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Abstract—Tag inventory is one of the most fundamental tasks for RFID systems. However, the Framed Slotted Aloha (FSA) protocol
specified in C1G2 standard is of low time-efficiency, because it needs to collect all tags in the system. To improve time-efficiency,
research communities proposed a batch of sampling-based approaches, in which the reader only needs to collect a small set of sampled
tags instead of all. Although time-efficiency has been improved, existing sampling-based approaches still have two common limitations.
First, all tags in the system are assumed to have the same sampling probability. It is unfair that tags attached to differential items (e.g.,
different values) have the same chance to be sampled and collected. Second, all existing sampling-based approaches stay in theory
level and cannot be deployed on Commercial Off-The-Shelf (COTS) RFID devices, because the C1G2 standard does not support the
sampling function at all. To deal with the above two limitations, this paper studies the new problem of differential tag sampling—letting
each RFID tag be identified with a given sampling probability. In this paper, we use the COTS RFID devices including Impinj Speedway
R420 reader and Monza 4QT tags to implement the Differential Tag Sampling (DTS) operation. Then, we apply probabilistic analytics
on the collected tag data to address some practically important problems such as Multi-category Tag Cardinality Estimation (MTCE),
and Value-based Missing Tag Detection (VMTD). Although the analytics results are not 100% accurate, the deviation in the results can
be controlled below a small threshold and DTS can significantly improve the time-efficiency. DTS can be easily deployed on the COTS
RFID systems, because it is totally compliant with the C1G2 standard. Extensive experiments demonstrate that DTS is able to let each
tag take the given sampling probability to be sampled and identified. Moreover, the proposed DTS protocol can significantly reduce the
execution time of MTCE and VMTD by nearly 70% than the FSA protocol.

Index Terms—RFID, Tag sampling, C1G2, Tag identification, Tag cardinality estimation
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1 INTRODUCTION

Radio Frequency Identification (RFID) technique has re-
formed smart industry by acting as the eyes and ears of IoT.
Millions of tags have been deployed in a wide spectrum
of notable applications, e.g., intelligent supply chain, un-
manned supermarket, and airport [1]–[6]. For, example, in
the area of intelligent supply chain, tags have been attached
to various items including food [7], [8], clothes, cash and
medicament [9]. RFID readers are able to automatically read
the information embedded in these tags, and then forward
the gathered information to server. Thus, these tagged items
can be tracked in time by retailers and product suppliers.
With real-time inventory data of the items, retailers can
quickly adjust marketing strategy, and suppliers can effi-
ciently arrange product planning [10].
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EPC Class-1 Generation-2 (C1G2) standard specifies that
RFID devices use the Framed Slotted Aloha (FSA) protocol
as the MAC layer communication mechanism. Specifically,
the reader initializes a time frame that contains multiple
time slots. Each tag in the reader’s communication vicinity
randomly selects a slot from the slotted time frame to reply
its ID to the reader. Generally, there are three types of slots:
empty slot in which no tag replies; singleton slot in which
only one tag replies its ID; collision slot in which two or
more tags simultaneously reply their IDs. The reader can
only successfully identify tag IDs in singleton slots. The
tags reply in singleton slots will keep silent; and the tags
reply in collision slots will continue to participate in the next
round of time frame. Such processes repeat until all tags
are successfully identified. However, FSA suffers from low
time-efficiency. It has been proved that the ratio of singleton
slots in a time frame achieves is upper bound of 36.7% when
the number of time slots is equal to the number of tags [11].
Since execution time of FSA is proportion to the number of
tags, it cannot satisfy time-stringent application scenarios.

For time-efficiency, research communities proposed a
batch of sampling-based approaches to address some prac-
tical problems in a probabilistic manner, e.g., missing tag
detection [12]–[15], and tag cardinality estimation [16]–[18].
In these approaches, the authors assumed that RFID tags
are capable of computing a sampling function, and will
participate in the process of detection or estimation with
a given sampling probability. The reader only needs to
collect data from a small set of sampled tags (instead of all
tags), and perform probabilistic analytics on the collected
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data to discover the theft event or estimate the number of
tags with a required confidence. Although these probabilis-
tic approaches cannot obtain 100% accurate results, they
significantly reduce the time cost than the FSA protocol.
Moreover, the deviation in the results is usually limited
within a predefined threshold.

However, the existing sampling-based approaches have
two common major limitations. First, all tags in the system
have the same sampling probability, which leads to unfair-
ness among differential tags. For example, in practical RFID
systems, tagged items are normally differential according
to various metrics such as different item values, item cat-
egories, or expiry date. Generally, each tag should have a
given sampling probability to be identified in the inventory
process, and the sampling probability depends on what item
this tag is attached to, e.g., the tags attached on expensive
items should be identified with large sampling probabil-
ities, because they usually cause more serious economic
loss if they are stolen. Second, all existing sampling-based
approaches only stay in theory level. They are not able to be
deployed on Commercial Off-The-Shelf (COTS) tags.

To overcome these two limitations, this paper studies the
problem of differential tag sampling, which is a totally new
problem and was never touched previously. Specifically,
we study how to let each RFID tag be identified with a
given sampling probability in the inventory process. This
paper designs and implements Differential Tag Sampling
(DTS) operation for C1G2-compliant RFID systems [19]. Our
design strictly follows the specification in C1G2 standard
[20], so it can work in any C1G2-compliant RFID systems.
The proposed DTS protocol consists of two sub-operations:
assignment and sampling. Specifically, the assignment opera-
tion is to assign a specific sampling probability into a target
tag. It is implemented through writing a binary string into
the tag’s nonvolatile memory with C1G2-compatible com-
mands. The proportion of ‘1’s in the binary string should be
equivalent to the given sampling probability. On the other
hand, the sampling operation is to sample tags with the
selective reading. The selective reading checks a random bit
of the binary string and selects the tags whose correspond-
ing bit equals to ‘1’. Thus, the tags can be sampled with
the probability defined by the binary string, because the
sampling probability is also equivalent to the proportion of
‘1’s in the binary string stored in the tag.

The main contributions are summarized as follows.
• This paper takes the first step to study the new problem

of differential tag inventory, and designs the Differential
Tag Sampling (DTS) operation based on selective reading
for C1G2-compliant RFID systems. We turn the unrealistic
assumption in previous work, i.e., RFID tags are able to
perform sampling operation, into reality.
• We use Impinj R420 reader and Monza 4QT tags to

implement a prototype to evaluate the performance and
effectiveness of our DTS. With DTS, only a small set of tags,
which we desire to collect with different probabilities, will
be sampled to participate in the tag inventory process.
• Extensive experimental results reveal that DTS is able

to let RFID tags take the given sampling probabilities to
be identified in the inventory process. Moreover, benefiting
from our DTS protocol, the representative RFID inventory
protocols, e.g., multi-category tag cardinality estimation and

value-based missing tag detection, can reduce the execution
time by nearly 70% the classical FSA protocol.

The remainder of paper is organized as follows. Section 3
presents the motivation and problem formulation of this pa-
per. Section 4 presents the detailed design of DTS. Section 5
describes two practical applications of DTS. Section 6 gives
a brief introduction to our prototype. Section 7 evaluates the
performance of DTS and related applications through exten-
sive experiments. We review the related work in Section 2
and conclude this paper in Section 8.

2 RELATED WORK

In this section, we classify the related protocols into two
types: tag identification protocols and tag grouping proto-
cols, which will be discussed in detail below.

Identification Protocols: Existing tag identification pro-
tocols are based on either Frame Slotted Aloha (FSA) mech-
anism [21]–[23] or Binary Splitting (BS) mechanism [24]. In
FSA-based protocols, a time frame is divided into multiple
time slots. Each tag randomly selects a slot to send its data.
A key problem in the FSA-based protocols is to optimize
the frame size to maximize the frame utilization. Many
protocols with various optimization strategies have been
proposed. Q protocol that is adopted by the C1G2 standard
[20] is the most popular one. On the other hand, in BS-
based protocols e.g., Tree Working (TW) [25], the reader first
queries a prefix ‘0’ and then listens to the tag responses. If
more than one tags are sensed, the reader recursively split
the tag population into two smaller groups by broadcasting
a longer prefix. Until each group has one or none tag, the
reader can successfully parse the tag response. However,
this process causes too many tag collisions. To overcome
this problem, the Smart Trend Traversal (STT) [26] protocol
uses some ad-hoc heuristics to adjust the prefixes based on
the historical tag responses. The Tree Hopping (TH) [24]
protocol optimizes the number of queries based on solid
theoretical analysis. Moreover, by combining the advantages
of both Binary Splitting (BS) and Framed Slotted Aloha
(FSA) approaches, BSTSA protocol [27] further improves the
identification efficiency. BSTSA applies the BS protocol to
split tags into different groups and identify each group of
tags with FSA protocol. Since we can estimate the number
of tags at the end of each group identification, the frame
size can be optimized to improve the efficiency of FSA
protocol. However, FSA has a limited throughput even with
the optimized frame size. Buzz [28], a concurrent identifica-
tion scheme, treats the corrupted information received in a
collision slot as a sparse code across the bits transmitted
by the tags, and decodes the transmitted data using the
compressive sensing algorithm. The efficiency is improved
because the tags can concurrently transmit their data in col-
lisions slots. However, Buzz assumes the slot chosen by each
tag is known by the reader, thus it can only be implemented
using the programmable RFID devices (e.g., WISP tags and
USRP readers). For better deployability, our scheme uses
C1G2-complaint FSA as the MAC layer protocol, because
FSA is the anti-collision protocol supported by the EPC
C1G2 standard.

Grouping Protocols: The problem of tag grouping is to
classify tags into groups, and then operate group operations



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2917444, IEEE
Transactions on Mobile Computing

3

for saving time. The previous work tries to minimize the
execution time to assign each tag a specific group ID.
The straightforward solution is to write the group IDs to
tags one by one using a simple polling approach [29].
However, polling operation incurs a long execution time.
The ConCurrent Grouping (CCG) protocol [30] improves
the time-efficiency by using a bit vector to tell tags when
and where they will be assigned with correct group IDs.
Compared with polling IDs, transmission of lightweight bit
vector significantly reduces the communication overhead.
However, it requires RFID tags to interpret a bit vector,
which is not supported by the C1G2 standard.

EPC Filter-based Sampling: EPC is a 96-bit global
unique ID assigned by the manufacturers, which acts as the
barcode to store some business data related to the tagged
item. Before the tag identification phase, a EPC filter can be
added to allow the reader only to read the tags with the
given pattern of EPC. This filter is generally used in the
Query tree protocols to resolve tag collisions. In theory, the
tag sampling operation can also be implemented using the
EPC filter. The controller needs to determine the sampled
tags off-line and find a proper pattern shared by all the
EPCs of sampled tags. Compared with EPC filter-based tag
sampling, our DTS scheme has two significant advantages.
First, making use of USER memory, DTS provides flexibility
to assign each tag a specific sampling probability. While it is
hard to sample tags with EPC filter due to the difficulty in
finding a proper EPC pattern that exactly matches with all
the sampled tags. Second, our DTS has lower computational
complexity. It only needs to pick a random number to match
the sampled tags, which incurs O(1) computational com-
plexity. While the EPC filter approach takes O(n ∗m) com-
putational complexity to find the common pattern shared
by all the sampled tags, where n denotes the number of tags
in the systems and m denotes the length of an EPC ID.

3 MOTIVATION AND PROBLEM FORMULATION

We first review the Frame Slotted Aloha (FSA) protocol used
for RFID communication, and then explain why existing
sampling-based protocols are attractive but not applicable
for COTS RFID systems. Finally, we will formally give the
problem formulation of this paper.

3.1 Motivation

3.1.1 Framed Slotted Aloha
An RFID system typically consists of readers and tags that
can communicate with each other by radio waves. A reader
needs to receive data from multiple tags, while the tags
are unable to coordinate their radio transmission to avoid
collisions. According to the C1G2 standard [20], an RFID
reader should implement the Framed Slotted Aloha (FSA)
protocol to resolve the tag collisions for multi-tag access.
In FSA, the reader initiates a time frame that contains f
slots. Each tag within the reader’s communication range
will randomly selects a time slot to respond to the reader
with its tag ID. We can classify slots into three categories:
the empty slot, where no tag reply; the singleton slot, where
only one tag replies; the collision slot, where multiple tags
reply. Multiple tags may choose the same slots, which leads

to signal corruption, and thus the reader cannot receive any
ID of the collided tags. Only the tags in singleton slots can
be collected by the reader. However, it has been proved that
the fraction of singleton slots in time frame is always below
36.7%. The low frame utilization results in a long inventory
time when the number of tags is large. For example, it
takes several minutes to collect data from thousands of tags,
which is hard to meet the restrict operation time delay in
the large-scale RFID systems.

3.1.2 Sampling-based RFID Protocols
Time-efficiency is a key metric for RFID applications. Both
retailers and product suppliers prefer real-time and accu-
rate inventory to adjust marketing strategies and arrange
product replenishment. Unfortunately, achieving real-time
inventory is an arduous job in large-scale systems because
of the contradiction between low RFID communication rate
and the large tag population. To keep cheap, RFID tags
can only have weak hardware. Thus, it is not easy to
fundamentally improve the communication rate. Therefore,
the research communities turn to design a wide spectrum of
sampling-based protocols [12], [31], [32], in which the reader
only needs to collect data from a small set of sampled tags.
Then, they apply statistical principle to fast derive some
valuable information. For example, in an RFID warehouse
that contains multiple categories of items, there are two
typical applications that are badly in need of tag sampling,
i.e., multi-category tag estimation and value-based miss-
ing tag detection. First, multi-category tag estimation is to
estimate the tag cardinality in each category, which helps
the retailer to make the sales and market strategy. Second,
value-based missing tag detection is to report the theft
warning message to the retailer if the value of missing items
in any category exceeds a pre-defined threshold. Although
the above two protocols are practically important in RFID-
enabled warehouse, none of them is implemented on COTS
RFID systems due to the lack of tag sampling operation.

3.2 Problem Formulation

In this paper, we study the problem of Differential Tag Sam-
pling (DTS) for C1G2-compliant RFID systems. We follow
three goals when designing the DTS protocol: (i) DTS should
permit users to conveniently set and revise the sampling
probability of each tag. This flexible design allows DTS
to fit a wide spectrum of sampling-based applications. (ii)
DTS should be compliant with the C1G2 standard [20].
Therefore, DTS can only issue C1G2 commands. This re-
quirement makes DTS be easily deployed on COST RFID
devices without any need of hardware modifications. (iii)
DTS should be time-efficient, and only incurs quite limited
communication and computation complexity; otherwise, the
time-efficiency improvement brought by collecting less tags
may be overwhelmed by overhead.

4 IMPLEMENTATION OF DTS
In this section, we will present the technique details of
our DTS design. DTS applies the C1G2-compliant selective
reading to implement a sampling functionality [20], thus can
be directly deployed on COTS RFID readers and tags.



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2917444, IEEE
Transactions on Mobile Computing

4

TABLE 1: Fields of write command

Fields # of bits description
MemBank 2 the target MemBank to write data
WorldPtr 8 address pointer

Data 16 data message
RN 16 used for memory access

CRC 16 used for error checking

4.1 Background of C1G2 Specification
First of all, we introduce three basic C1G2 functions [20] that
are employed by us when designing DTS.

4.1.1 Tag Memory
C1G2 specifies a simple tag memory model in the section of
logical interface (see pages 44-51 in [20]). Each tag contains
four non-volatile memory banks: (1) Reserved memory is
reserved for password associated with the tag, which is
used for verifying sensitive commands like kill and access.
(2) EPC memory stores the EPC ID, which is a 96-bit unique
identifier and offers the similar functionality as the barcode
printed on the item. It tells us the manufacture, category
and serial number of the tag-attached item. (3) TID memory
stores TID that defines the specification and supported
functions of the tag. (4) USER memory provides storage for
user-defined data. It is usually partitioned into one or more
files. We can use C1G2 commands write or read to read or
write one or several 16-bit words from or to these memory
banks. In this paper, we only concern two memory banks:
EPC memory identifies the tagged item, and helps us to
determine the sampling probability based on the features of
the tagged items; USER memory stores sampling probability
of the tag, the reader simulates tag sampling by selecting
tags with the specific content on their USER memory.

4.1.2 Write Command
C1G2 specifies the write command to store data on the tag
memory. DTS applies it to store the sampling probability on
tag’s user memory bank. Each write command can write 16-
bit data message on one of the memory banks. We may issue
a group of write commands to store a long data message of
more than 16 bits. Each write command comprises five fields
as shown in Table 2. The fields related to this study are listed
as follows.
• MemBank and WordPtr: These two fields are com-

bined to define the target location to store the data message.
MemBank specifies the target memory bank among Bank
00, 01, 10 and 11. WordPtr specifies the target address of the
MemBank for storing the data message.
• Data: This field defines the data message that should

be written on the tag.

4.1.3 Select Command
C1G2 specifies that select command to choose a certain
group of tags for the upcoming tag inventory. In particular,
each tag maintains a selected flag SL (see page 52 in [20])),
and the select command will turn the SL flag of matched tags
to asserted and unmatched tags to de-asserted. Only the
asserted tags keep active and respond to the reader in the
upcoming reading cycle. We can perform a group of select
commands to obtain a logic combination of multiple subsets.

TABLE 2: Fields of select command

Fields # of bits description
Target 3 modify SL flag or inventoried flag
Action 3 action defined in Table 6.30 of [20]

MemBank 2 the target MemBank to apply the Mask
Pointer EBV starting bit address of the Mask
Length 8 bit length of the Mask
Mask Variable a bit string starting at Pointer

Truncate 1 whether a tag reply shall be truncated
CRC 16 CRC-16 used for error check

Each select command comprises eight fields as shown in
Table 2. The fields related to this study are listed as follows.
• Target and Action: These two fields are combined to

define the “side effect” of the select command. In particular,
it specifies how to modify the SL flag of the tag. In our
application, we set Target to 100 and Action to 000, which
is equivalent to turn the SL of the matched tags to asserted
and unmatched tags to deasserted.
•MemBank and Pointer: These two fields are combined

to define the starting bit address of the tag memory that is
used to compare with the Mask filed embedded in select
command. MemBank specifies the target memory bank.
Pointer uses the EBV formatting (see page 115 in [20]) to
specify the starting bit addressing of the corresponding
memory bank.
• Mask and Length: These two fields are combined to

define the mask, which is a binary string that a tag compares
to a memory location, starting from Pointer and ending at
Length bits later. The Length filed is 8-bit, so that the Mask
should be a binary string varying from 1 to 255 bits.

4.1.4 Selective Reading

DTS simulates tag sampling with selective reading, which
selects a subset of tags for participating the upcoming
operations. Selective reading can be achieved by performing
three basic operations: select, inventory and read in sequence.
Followed by a group of select commands, the RFID reader
issues the inventory command (see pages 76-80 in [20]) to
resolve collisions between asserted tags. The reader initial-
izes a time frame of f slots by issuing a query command.
Each asserted tag replies in a randomly chosen slot. As
we previously mentioned, only the tags in singleton slots
can be successfully identified by the reader. In these slots,
the reader can further issues read commands to collect data
stored on tag memory (see pages 81-84 in [20]).

4.2 Detailed Design of DTS

We design DTS to select each tag with a user-defined sam-
pling probability. The proposed DTS is totally built upon
the selective reading, and does not require custom functions
such as hash functions or comprehension of binary string
received from the reader. DTS mainly consists of two sub-
operations: assignment and sampling. We use assignment
operation to write a binary string on each tag for recording
the sampling probability. We use sampling operation to select
tags based on the binary string stored on tag memory. Our
scheme is able to ensure that the tags will be selected with
expected probabilities. In the following, we will present the
two operations in detail.
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TABLE 3: select command in assignment operation

Fields # of bits message description
Target 3 100 SL flag
Action 3 000 asserted if mask matched

MemBank 2 01 EPC memory
Pointer 8 00100000 address 0x20
Length 8 01100000 96-bit
Mask 96 ID choose the target tag

Truncate 1 0 disable truncate
CRC 16 CRC-16 used for error checking

TABLE 4: write command in assignment operation

Fields # of bits message description
MemBank 2 11 USER memory
WorldPtr 8 00000000 address pointer

Data 16 binary string responding probability
RN 16 handle used for memory access

CRC 16 CRC-16 used for error checking

4.2.1 Assignment Operation

The assignment operation is to assign a specific sampling
probability to a tag. For each tag, the reader needs to write
a binary string on it. This binary string needs to reflect
the sampling probability, and ensures that the tags can be
sampled with the expected probability in the following
sampling operation. By default, DTS uses the fraction of
‘1’ bit in the binary to represent the sampling probability.
For example, if the number of ‘1’ bit in a 10-bit binary
string is 5, the corresponding sampling probability is 1/2.
Although some advanced scheme like IEEE 754 can repre-
sent the floating number in a space efficient way, it is hard
to use selective reading to resolve the probability in IEEE
754 formatting. To transform the sampling probability p to
a k-bit binary string, we first compute the number of ‘1’ bit
(denoted as n1) in the string by n1 = round(p×k). Then, we
set the leading n1 bits in the binary string to ‘1’. Finally, we
randomly shuffle the binary string to obtain a new binary
string that contains n1 ‘1’. Due to the shuffle operation, two
tags of the same sampling probability can be assigned two
different random string, which makes sure that they can be
sampled at different inventory rounds. For instance, when
k = 10, two tags of probability p = 0.3 can be assigned two
different binary strings 1000001001 and 1100000010. Hence,
tag1 is sampled if the selected bit is 1,7 or 10; otherwise, tag2
is sampled if the selected bit is 1,2 or 9.

To write each binary string to the target tag, the reader
needs to issue three types of C1G2 commands: select, query
and write in sequence.

select command is used to select the tag with the target
ID. The detailed fields of select command are shown in
Table 3, which has a total length of 117 bits. Specifically, the
MemBank filed is set to EPC memory (01) and the Pointer
filed is set to oX20, which is combined to present the address
of EPC ID. The Mask is set to the EPC ID of the target tag,
thus only one target tag is asserted to reply to the reader.

query command starts a time frame to identify the as-
serted tag. Since there is one tag at most, the Q field is set
to 0000, meaning a time frame that contains only 1 slot. In
this slot, the reader communicates with the tag following
the steps detailed in Appendix E in [20], and obtains a handle
for accessing tag memory.

TABLE 5: select command in sampling operation

Fields # of bits message description
Target 3 100 SL flag
Action 3 000 asserted if mask matched

MemBank 2 11 USER memory
Pointer 8 variable starting address
Length 8 00000001 1-bit
Mask 1 1 1-bit ’1’ mask

Truncate 1 0 disable truncate
CRC 16 CRC-16 used for error checking

write command writes the binary string to the USER
memory of the target tag once the reader obtains the han-
dle. The write command comprises five fields as shown in
Table 4. Since the binary string should be written to the
USER memory, the MemBank filed to 11. We assume the
front address of USER memory is left blank for storing the
sampling probability, so that the WorldPtr Points is set to
0x00, which points to the first 16-bit word of USER memory.
Each write command can write 16-bit word on tag at most.
If the binary string to be written is longer than 16 bits, we
have to issue multiple write commands to store it to the tag.
Each of them have the same fields except WorldPtr, which
should be moved forward and is set to 0x01, 0x02, · · · in the
following write commands.

This assignment operation is only performed on the tags,
which are newly moved into the system or the ones whose
sampling probabilities need to be changed. Hence, we do
not need to frequently perform this operation.

4.2.2 Sampling Operation

The sampling operation is to sample tags with the pre-
assigned sampling probability. The basic idea is to issue a
select command to sample tags by matching the binary string
stored in the tag memory. The issued select command checks
a random bit of the binary array. If the bit specified by the
select command equals to ‘1’, the tag is sampled and will
respond to the reader in the upcoming session; otherwise,
the tag will keep silent until it is sampled by the future
select command.

The fields of the select command are shown in Table 5.
It has three different fields compared with the commands
issued in the assignment operation. First, the MemBank field
is point to the USER memory (11), where it stores the prob-
ability binary string. Second, the Pointer filed is a random
variable generated by the controller, which simulates the
random sampling process. Suppose the length of the binary
string is k bits, the random variable should be an integer
uniform distributed between 0 to k − 1. Third, the Mask
field used for comparing with the binary string is one bit ‘1’.
Thus, the Length filed is also set to 0x01. The total length of
this select command is only 42 bits, which is much smaller
than the previous one.

4.3 Implementation Detail

In what follows, we will discuss the details when imple-
menting the DTS protocol, including Pointer Filed, Array
Length, and Probability Array. We also will analyze the
DTS performance under different implementations, which
provides a guidance on the selection of algorithms and
parameters.
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Fig. 1: The number of rounds which
contain missing bit vs. varying k
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Fig. 2: The maximum error of sampling
probability vs. varying k
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Fig. 3: The time cost of writing the
probability array on tag vs. varying k

4.3.1 Pointer Field: Random vs. Shuffle

During each sampling operation, the controller needs to
generate a random integer as the Pointer field of the select
command. A straightforward solution is to apply uniform
random integer generator to obtain an integer every time
before issuing the select command. This simple approach en-
sures that each bit can be chosen with the same probability
1/k but has a major deficiency that some bits may not be
sampled even after many rounds of sampling operations.
For a certain bit in the bit array, the probability that it is
missed after i rounds can be represented as:

pm =

(
k − 1

k

)i
(1)

To clearly present the miss-sampling probability, we simulate
the random sampling with varying values of k. For each k,
we first conduct 100 times of sampling operations, and then
check if any missing bits exist. We independently repeat
each simulation for 1000 times and present the results in Fig.
1. We observe that miss-sampling is a common phenomenon
even when k is relatively small. For example, we may miss
some bits of the 20-bit array with a probability of 10% even
after 100 sampling operations are done. The tags with a
small sampling probability may have only one ‘1’ bit in its
probability array, if that bit happens to be the missing bit,
this tag cannot be sampled after a very long time. We call
this as the tag starving issue.

To address the tag starving issue, we propose an effective
shuffle scheme. Specifically, we first generate an integer list
ranging from 0 to k− 1. Then, we shuffle the list to get a list
with integers in a random order. Next, we loop through the
integers in the shuffled list and apply them as the Pointer
field of the select command. Once the cursor reaches the end
of the list, we shuffle the list again and move the cursor
return to the beginning of the list. With the shuffle scheme,
miss-sampling probability after i rounds execution becomes:

p′m =

(
k − i
k

)
(2)

Thus, each bit can be sampled at least once every k times of
sampling operations. However, it should be noted here, the
maximum sampling interval in the shuffle scheme is 2k − 2
instead of k. The worst case happens when an integer at the
head of the list is shuffled to the tail of the next list. There-
fore, when k <= 51, all the bits are sampled at least once

after 100 rounds of sampling operations, which significantly
outperforms the straightforward random sampling.

4.3.2 Array Length: Accuracy vs. Space Cost

The length of bit array trades off between sampling ac-
curacy and memory space occupation. Recall that n1 =
round(p × k), the gap between the actual sampling proba-
bility p′ = round(p×k)/k and desired sampling probability
can be up to 1

2k . The sampling accuracy is inversely related
to k. Although a large k improves the accuracy of sampling
probability, it also consumes much more time for writing the
sampling probability to a tag since each write command can
write 16-bit data at most. Thus, we have to choose a proper
k according to the specific RFID applications.

The maximum k is limited by the size of User memory
bank. For example, a Monza 4QT tag [33], a COTS RFID tag
used in this paper, has 512 bytes User memory. Theoretically,
the binary string used for representing sampling probability
can be up to 4096 bits. It supports a quite high accurate
sampling probability with a offset no more than 1.22×10−4,
which is accurate enough for most sampling-based applica-
tions. To balance between the space and accuracy, we limit
the maximum k to 500, which only takes at most 1/8 of the
total USER memory of Monza 4QT tag, meanwhile provid-
ing highly accurate sampling probability with an offset of
just 10−3. We set this limit due to two major reasons: First,
it is not wise to cost most of the tag memory for a single
operation. Second, increasing k fails to bring significant
accuracy improvement when k is large enough. As shown
in Fig. 2. When k = 10, the increase of k will significantly
reduce the offset in storing sampling probability. However,
when k is relatively large (e.g., 1500), further increasing k
achieves little improvement on the sampling accuracy.

Since each write command can only write 16-bit word
on memory, we may need to cut a long probability array
into multiple pieces and use a series of write commands to
write these pieces into the tag. The time cost of assignment
operation is in proportion to the array length k. Suppose
the RFID transmission rate between reader and tags are
40 kb/s, it takes 25 us to transmit a bit. Since the length
of a write command is 58 bits, the time cost for issuing such
a command is 1.45 ms. The total time cost is a step function
as shown in Fig. 3. To make full use of the write command,
we prefer to set k = 16n, where n is a positive integer. In
conclusion, the length k of bit array should be a multiple of
16 and smaller than 500 at the same time.
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4.3.3 Probability Array: Space vs. Randomness
In this section, we present another probability array, which
can represent highly precise sampling probability with
fewer bits. In the origin DTS implementation, we use k
bits array to represent the sampling probability. All bits
in the probability array have the same weight, each of
which represents a probability unit of 1/k. The sampling
probability within the range [w/k − 1/2k,w/k + 1/2k) is
rounded to w/k, resulting a maximum 1/2k gap between
the actual and expected sampling probability. It takes too
much bits to represent the sampling probability in high
precision as shown in Fig. 2.

To reduce the array size for highly precise probability,
we can assign each bit with a distinct weight following
the negative exponential distribution. The first bit has the
largest weight, which represents a probability unit of 1/2.
The weight of next bit is half of that of the previous bit.
Therefore, the weight of the ith bit in the probability array
is 1/2i. The only exception is the last bit of the array, whose
weight equals to the previous bit. This is to ensure that the
sum of all the bits’ weights equals to 1. We can combine
these bits to obtain any sampling probability that is a
multiple of 1/2k−1. Let pm denote the maximum probability
error that we can tolerate, the required array size could be
calculated as follows:

k =

⌈
log2

(
1

pm

)⌉
(3)

Compared with the original method, the new method needs
a probability array of d 1

2pm
e bits, meaning that it signif-

icantly reduces the array size from linear to logarithmic.
To be compliant with new array design, the pointer gen-
eration algorithm used in sampling operation should also
follow the exponential distribution. Specifically, the index
i(0 ≤ i ≤ k− 2) can be chosen with a probability of 1/2i+1.

5 PRACTICAL DTS APPLICATIONS

In this section, we will present two typical RFID applica-
tions, and explain how to use our DTS to facilitate them.

5.1 Multi-category Tag Cardinality Estimation
The problem of Multi-category Tag Cardinality Estimation
(MTCE) is to quickly obtain the approximate number of tags
in each category, without collecting all tags. MTCE is prac-
tically important, especially in a large-scale RFID-enabled
warehouse with thousands of categories. In what follows,
we formally give the definition of the MTCE problem.

Problem 1. Given a set of RFID tags with categories
C1, C2, · · · , Cλ, whose tag cardinalities are unknown and de-
noted as n1, n2, · · · , nλ, a tolerance of β ∈ (0, 1), and a required
confidence level α ∈ (0, 1), we desire to estimate the number of
tags in each category such that Pr(|n̂i−ni| ≤ βni) = α, where
n̂i is the estimation result of ni and i ∈ [1, λ].

A straightforward method is to collect the IDs of all
tags. After that, we can easily classify tags into different
categories, and thus naturally know the exact number of
tags in each category. However, this solution is too time-
consuming, especially in large-scale RFID systems. To this
end, we apply our DTS to propose a time-efficient proba-
bilistic estimator to address the problem of MTCE.

Probabilistic Estimator: We use DTS to assign each
tag a distinct sampling probability based on the category
it belongs to, where pi is used to denote the sampling
probability corresponding to category Ci. After running
the FSA protocol in C1G2 standard to collect the sampled
tags’ IDs, we could obtain the number of sampled tags that
belong to category Ci, which is denoted as Xi. Obviously,
we have Xi ∈ [0, ni], and Xi follows a standard Binomial
distribution with the parameters ni and pi. The probability
that Xi tags among ni in category Ci are sampled can be
calculated as follows.

Pr(Xi) =

(
ni
Xi

)
× pXi

i × (1− pi)ni−Xi (4)

The expectation of Xi is µ = nipi, and the variance of Xi is
δ2 = nipi(1−pi). Based on the expectation, we can calculate
the estimation of ni by following equation.

n̂i = Xi/pi (5)

We have the confidence interval of the estimator as follow:

Pr

(
n̂i −

zαδ

pi
≤ ni ≤ n̂i +

zαδ

pi

)
= α, (6)

Where zα is a percentile of α, which can be looked up in
the binary distribution table. For example, α = 95%, zα will
be 1.96. To meet the tolerance requirement, the standard
deviation should satisfy the following constraint:

δ ≤ βnipi
zα

(7)

By equating the constraint, we can derive the sampling
probability to ensure the estimation accuracy within the
given tolerance level β with a confidence level α:

pi =
Z2
α

β2ni + Z2
α

(8)

According to the above equation, we find that pi depends
on the number ni of tags in category Ci. A large category
should be assigned with a small sampling probability for
reducing the time cost of collecting sample tags, and vice
versa. We can use our DTS to easily achieve this. However,
in traditional sampling methods, all tags have the same sam-
pling probability regardless of large-size categories or small-
size categories. Thus, to ensure the estimation accuracy for
small-size category, they need to set a large sampling prob-
ability, which, however, is not time-efficient for large-size
category. Clearly, assigning different sampling probabilities
to differential tags is also a significant advantage of our
DTS than the previous sampling methods. In what follows
we will explain how to set the sampling probability pi
without knowing ni. In practice, inventory process should
be frequently performed for timely monitoring the stock.
At the very beginning, we can set a value pi according to
the experience on the tag cardinality (e.g., the number of
items in a category should be with a range). In the following
rounds of inventory, we can use the estimation results n̂i
obtained from previous round of estimation to determine
pi, due to the fact that tag cardinality between two adjacent
rounds of inventory does not change too much.
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5.2 Value-based Missing Tag Detection

The problem of Value-based Missing Tag Detection (VMTD)
is to assign the channel resource to tags according to their
values instead of equal assignment. Specifically, the tags
attached to expensive items should obtain more channel
resource than the tags attached to cheap items. Thus, the
expensive ones could have a larger chance to be collected
for timely theft reporting. Such operation is practically
important for RFID system because we normally need to
pay more attention to the expensive items, which may result
high economic loss if some of them are stolen. The problem
of TVS is formally defined as follow:

Problem 2. Given a set of RFID tags with categories
C1, C2, · · · , Cλ, each tagged item in category Ci has the value of
vi, the threshold of missing tags’ value T , the confidence level α,
we desire to quickly report the missing tag event if the total value
of missing items in any category exceeds T with the confidence α.

We assume that the EPC IDs and categories of all tags
in the system are known in advance. This assumption is
reasonable and necessary, because it is impossible for us to
detect missing tag event if we do not know what tags should
be present in the system. The basic idea is to compare the
actually collected sampled tags with the expected ones to
detect missing tags. In the inventory process, we are able
to know what tags will be sampled because the server has
the sampling probability array corresponding to each tag.
We need to assign each tag category a suitable sampling
probability, which ensures that we can detect at least one
missing tag when the value of missing items in the category
exceeds T . The tolerance number of missing tags in category
Ci is mi = d Tvi e. Assume exactly mi tags in category Ci
are absent from the system. Let X denote the number of
detected missing tags. The probability that we can detect the
missing tag event, i.e., X ≥ 1, can be calculated as follows.

Pr(X ≥ 1) = 1− (1− pi)mi (9)

To ensure the required detection accuracy, we have to meet
the following constraint:

(1− pi)mi ≤ α (10)

By solving the above equation, we can obtain the required
minimum sampling probability:

pi = 1− mi
√
α (11)

According to the above equation, we conclude that tags
in a low-value category should be sampled with a small
probability, because we can tolerate that a relatively large
number of missing items in it. We can simply apply our DTS
to assign each tag a sampling probability based on Eq. (11),
which provides a time-efficient and accurate solution to the
problem of VMTD for multi-category RFID systems.

6 PROTOTYPE IMPLEMENTATION

In this section, we discuss how to implement a prototype to
validate the correctness and feasibility of the proposed DTS
scheme. Our prototype consists of a laptop PC, a reader
and several tags, which are connected follow the sketches
shown in Fig. 4. The reader is connected to the PC controller

Controller TagsC1G2Reader

UHF
bandEthernet

LLRP

Fig. 4: Connection of main hardware components

Gen2 air interface

LLRP

LLRP wrapper

TSO

SEPs

Our Implementa�on

Manufacture Implementa�on

Assigment
Sampling

Octane SDK

Octane LDK

Octane firmwae

Logic algorithm
Database opera�ons

Fig. 5: The architecture of our prototype

through a wired Ethernet cable. The PC leverages LLRP
protocol to manipulate a reader to broadcast the desired
C1G2 commands. All the LLRP messages are represented in
XML format and transmitted to the reader through TCP/IP.
The reader communicates with the tags through an Ultra
High Frequency wireless channel (900 MHz) following the
specification of C1G2 protocol [20].

The architecture of our prototype is shown in Fig 5.
The first layer is C1G2 protocol that defines the logical and
physical information interactions between reader and tags.
This protocol has been implemented on the reader by RFID
manufacturer. We use the Impinj Speedway R420 reader [19]
with the Octane firmware 5.8. The second layer is the Low-
level Reader Protocol (LLRP) which is the communication
protocol between software and a reader. The controller
applies LLRP to define a sequence of C1G2 operations that
need to be executed by the reader. LLRP is also implemented
by the RFID manufacturer, thus we can simply import it
(i.e., Impinj Octane LTK) when developing our software.
Upon LLRP level, some manufacturers also provide high
level sdk for easily developing software with high-level
languages such as Java and C#. It acts as a wrapper for
extracting, modifying the applications of a Reader’s Low-
Level Reader Protocol (LLRP) settings. With SDK, we can
execute C1G2 commands by calling API and avoids the
tedious work for defining LLRP messages in XML format.
The DTS implementation is a software built upon Octane
2.02 SDK (C#) [34], which provides both assignment and
sampling operations implemented by invoking correspond-
ing API. The other applications software can apply the
DTS protocol to manipulate tags in the system. Note that,
DTS is only responsible for implementing the tag sampling
with the given sampling probability. The logic algorithm
and database operations should be implemented by the
sampling-based applications themselves.
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7 PERFORMANCE EVALUATION

In this section, we first conduct real experiments using
COTS Impinj RFID devices to validate the effectiveness
and feasibility of our DTS. Then, we conduct extensive
simulations to evaluate the performance of our DTS when
being applied to address the practically important problems
of Multi-category Tag Cardinality Estimation (MTCE) and
Value-based Missing Tag Detection (VMTD).

7.1 Validate the Effectiveness of DTS
7.1.1 Experiment Settings
We evaluate the proposed DTS by using COTS Impinj RFID
reader and passive tags. The reader model is Speedway
R420 [19] and the tag model is Impinj Monza 4QT [33].
The reader is connected to a 900 MHz 8 db gain right-
hand circularly polarized antenna manufactured by Laird.
Besides, the reader is also connected to the controller, a
ThinkPad desktop with Intel i5 CPU (2.2 GHz) and 8 GB
RAM. The Moza 4QT tags have 512 bytes user memory,
which is large enough to store the probability array when
implementing DTS.

7.1.2 Assignment Operation
In this set of experiments, we will evaluate the assign-
ment operation in DTS, which is implemented with three
main SDK classes, including TargetTag, TagWriteOp and Tag-
WriteOpResult. Among them, TargetTag and TagWriteOp are
the wrapper class of C1G2 select and write, respectively. To
assign sampling probability, our program applies TargetTag
and TagWriteOp to write a probability array to each target
tag. TagWriteOpResult class is used to catch the writing
results on each tag, which is used to count the successful
rate of assignment operations.

First of all, we evaluate the successful rate of assign-
ment operation. In our experiments, we use 6 passive tags
with distinct IDs, each of them is assigned with a distinct
probability. The tags are placed at different distances from
the RFID antenna. 2 tags at surface of the antenna, 2 tags
at 2 meters distance, and 2 tags at 4 meters from the
antenna. We conduct 300 rounds of experiments. During
each experiment, we sequentially execute assignment op-
eration to write data to each tag and check whether the
operation is successful by catching the results filed of the
TagWriteOpResult class. We observe from the results in Table
6 that, when the target tags are placed near the antenna,
the assignment operation has an extremely high successful
rate. However, the rate declines when the distance between
tag and antenna becomes larger. The rate gets even worse
when the tag is placed on the side direction with a large
angle to the front direction. For example, the operation on
Tag 6 never succeed. This observation is reasonable because
the antenna used in our experiments has different gain on
distinct directions [35]. The tag at the side direction fails to
capture sufficient energy from the antenna, thus cannot be
identified and operated by the reader. In summary, when
applying assignment operation to write data on tags that
are newly moved into the system, we prefer to place the
tags right in the front of the antenna, which is reasonable
for new item registration. However, when we want to
execute the assignment operation to modify the sampling
probabilities on old tags, which have been deployed in the

TABLE 6: Identification rate vs varying distance

Tag Distance Direction Rate
Tag 1 surface front 100%
Tag 2 surface side (π/2) 100%
Tag 3 2m front 100%
Tag 4 2m side (π/2) 92.3%
Tag 5 4m front 91.7 %
Tag 6 4m side (π/2) 0 %

system already, we have to face the potential assignment
failure caused by shelf block, out of range and shadowing
effect. When a assignment operation fails, we may retry it
several times and report a temporary tag/item lost waring
to the controller if all the assignment operation are failed.

7.1.3 Sampling Operation

In this set of experiments, we will evaluate the sampling
operation in DTS. Our program implements the shuffle
algorithm detailed in Section 4.2.2 and uses the returned
pointer value to sample tags with TargetTag class. Besides,
we also implement the sampling method using random
pointer for comparing with our method based on shuffle.

Sampling accuracy is the major metric of sampling op-
eration. To verify whether the tags are sampled with the
desired probabilities, we place 10 tags in the front direction
of the antenna, the tag-antenna distance ranging from 0 to 4
meters. Each tag is assigned a distinct sampling probability
ranges from 0.1 to 1.0. Specifically, the report mode of the
reader is set to individual, hence, once a tag is identified, its
ID will be immediately reported to the controller though
TCP/IP. Then, we capture the IDs of the collected tags
and store them in a file. We terminate the experiments
after receiving 1000 tag IDs. We compare the assigned
sampling probability and the actual sampling probability
in Fig. 6a. We can find that both random-based and shuffle-
based solution work as expected. The assigned and actual
sampling probabilities of shuffle-based sampling method fit
a little bit better compared with the random-based sampling
method. This is reasonable because the pointers chosen by
the random-based sampling are not completely uniform
randomness. When designing the shuffle-based sampling
operation, we have to sacrifice some randomness to improve
the sampling accuracy. Fig. 6b shows the scanning inter-
vals of shuffle sampling and random sampling with differ-
ent sampling probabilities, respectively. Obviously, shuffle-
based sampling has a smaller interval variance, which en-
sures that the tags can be sampled with a stable probability.
This is important for a missing tag detection application,
which normally desires to present from tag-starving issue,
i.e., a tag cannot be sampled for a long time.

Time efficiency is another important metric of the sam-
pling operation. Although the sampling operation can ben-
efit a wide range of applications, it will become useless if
sampling operation takes too much time. To measure the
time-efficiency of sampling operation, we deploy 10 tags
in our lab, each of them is placed within 3 meters from
the antenna. Each tag is assigned with a distinct sampling
probability ranging from 0.1 to 1.0. We set the reader to
DualTarget mode, which enables the reader to repetitively
identify these 10 tags to obtain a large amount of observa-
tions as shown in Fig. 6c. Since the time cost of sampling
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Fig. 6: Experiment results based on the small-scale prototype

operation is hard to measure, we use sampling-based iden-
tification as an indirect measurement of the cost of sampling
operation. Specifically, we first conduct experiments to eval-
uate the time cost for collecting a certain number of tags
with traditional FSA protocol, and then compare it with
the time cost for collecting the same number of tags with
DTS+FSA. Since the only difference between two protocols
are the additional sampling operations, the gap between
their execution time can be approximated as the time cost
of sampling operations. Fig. 6c shows that the sampling
operation incurs non-negligible overhead, which increases
the total overhead of tag collection by about 30%. Besides,
we can find that the average per tag identification time
first increases and then keeps stable when the number of
collected tag exceeds 2000. The IO speed of reading/writing
file, and the connection speed may together contribute to
this curve. In the experiments, we find that a large size
output file lowers the total execution time of protocols due
to the larger IO cost. The cost of FSA is 15 ms and that
of DTS+FSA is about 20 ms. Thus, the sampling operation
takes about 5 ms cost on each tag.

Then, we evaluate the protocol performance under dif-
ferent scenario. To evaluate the side impacts of the coupling
effects, we place 4 pairs of stacked tags with varying dis-
tances from the reader antenna. The experimental results
are shown in Fig. 6d, from which we can find that both FSA
and DTS+FSA have similar curves. The rates of identifying
tags decrease with the increase of distance from the reader
antenna. This is because coupled nearby tags may absorb
too much energy, which results in identification failure,
especially when a tag is far from the antenna. To evaluate the
effect of multi-path fading, we measure the reading speed
of the proposed DTS scheme in different scenarios, e.g.,
lab, empty office, department hall and outdoor. The results
in Fig. 6f show that, the identification speed is higher in
the environment with less obstacles, e.g., the identification

Fig. 7: Deployments of 100 tags

time of DTS in the lab scenario is 1.35x of that in the
outdoor scenario because more obstacles in lab cause more
serious multi-path affects. Multi-path fading makes some
tags cannot harvest enough energy to be powered up, thus
failing to be identified by the reader in a frame. Therefore,
it will take more time frames to read such tags, resulting in
lower time-efficiency.

Finally, we evaluate the proposed scheme with 100 tags
to verify its performance in the tag-dense scenario with the
serious tag coupling effect. As shown in Fig. 7, 100 tags
are deployed on a 1 m × 1 m table and are randomly
assigned with sampling probabilities ranging from 0.1 to
1.0. We conduct 10 rounds evaluations, and run both FSA
and DTS+FSA 10 times to get the total execution time during
each evaluation round. We also use the per tag identification
cost measured in the last experiment to compute the simu-
lated execution time of FSA and DTS+FSA. The evaluation
results in Fig. 6e shows that for both FSA and DTS+FSA, the
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Fig. 9: Estimation performance with varying factors

actual execution time is always higher than the simulated
execution time. This is because the coupling effect between
tags reduces the rate of identifying tags. Thus, the reader
has to take more time to identify a tag, which increases the
total execution time.

In summary, both the assignment and sampling opera-
tions in DTS work as what we expect. DTS can significantly
reduce the number of collected tags and arbitrarily allocate
the wireless channel resource to tags in the system.

7.2 Evaluate DTS+MTCE and DTS+VMTD
Besides implementing a small-scale prototype, we also sim-
ulate a large-scale warehouse scenario to evaluate the per-
formance of our scheme. Following many related papers
[36]–[38] in top journals or conferences, we assume there
are thousands of tags within the interrogation range of
a reader. This assumption is reasonable because we can
significantly extend the reading range of a reader using the
following methods. First, we can set the transmitting power
of the reader to its maximum value to increase the reading
distance. Second, we know that some kinds of COTS reader
antennas can cover hundreds of square meters, e.g., a single
Impinj LHCP Far Field Antenna can cover a large area of 139
square meters [39]. Third, we can connect multiple antennas
to the reader to significantly extend the reading range of
the reader. For instance, each Impinj R420 Reader can be
connected to 32 antennas at most [19]. By jointly using
above three methods, the monitoring area of a reader can be
extended to 4,448 square meters, where it is possible to place
thousands of tags. We investigate the benefit of DTS in two
typical applications: MTCE and VMTD. We use the system

and communication parameters obtained from small-scale
experiments (e.g., time cost for collecting each tag) as the
simulation settings.

7.2.1 Multi-category Tag Cardinality Estimation
Estimation Accuracy: Estimation accuracy is the key per-
formance metric for the problem of Multi-category Tag
Cardinality Estimation. Our scheme uses the number of
collected tags in each category and the sampling probability
to estimate the corresponding tag population. We use 1000
tags to evaluate the performance of the MTCE, Fig. 8 shows
the estimation results with varying sampling probability. We
independently repeat the estimation process for 100 rounds
and present the averaged result in Fig. 8a. With the increase
of sampling probability, the estimation error significantly
decreases at first (e.g., when p < 0.1) and then keeps
relatively stable; whereas, the estimation variance keeps
becoming small when the sampling probability increases.
These results show that our sampling-based estimation
scheme can provide highly accurate estimation results with
a large enough sampling probability. Fig. 8a shows the
observed estimation variance meets our theoretical analysis.
Fig. 8c shows a large sampling probability leads to a better
estimation accuracy. In fact, when p = 1, the estimation
protocol goes back to the exact tag identification protocol
with an estimation error of 0.

Time Efficiency: In a multi-category RFID system, the
number of tags in each category may be different. To ensure
the estimation accuracy, we need to apply DTS to assign
the tags in a category with a certain sampling probability,
which is determined by the number of tags in the category
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Fig. 10: Simulation results of value-based missing tag detection protocol

(see Eq. 8 for details). Fig. 9a presents the required sampling
probability for a category with varying number of tags in
this category when β = 0.1 and α = 0.1. We can find
that the required sampling probability becomes small with
the increase of category size. Therefore, the time-efficiency
of the Multi-category Tag Cardinality Estimation protocol
is affected by the category size. Fig. 9b presents the time
cost of estimating about 5000 tags in multiple categories.
When a category size is smaller than 100, the estimation
protocol even takes more time than collecting all tags via
the FSA protocol. When conducting Multi-category Tag
Cardinality Estimation protocol, we need to ensure that the
weighted size of all the categories should be large than 100
at least; otherwise the estimation protocol will not bring any
improvement in terms of time-efficiency than FSA.

Effect of Identification Failure: Identification failure is
a common issue in real-world RFID systems, which means
that a tag is present in the system but fails to be identified by
the reader due to electromagnetic interference or absorption
of RF energy. This issue may affect the estimation accuracy
of the proposed sampling-based estimation protocol. Let
pf denote the identification failure rate. Fig. 9c shows the
estimation results of 1000 tags with a sampling probability
of 0.4. We can find that identification failure significantly
reduces the estimation accuracy because it results in an
underestimation of tag cardinality. For example, when the
failure rate equals 0.8, the number of estimated tag ap-
proaches 800, which is only 80% of the actual value. We
can deploy multiple antennas in the system to alleviate this
adverse effect, because sampled tags that cannot be collected
by an antenna may be collected by another antenna.

7.2.2 Value-based Missing Tag Detection
Sampling Probability: In the Value-based Missing Tag De-
tection (VMTD), each category of tags should be assigned
with a certain sampling probability based on the item value
in this category. To meet the required detection accuracy, Fig.
10a presents the required sampling probability with varying
tolerable number of missing tags. The required sampling
probability decreases significantly with the increase of the
maximum tolerable missing tag number. For example, when
the confidence level α equals to 0.999 and the tolerable
missing tag number equals to 10, the sampling probability
should be no less than 0.6. When the maximum number
of missing tags that we can tolerate increases to 40, the

sampling probability reduces to 0.2. Therefore, the low-
value tag can be sampled with a much smaller probability
for reducing the number of tags to be identified and accel-
erating the detection process.

Time Efficiency: Time-efficiency is the key metric of
VMTD because a long execution time may disturb the
execution of other RFID protocols, e.g., tag localization
and tag estimation. In this set of simulations, we simulate
10000 tags with different category distributions and run
each protocol 300 times to report the averaged results. We
assume there are 10 categories with distinct sampling prob-
abilities ranging from 1/2 to 1/1024. We use four different
numpy distribution models to generate the category dis-
tributions, including uniform(1,5,10000), norm(6,1.5,10000),
exponential(1.0, 10000) and power(5, 10000). As shown in Fig.
10b, the FSA, BSTSA and Buzz protocols always need to
read a fixed number of 10000 tags under any distributions,
thus always finishing the missing tag identification process
with a fixed amount of time. Among them, Buzz has the
best performance and is 2× faster than FSA and BSTSA.
This result is understandable because Buzz speeds up the
tag identification by decoding corrupted information in
collisions slots. However, implementation of Buzz requires
the customized functionalities of mapping and decoding
on programmable RFID devices, therefore, Buzz cannot be
deployed to the commercial RFID systems. In contrast, the
performance of VMTD changes a lot under different tag
distributions. VMTD takes a longest time of 72.7 s under
the exponential distribution, while it takes a shortest time
of 6.12 s under the power distribution. This is because the
number of sampled tags in VMTD is significantly affected
by the tag distribution. When the tag population follows the
power distribution across categories, most of the tags have
small sampling probabilities. VMTD only needs to identify
hundreds of tags, and thus being 10× faster than the state-
of-the-art Buzz protocol. On the other hand, when the
tag population follows the exponential distribution across
categories, most of tags need to be sampled in VMTD, thus
its execution time approaches that of Buzz. Our VMTD uses
the FSA scheme mainly because it is complaint to the current
EPC C1G2 standard. Since DTS is a high-level solution
that can work together with any available low-level MAC
layer protocols, the performance of VMTD can be further
improved if the Commercial Off-The-Shelf (COTS) RFID
devices can support more efficient identification schemes in
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MAC layer, e.g., BTSTA and Buzz.
In summary, Value-based Missing Tag Detection (VMTD)

can well address the missing tag detection problem. More
channel resources are allocated to the tags that are attached
to high-value items, by using DTS to assign large sampling
probabilities to these tags. However, if most items in the
system are of high values, we prefer to use FSA to collect
all tags instead of invoking VMTD. Fortunately, pareto
principle tells us that most items in a warehouse are of low
values. In such an RFID system, the value-based missing
tag detection protocol is quite time-efficient, because only a
small number of tags in most categories need to be sampled
and collected.

8 CONCLUSION

This paper studies the problem of Differential Tag Sampling
(DTS). The core contribution of this paper is in using only
commands available in C1G2 standard to implement the
DTS protocol. The major advantages of DTS over previous
work is two-fold: (1) DTS is able to assign each tag with a
distinct sampling probability, however, previous work can
only assign the same sampling probability to all tags in the
system; (2) DTS is the first one that can be directly deployed
on COTS RFID systems, however, previous work only stays
in the theory level because they require unrealistic func-
tionalities unavailable in C1G2 standard. To validate the
effectiveness of our DTS, we apply DTS to address two prac-
tically important problems: Multi-category Tag Cardinality
Estimation (MTCE), and Value-based Missing Tag Detection
(VMTD). Extensive experimental results demonstrate that
DTS is able to let each tag take the given sampling probabil-
ity to be identified in the inventory process. Benefiting from
our DTS protocol, the proposed MTCE and VMTD protocols
can significantly reduce the execution time by nearly 70%
than the FSA protocol.
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