the resource provisioning
strategy X of the set of users U returns in line 12.
We extend the GIG algorithm into the scenario that the delays between fog nodes and users are different, which means when

we choose one fog node to be removed, we need to consider both the set-up cost �j and the communication delay dij . Therefore,
we make a slight change in lines 3 to 5 of the GIG algorithm. We calculate the global influence for each fog node in V and
reorder them with increasing values, i.e., j = argmin{ j∕{�j ⋅ dij}}.

4.4 Local Influence Greedy (LIG)
The insight of the Local Influence Greedy (LIG) strategy is similar to the GIG, except that the iterative removal of the fog node
according to its local collaboration influence has subtle changes. The specific description is shown in Algorithm 3. Line 1 first
finds a feasible strategy using Algorithm 1, and then line 2 calculates the latest finished completion time ofMG∗ in G∗. After
that, it calculates the local collaboration influences of fog nodes and removes them by an increasing order in lines 3 to 5. Line
6 shows the difference between Algorithm 3 (LIG) and Algorithm 2 (GIG) and rebuilds G by reordering j = argmin{'j∕�j}.
Algorithm 3 does the same feasibility checking as Algorithm 2 in lines 7 to 11. Finally, it returns the resource provisioning
strategy X for the set of users U.
The time complexity of LIG and GIG is O((|V| + |U|) ⋅ |E|2), where |V| and |U| are the numbers of fog nodes and users,

respectively. |V| + |U| + 2 results from the calculation of the total vertices’ number in graph G′. |E| denote links’ number in
graphG′ that fog nodes and users are not fully connected. The time complexity of constructG′ isO(|V|+|U|+|E|). In addition,
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Algorithm 2 Global Influence Greedy (GIG)
Input: Users’ set U, topology G;
Output: Provisioning strategy X of U;
1: Get a feasible provisioning strategy using Algorithm 1;
2: Calculate the average completion time of R̄;
3: for j = 1 to j = n in V do
4: Calculate  j for vj ;
5: end for
6: Reconstruct V by reordering j = argmin{ j∕�j} for the fog nodes;
7: while V ≠ Φ ∧ FC(G,U) ≠ false do
8: Feasibility checking of G using Algorithm 1;
9: Remove vj from set V;
10: Update topology G;
11: end while
12: return Provisioning strategy X of U;

Algorithm 3 Local Influence Greedy (LIG)
Input: Users’ set U, topology G;
Output: Provisioning strategy X of U;
1: Get a feasible provisioning strategy using Algorithm 1;
2: Calculate the latest finished completion time ofMG∗ in G∗;
3: for j = 1 to j = n in G do
4: Update 'j for vj ;
5: end for
6: Construct G by reordering j = argmin{'j∕�j} for the fog nodes;
7: Same as Algorithm 2 in lines 7-11;
8: return Provisioning strategy X of U;

each pair of fog nodes in graph G′ has at most one link, thus |E| = O(|V|2). The time complexity of finding the maximum flow
is O((|V| + |U|) ⋅ |V|4). Consequently, the complexity of LIG and GIG is O(|V|5 ⋅ (|V| + |U|)).
To better understand these two algorithms, we show an example as follows. Figure 3(a) is based on the algorithm GIG. We

assume that there are three users, and the sizes of the workloads are 10, 20, and 10, respectively. There are in total six fog nodes,
and the processing speeds of all nodes are 1, 2, 5, 3, 6, and 4, respectively. Let the deadline of users be T = 10, and we construct
the substructure by adding one source node s and one destination node t. The maximum processing volume of the fog node is the
weight between t and vj in V, which is rj ⋅ T . Thus, the links’ weights are 10, 20, 50, 30, 60, and 40, respectively. We first find
one feasible provision using the Edmonds-Karp algorithm, then we remove each fog node with the basis of its global influence.
For example, assuming that v1 is removed, we re-find the feasible provision using the Edmonds-Karp algorithm and update the
average delay of all remaining fog nodes (v2 to v6). The increment of the average delay is the global influence of v1. We do the
calculation of the global influences for the fog nodes and sort them by increasing order. As shown by the example in Figure 3(a),
we have the removing order v3 → v2 → v4 → v5 → v6. After each iteration, we check the feasibility and choose v6 and v1 as
the provision. As shown in Figure 3(b), we remove each fog node and check its local influence respectively. We take v1 as an
example. If we remove v1, we re-find the feasible provision using the Edmonds-Karp algorithm, and update the maximum delay
of fog nodes which are connected with the same users (v2, v4, and v6) by removing v1, the increment of the maximum delay is
the local influence of v1. We sort fog nodes based on the local influences, then we have v2 → v3 → v4 → v5 → v6. After each
iteration, we check the feasibility and choose v5 and v6 as the provision.
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FIGURE 3 Example of Collaborative Influences.

5 RESOURCE PROVISIONINGWITH LIMITED-PROCESSOR FOG NODE (LPFN)

This section extends the naive scenario into a more realistic and complicated one, which considers the limitation of process-
ing capacities for fog nodes. This scenario is referred to the resource provisioning problem with Limited-Processor Fog Node
(LPFN). In LPFN, the fog nodes have limitation on the processors, thus there will be scheduling delays when processing work-
loads for multiple users. The extension in execution time is considered to be the performance degradation of using the planning
strategy to process the requests12. A general function dv(xv) is used to indicate the performance degradation, where xv is the
number of users processing on the fog node. We suppose that dv(xv) = � ⋅ xv + b, where � is a unit rising rate, and b is the
constant delay of the fog node. Since all fog nodes are at least connected with one user, we consider the worst case in which
one fog node is connected with all users, and the users requests to be served at the same time. The solution follows the greedy
method of the UPFN scenario, and the challenge is provisioning the workloads between fog nodes in each iteration. Under this
scenario, since the time consumption of processing a unit workload is not constant, we cannot use the maximum flow to check
the feasibility like Algorithm 1.
Therefore, we find the optimal resource provisioning strategy and compare the total completion time with the deadline of

users to check the feasibility. We start with a definition as follows.
Definition 3 (Optimal Provisioning Finding (OPF) Problem). Given U,G, and dv(xv), an Optimal Provisioning Finding (OPF)
problem is how to find a provisioning to minimize the delay of users U in G.

5.1 Problem Conversion
On the basis of Definition 3, we convert the OPF problem into a CSNCG problem for each iteration in this subsection.
Definition 4 (Continuous Symmetric Network Congestion Game (CSNCG) Problem). AContinuous Symmetric Network Con-
gestion Game (CSNCG) problem is defined as a tuple (U,G, s, t, ce(⋅)), where U is a set of players, G is a directed graph that
represents the communication network, ce(⋅) is a non-decreasing and non-negative cost function for each edge e ∈ E. s and t
are the common initial vertex and the common target vertex respectively. A strategy Xi for the symmetric network congestion
game is a route from s to t of user i27. The overall cost of one user is:

Cui(s) =
∑

j∈Xi

ce(xe) (6)

According to the definition in reference28, we confirmed the strong isomorphism from OPF to CSNCG. Substantially, these
two problems have the same user set U. Firstly, since the initial and target vertices are the same, these two problems are sym-
metric. Secondly, the congestion occurs on the link of the CSNCG problem. In an OPF problem, the connections between fog
nodes and users construct the graph, and users’ congestion also exists on the links (links between the target and the fog nodes).
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We suppose that the delay between fog nodes and users is fixed by d, and dv(xv) is the delay function. When the amount of users
allocated to the fog node increases, the OPF problem will consider the limited number of processors, and the processing delay
on the fog node will increase accordingly. So, the delay function dv(xv) is non-negative and non-decreasing. Finally, one route
r from s to t represents one strategy in CSNCG, which is the same as the OPF problem. Let X indicate the provisioning strategy
of U. Each resource provisioning plan is a route from s to t. The total completion time of the user is D = 1

n
(d + dv(xv)), which

is also the sum of values on all links equal to the definition in28. The OPF problem can be redefined as (U,G, s, t, dv(xv)).
Furthermore, the OPF problem is converted into the CSNCG problem. The premise for users to share the fog node is that all

users can complete their workloads before the deadline. We build a graph according to the connections and information of fog
nodes and users, and we add s and t to denote the virtual source and destination. Users inU distribute workloads starting from s,
after that, they go through the fog nodes. The resource provisioning process is terminated when the users arrive at t. An example
is shown in Figure. 4, we have a relationship between fog nodes and users based on the connections in Figure. 1. Since there is
no congestion between the virtual source s and the user, the weight of the link is 0. Additionally, in the middle part, since the
delays between fog nodes and users are d, the links’ weights between these two sets of nodes are d. In the right half part, the
links’ weights between the destination t and the internal nodes are the delays processing on fog nodes, which are related to the
size of workloads and users. The converted graph of Figure. 1 is presented in Figure. 4.

5.2 Algorithms
This subsection outlines two resource provisioning strategies for the LPFN problem. The key insight of the solution is removing
fog nodes according to the local and global collaborative influences which are described in Algorithms 4 and 5. The inputs are
U, G, and dv(xv). We take the resource provisioning strategy X for U as the output. Algorithm 4 first constructs G′′ according
to the connections between U and G in line 1, based on that it adds two virtual nodes s and t as the source and destination.
Intuitively, all users in set U need to find a route from s to t with the constraint on deadline T . As we have discussed in the
last subsection, the OPF problem can be converted into a CSNCG problem, Algorithm 4 replaces each link with n parallel ones
with weight dv(1), dv(2), ... , dv(n) between each node in G′′. Algorithm 4 finds a provisioning strategy with minimum delay
using the min-cost flow and calculates the collaborative influence  j for the fog node in each iteration in lines 3 to 6. In line 7,
Algorithm 4 rebuilds the G by an increasing order of the fog node with the global collaborative influence j = argmin{ j∕�j}.
Lines 8 to 11 are starting to remove the fog nodes based on the global collaborative influences, and the process terminates when
either the delay for U exceeds the deadline T or the set G is empty.
Based on the above method, we introduce a Local Influence Greedy LPFN (LIG-LPFN) in Algorithm 5 by removing the fog

nodes according to the local collaborative influences. Similarly to Algorithm 4 in lines 1 to 2, Algorithm 5 constructs a new graph
G′′ and uses the same variables to be the input. However, the difference is that during each iteration, Algorithm 5 calculates
the local collaborative influence 'j for the fog node in line 4. Lines 6 to 7 reconstruct G by reordering j = argmin{'j∕�j} of
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Algorithm 4 Global Influence Greedy under LPFN (GIG-LPFN)
Input: Users’ set U, topology G, delay function dv(xv);
Output: Provisioning strategy X of U;
1: Construct G′′ in regard to the connections between G and U;
2: Replace the link with n parallel ones with weight dv(1), dv(2), ... , dv(n) between each node in G′′;
3: for j = 1 to j = n in V do
4: Get a provisioning with min-cost flow of G∕vj ;
5: Update  j for vj ;
6: end for
7: Reconstruct the set G by reordering j = argmin{ j∕�j};
8: while G ≠ Φ ∧D ≤ T do
9: Remove vj from G;

10: end while
11: return Provisioning strategy X of U;

Algorithm 5 Local Influence Greedy under LPFN (LIG-LPFN)
Input: Users’ set U, topology G, delay function dv(xv);
Output: Provisioning strategy X of U;
1: Same as Algorithm 4 in lines 1 to 2;
2: for j = 1 to j = n in V do
3: Get a provisioning with min-cost flow of G∕vj ;
4: Update 'j for vj ;
5: end for
6: Reconstruct G by reordering j = argmin{'j∕�j};
7: Same as Algorithm 4 in lines 8 to 11;

fog nodes and remove them according to their local collaborative influences. The process of removing fog nodes is the same as
Algorithm 4 (GIG-LPFN).

5.3 Properties
The provisioning strategy is bounded by 8

3
OPT + �2

8m�
which is proved in Theorem 5. Before we prove that, we first introduce

two prerequisites in Theorems 2 and 3.
Theorem 2. Every OPF problem has at least one pure Nash Equilibrium (NE) in LPFN.
Proof: The work in29,30 has the proof that every potential game at least has one pure NE, which is represented as S that

minimizes Φ(S). They demonstrated that any congestion game is a potential game31, and we make a conversion from the OPF
problem to a CSNCG problem in subsection 5.1. The theorem holds. ■
Since CSNCG is a continuous problem that cannot be solved in polynomial time, we discretize and transfer it to the discrete

congestion game problem. Before the discretizatiowe have the following theoremn, we first proved that the delay function satisfies
the Lipschitz assumption. As a result, we have the following theorem
Theorem 3. The delay function dv(xv) satisfies the Lipschitz assumption.
Proof: The delay function dv(xv) = � ⋅ xv + b is linear, it has a constant �, so that for the edge e and all 0 ≤ x < y ≤ 1,

|

|

de(y) − de(x)|| ≤ � |y − x|. Therefore, we can prove that the delay function dv(xv) satisfies the Lipschitz assumption. ■

Theorem 4. The bound of GIG-LPFN and LIG-LPFN is 8
3
OPT + �2

8m�
.
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Proof: We suppose that � = �
4m�

is a minimum unit, where � is the upper bound on the Lipschitz constant of the delay function
dv(xv), and m is the number of fog nodes in use. � is the �-approximate Nash equilibrium 1. We use �(f ) to denote the potential
function for the CSNCG problem, where �(f ) = ∑

e �(f )(xv), �e(xv) = ∫ xv
0 (� ⋅ xv + b)dt. Then we have �e(xv) = 1

2
�x2v + bxv,

and the delay function Ĉ(xv) = xv ⋅ dv(xv) = ax2v + bxv. We discuss the relationship between �e(xv) and Ĉ(xv)(continuous
potential function) with �e(xv)

Ĉ(xv)
=

1
2
axv+b

axv+b
. Accordingly, there are existing two extreme cases: none of the users offload their

requests to this fog node, or all users’ requests offload to this fog node. Therefore 1
2
≤ �e(xv)

Ĉ(xv)
≤ 1. We have

�e(xv) ≤ Ĉ(xv) (7)
We use C(f ) to denote the function of total delay for the discrete condition, where C(f ) = ∑

e Ce(xv). In28, the authors prove
that C(f ) approximates the continuous potential function �(f ) in the additive error of �2

16m�
. So, we get |�(f ) − P (f )| ≤ �2

16m�
,

P (f ) − �(f ) ≤ �2

16m�
. Based on that, we have P (f ) ≤ �(f ) + �2

16m�
. Combining with Equation. 8, we have

P (f ) ≤ Ĉ(xv) +
�2

16m�
(8)

Consequently, we analyze the relationship between the delay function and the discrete potential function. We discretize the
problem by dividing it into � units, the delay function for one user is d(xv) = ∫

m+ 1
2

m− 1
2

f (t)dt = ∫
m+ 1

2

m− 1
2

(�t+b)dt = am+b. Thus, the
delay function on the fog node is c(xv) = md(xv) = am2+bm. The potential function in the discrete case is p(xv) = ∑m

1 d(xv) =

a(1 + 2 + ... + m) + bm = m(m+1)
2

a + bm. p(xv)
c(xv)

=
m(m+1)
2

a+bm

am2+bm
=

1
2
m+ a

2
+b

am+b
, where 1

2
≤ p(xv)

c(xv)
≤ 1. Since the total delay function

and the potential function are the sum of c(xv) and p(xv) of all fog nodes, the relationship between P (xv) and C(xv) is also
1
2
≤ P (xv)

C(xv)
≤ 1. Then we have P (xv) ≥ 1

2
C(xv). Equation. 8 will be transformed into

1
2
C(xv) ≤ Ĉ(xv) +

�2

16m�
(9)

For each linear delay function, it has proved that there is an 4
3
-approximation ratio in the Nash equilibrium of any CSNCG

problem32, we can obtain that Ĉ(xv) ≤ 4
3
OPT . Then we have

C(xv) ≤
8
3
OPT + �2

8m�
(10)
■

The time complexity of LIG-LPFN and GIG-LPFN is O(|V| ⋅ (|E|)3). O(|V| + |U| + |E|) results from the construction of
graph G′′. Since the number of edges |E| in G′′ is much larger than the numbers of vertexes |V| and |U|, we simplify that
O(|V| + |U| + |E|) = O(|E|). We adopt a provisioning strategy by traversing each fog node with minimum delay, and the min-
cost flow algorithm complexity is O((|V|+ |E|)2 ⋅ |E|) = O(|E|3). Consequently, the complexity of LIG-LPFN and GIG-LPFN
is O(|V| ⋅ (|E|)3).

6 RESOURCE PROVISIONINGWITH APPLICATION-DRIVEN TASKS

In this section, we consider another scenario where users’ workloads are application-driven. It means that eachworkload contains
multiple sub-tasks and cannot be divided arbitrarily. For each user, multiple subtasks of one workload can be assigned to different
fog nodes, and each subtask can only be executed on one node at the same time. In Figure 5 (a), we assume that the workload
of each user contains several subtasks, u1 contains three subtasks a11, a12, and a13, while u2, u3 and u4 contain two subtasks
respectively. According to the motivation example in Figure 1, we have the connections between fog nodes and users. From
this we can artificially generate the connectivity graph as shown in Figure 5 (b). For the UPFN case, the resource provisioning
problem can be transferred into an assignment problem which can be solved by using the Hungarian method. For the LPFN
case, the problem will be more complicated. In order to solve this problem, we propose a new heuristic algorithm.
In this subsection, we introduce a new heuristic algorithm. We take the users’ set U, the fog nodes’ topologyG, and the delay

function dv(xv) as the inputs. The provisioning strategy X for U is the output. First, we initialize the chosen set of fog nodes I
as an empty set, and the value of delay for the set of users U is set to be infinite in line 1. Then we start to find the minimum

1�-approximate Nash equilibrium means that for every user i, every flow path carrying at least � units of flow, and the cost on every path is larger than ce(xv) + � 28.
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FIGURE 5 The structure of Figure 1 for the application-driven tasks.

Algorithm 6 LPFN for Application-driven Tasks (LPFN-AT)
Input: Users’ set U, topology G, delay function dv(xv);
Output: Provisioning strategy X of U;
1: Initialize chosen set of fog nodes I ← Φ, D = ∞;
2: U′ ← U;
3: while U′ ≠ Φ do
4: Select a set Pj ∈  that maximizes |Pj ⋂U′|;
5: U′ ← U′ − Pj ;
6: X ← X

⋃

{Pj};
7: end while
8: I ←  − X;
9: while D > T do

10: Construct G′′ in regard to the connections of X and U;
11: Same as Algorithm 4 (GIG-LPFN) in lines 2 to 6;
12: while I ≠ Φ ∧ U ≠ Φ do
13: Select a set Pj ∈ I with minimum &;
14: X ← Pj ;
15: Re-provisioning users in set Pj with fog node vj ;
16: end while
17: end while
18: return Provisioning strategy X of U;

set of fog nodes that can serve all users, which is shown in lines 2 to 6. In line 2, we construct a temporary set U′ with the same
elements of U. Let Pj denote the set of users that fog node vj can serve, and  =

⋃

j∈V{Pj}. In lines 3 to 7, we start to find the
set that covers all users with minimum cost, where U =

⋃

Pj∈
{Pj}. In line 4, we select a set Pj ∈  that maximizes |Pj ⋂U′|.

Then we remove the corresponding from the temporary set U′, and add the chosen set Pj into X. This process stops when the
temporary user set U′ is empty. In line 8, we put the fog nodes that have not been assigned in set  into set I. In lines 9 to 16, we
do the feasibility checking for the current provisioning strategy X, and we start to re-provision by adding new fog nodes. This
process will stop when the delay beyond the deadline T . Line 10 constructsG′′ according to the connections of the new set of fog
nodes X and the set of users U. Based on that, we do the same operations as lines 2 to 6 of GIG-LPFN that to find a provisioning
strategy with minimum delay using the min-cost-flow. In lines 13 to 15, we select a set Pj ∈ I with minimum factor &, where
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FIGURE 6 Performance comparison under the UPFN scenario.

& = |Pj |
rj
. |Pj| is the number of users that are covered by fog node vj , and rj is the maximum processing rate of fog node vj . In

line 14, we update the provisioning strategyX by adding set Pj . Then we re-provision users in set Pj with fog node vj . Either the
set I or the user set U is empty, the adding process will be terminated. Finally, the provisioning strategy X for U is returned in
line 18. The time complexity of LPFN-AT is O(|U | ⋅ ||), where |U | is the number of users and  is the number of fog nodes.

7 EVALUATIONS

In this section, we will conduct experiments on both synthetic and real datasets to study the cost-efficiency of resource
provisioning in delay-sensitive collaborative fog computing networks.

7.1 Basic Setting of the Synthetic Dataset
In this subsection, we develop a prototype of our algorithms usingMATLAB,which consists of the construction of fog computing
network and the users’ requests.We construct the fog computing network by generating a graphmodel function construct_grapℎ
and evaluate the performance of our algorithms by building a synthetic dataset. In the synthetic scenario, the number of fog nodes
ranges from 0 to 100, and we record the users’ average cost by dividing them into 10 groups. We use unit weight to measure
users’ workloads, and each unit is denoted by 1GB workload33. The workloads’ sizes generated randomly from 0 to 50, which
follows the uniform random distribution. The deadline of each set of users is generated randomly from 0 to 10milliseconds. We
suppose that the processing capability of the fog nodes are different, and they are connected as an undirected graph. Assuming
that the processing capability of the fog node is denoted by the number of unit weight processed per millisecond, which follows
the uniform random distribution between 1 and 10. For each fog nodes, the set-up costs are generated randomly from 0.01 to
0.1 million dollars according to different capacities. In our experiments, we design three benchmark algorithms referring to the
partial idea of references17,11. Since the constrains and the main idea of solving the problem have many differences. Such as
the main idea of our solution is to iteratively pre remove the fog nodes, however, in references17,11, they consider the resource
allocation in fog computing which is an adding or allocating process. We do not direct reproduction the algorithms in these
references and only use some ideas by designing our benchmark algorithms. Thus, three benchmark algorithms (Random, SCG,
and PRG) are used for comparisons as follows: (i) Random removes the fog node by a random order iteratively. (ii) Set-up Cost
Greedy Algorithm (SCG) removes the fog node by an increasing order with the set-up cost iteratively. (iii) Processing Rate
Greedy Algorithm (PRG) removes the fog node by an increasing order of the maximum processing rate iteratively.
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FIGURE 7 Performance comparison under the LPFN scenario.

7.2 Simulation Results for UPFN
This subsection discusses the average cost ratio of multiple users under the UPFN scenario which presents in Figure. 6. Three
benchmark approaches (Random, SCG, PRG) are used to compare with our algorithms. We choose 5 groups of users, ranging
from 10 to 50. In order to facilitate the analysis of the results, we calculate the cost ratio which is the quotient value of the actual
cost and the cost of all fog nodes. According to the results, we obtain the following observations: (i). The impact of algorithms
on the total costs is related to the number of fog nodes. We first analyze the relationship between costs and fog nodes by choosing
the median group (30 users). Figure. 6 (a) shows the evaluation result that the total costs of users are fluctuating with a different
number of fog nodes. Compared with the other three benchmark algorithms, the decreasing speeds of GIG and LIG are faster.
What’s more, the connections of fog nodes change according to scale, and the total cost fluctuates. It indicates that the total cost
is related to the connections and locations of the fog nodes. For a small scale of fog nodes, the performance gap among these five
algorithms is not obvious. However, when the scale of fog nodes is increasing, the evaluation results of PRG and SCG fluctuate
between GIG and Random. Since GIG considers overall fog nodes, the cost of fog nodes becomes lower than that of LIG when
the scale of the fog nodes increases. (ii). The performance gap on the total costs of algorithms is also related to the distribution
of users’ workloads. We evaluate the impact of the distributions of users’ workloads, in terms of the relationship between the
average costs and different groups of users by ranging from 10 to 50. Figure. 6(b) shows the evaluation result that the average
costs are fluctuating with different groups of users. When the distributions of users’ workloads are the same, a larger number
of users in one group will result in a higher average cost. We can see the evaluation result on the average cost shows that 10
users is much lower than that of 50. The performance gap is not obvious for the small-scale fog nodes as the weights distribute
randomly. However, for the large-scale fog nodes, algorithms GIG and LIG are more efficient. The evaluation results of GIG
and LIG are similar, and the slight performance differences are caused by the topology of fog nodes. Moreover, compared with
the three benchmark algorithms, the average costs of LIG and GIG are lower which reach 11.1% and 14.8%, respectively.

7.3 Simulation Results for LPFN
This subsection discusses the average cost ratios of multiple users under the LPFN case which presents in Figure 7. The settings
are the same as the UPFN scenario. Figure 7(b) shows the pre-configuration on the values of � ranging from [1, 5] and calculates
the average total cost. We do the same operation as in the previous subsection and first select the group with 30 users to analyze
the trend. Then, we use three delay functions different � values, where � = 1, � = 3 and � = 5. Based on that, we calculate
the average cost ratios range from 10 to 50 ([10, 50]) for five groups of users. In addition, we obtain the following observations
according to the results: (i). When the sizes of workloads are scaling up, the resource provisioning strategy has a greater impact
on the performance of the cost-efficiency. What’s more, the users’ costs using fog nodes are related to the connectivities and
localities of the topology. Figure. 7(a) shows the comparison of evaluation results with 10 groups of fog nodes. The average cost
increases along with the scaling of users’ number, which means that more workloads require more resources. (ii). For the users
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FIGURE 8 Performance comparison under the LPFN-AT scenario.

processing on fog nodes in the same set, the total costs in the scenario of LPFN are larger than those in the scenario of UPFN.
In the scenario of LPFN, the processing capacities limitation of fog nodes is considered, which indicates that the workload
processing on each fog node of users will be increased. Compared the evaluation results between Figure. 6(b) and Figure. 7(b),
LPFN has larger average costs than UPFN of these five algorithms with the same group of users. (iii). As the total workload
of users for the fog nodes increases, the algorithm has a greater impact on the average cost. In addition, we can observe that
when the numbers of users are 30 and 40, the average performances of algorithms LIG-LPFN and GIG-LPFN are almost the
same. Moreover, the average costs of LIG-LPFN and GIG-LPFN are lower than comparison algorithms, which achieve 15.2%
and 20.3%, respectively.

7.4 Simulation Results for LPFN-AT
This subsection discusses the average cost ratios of multiple users for the resource provisioning problem with the application-
driven tasks under the LPFN case. We use the same basic setting except for adjustments to the comparison algorithms. In this
experiment, four benchmark approaches (Random-AT, SCG-AT, PRG-AT, andDG-AT) are used to comparewith our algorithms:
(i) Random-AT iteratively adds fog nodes by a random order. (ii) Set-up Cost Greedy Algorithm iteratively adds fog nodes
by an increasing order of the set-up costs. (iii) Processing Rate Greedy Algorithm (PRG-AT) adds fog nodes iteratively by an
increasing order of the maximum processing rate. (iv) Distance Greedy Algorithm (DG-AT) iteratively adds fog nodes with the
shortest distance34.
We first select 10 to 50 users to calculate their average cost ratios, and then we choose the median group 30 of the users’

set to analyze the trend. According to the results, we obtain the following observations: (i). For the same set of users, since the
expansion of their selection range, the scaling of fog nodes will reduce the cost, as shown in Figure 8(a). When operator provides
less fog nodes, the gap between different algorithms is not obvious, and the total costs of SCG-AT and PRG-AT algorithms are
close. However, the total cost of DG-AT is always higher than the other two benchmark algorithms, which means fog nodes
that are close to the users may have problems such as limited processing capacities and large costs. LPFN-AT has lower average
costs which can reach 18.6% under the 30 users case than the comparison algorithms.
Compared with the other four benchmark algorithms, (ii). When the number of users in one group increases, the average cost

has the same trend. Figure. 8(b) shows the comparison of evaluation results with 5 groups of users. When the number of users
is small, the gap between the cost of PRG-AT and that of LPFN-AT is not large. However, when the number of users increases,
the total cost of LPFN-AT decreases significantly. In addition, the total costs of PRG-AT and DG-AT are higher than LPFN-
AT. It means that although the cost of serving users related to the localities and properties of the fog nodes topology, a single
consideration of one constraint cannot get a lower cost. In summary, LPFN-AT has a lower average cost than the comparison
algorithms which can reach 14.3%.
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FIGURE 9 Subway locations with users distribution in NYC.

7.5 Real Dataset
7.5.1 Dataset Setting
The real dataset we used is published by the New York City (NYC) open data website. In order to do the same setting as the
general scenario, we combine three different and related datasets, which are the NYC entrances of the subway stations, transit
subway entrance data, and the Wi-Fi hotspot locations35,36,37. We choose a dataset with a four-month-long trip from December
23, 2017 to April 23, 2018, which includes the information on station entrances of subway from 3 ∶ 00am to 23 ∶ 00pm of
users. These records are constructed by several attributes which include the station entrances’ names, time, date, and the amount
of passengers. We take the daily data as a unit and calculate the average values over four months for users. We first point out
the locations of Wi-Fi hotspots in NYC (as shown by the red points in Figure 9(a)), then we mark out the entrances of the
subway stations covered by these Wi-Fi hotspots (as shown by the blue points in Figure 9(a)). For the locations of the envisioned
fog nodes, we use the locations of Wi-Fi hotspots to represent fog nodes that serve a decent coverage for users in the subway
stations. We assume that each user only uploads one unit of workload, so the number of users that passes through one entrance
can represent the total workload uploaded to that subway station (as shown by the yellows areas in Figure 9(b)).

7.5.2 Simulation Results under the Real Dataset
This subsection focuses on performance comparison under the LPFN-AT scenario according to the real dataset. There are 171
fog nodes in the real dataset, which constructed by 141 collaborative fog nodes and 30 access nodes. The beginning time and
ending time are 3 ∶ 00 a.m. and 23 ∶ 00 p.m. respectively, we set 23 ∶ 00 p.m. to be users’ deadline. We set the delay functions
by � = 1, � = 3, and � = 5. Figure 10 shows the results with 10 group of fog nodes, and we obtain the following observations.
According to the experiment results shown in Figure 10(a), we find that with the decreasing number of fog nodes, the makespan
of users increasing. The performances in the four benchmark algorithms are compared, LIG-LPFN and GIG-LPFN decrease
the fastest. After that, we evaluate users’ average cost under � = 1, � = 3, and � = 5, and the result is shown in Figure 10(b).
The result shows that users’ average cost becomes larger under a delay function with a higher � value. What’s more, with the
increasing scale of the fog node, LIG-LPFN andGIG-LPFNhave a better performance than the other four benchmark approaches.
According to the comparison results, algorithms of Random, SCG, and PRG have the higher costs on the synthetic dataset than
LIG-LPFN and GIG-LPFN, which can average achieve 10.8% and 14.9%, respectively. In addition, they can obtain lower costs
on the real dataset than the comparison algorithms, which can in average achieve 12.8% and 11.4%, respectively.
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FIGURE 10 Average cost with the real dataset.

8 CONCLUSION

This paper has concentrated on the resource provisioning problem in collaborative fog computing with capacity constraints in
order to minimize the total cost. First, we prove the NP-hardness of the resource provisioning problem with minimum cost
for multiple users. Based on that, we discuss two different scenarios. One is UPFN that two greedy strategies are proposed
which iteratively remove fog nodes based on the global and local collaborative influences. The other one is LPFN, in which the
fog nodes have delays in processing workloads of multiple users. We consider two different types of tasks. For the arbitrarily
divided tasks, we propose a near-optimal strategy with bound 8

3
OPT + �2

8m�
which mainly based on the continuous congestion

game, where � is the upper bound on the Lipschitz constant of the delay function and m is the number of fog nodes. For the
application-driven tasks, we propose a heuristic algorithm. Extensive simulations validate that our algorithms can reduce the
resultant average costs 12.9% and 17.8% in UPFN and LPFN, respectively. Moreover, the evaluation results on the real dataset
validate that the algorithms we propose can reduce users’ latency and save the average cost.
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