
Efficient Cloudlet Deployment: Local Cooperation
and Regional Proxy

Dawei Li∗, Jie Wu†, and Wei Chang ‡
∗Department of Computer Science, Montclair State University, Montclair, NJ, 07043

†Department of Computer and Information Sciences, Temple University, Philadelphia, PA, 19121
‡Department of Computer Science, Saint Joseph’s University, Philadelphia, PA, 19131

Email: dawei.li@montclair.edu, jiewu@temple.edu, wchang@sju.edu

Abstract—In this paper, we consider various cloudlet server
deployment problems. Our goal is to reduce the cloudlet system’s
expected response time for mobile application requests submitted
to the cloudlet. We propose two novel cloudlet server deployment
strategies to achieve this goal. The first one is called local
cooperation strategy, where two or more nearby cloudlet servers
can help each other process the application requests. The second
one is called regional proxy strategy, where service providers
choose to deploy a regional proxy server that can provide service
to mobile users from a comparatively larger area, while the
communication delay from mobile users to the regional proxy
server is kept low. We demonstrate the advantages of the two
strategies over the traditional flat deployment strategy and the
recently proposed hierarchical deployment strategy. Simulation
results also verify that two proposed deployment strategies have
great potential in reducing system’s expected response time.

Index Terms—Cloudlet, edge cloud, mobile computing, local
cooperation, regional proxy.

I. INTRODUCTION

In mobile cloud computing [1], mobile devices can utilize

cloud computing facilities to process resource-hungry tasks.

Recently, cloudlet becomes a promising facility to improve

the Quality of Service (QoS) delivered to mobile applications.

The key objective of a cloudlet is to deploy application servers

closer to mobile devices [2]. In current practice, cloudlet

servers are placed in isolated locations; they are independent

from each other and are backed directly by remote clouds.

In [3], a hierarchical deployment model is presented. When

a local cloudlet server is overloaded by its local application

requests, the requests will be sent to remote clouds, or a higher

level server, where the possible long communication delay will

again increase the system’s response time perceived by mobile

applications.

Intuitively, the way to mitigate this long communication

delay problem is to create a shared computing resource pool

that is close to the local servers or mobile users. In this

paper, we propose two important cloudlet server deployment

strategies to implement this idea. The first one is called Local

Cooperation Strategy (LCS), which means that, instead of

deploying independent servers, we let servers that are close to

each other cooperate together to process application requests

from the cooperating locations. In LCS, the peak capacity at

each of the cooperating locations is increased; additionally,

long communication delay is not involved, because local

servers are close to each other. The second strategy is called

Regional Proxy Strategy (RPS), of which the key idea is to

Fig. 1. Cloudlet server deployment strategies. S0 represents the higher level
server and the regional proxy server in (c) and (d), respectively. In (c), local
servers send requests to S0; in (d), some of the users in L1 and L2 send
requests to S0 directly.

choose a proxy location where it can provide service to users

in multiple locations. In RPS, we allow users to send their

application requests directly to their regional proxy server;

the peak capacity at each location is also increased, and long

communication delay can also be avoided, because the proxy

location is chosen such that it is close to mobile users.

A. Motivational Example
We provide a simple example to describe the motivation

of our work. Assume that the cloud service providers need

to provide service for users from two locations/areas, L1 and

L2. Using state-of-the-art flat deployment method, we are to

deploy two independent servers, S1 and S2, at L1 and L2,

respectively, as shown in Fig. 1(a).

A main drawback of the flat deployment strategy is that,

the capacity of S1 and S2 cannot be shared by their users. We

propose to let servers S1 and S2 cooperate with each other

such that one can send application requests to the other when

itself is overloaded, as shown in Fig. 1(b).

Authors in [3] propose hierarchical deployment to reduce

the communication delay that occurs when local cloudlet

server has to send application requests to a remote cloud,

as shown in Fig. 1(c). In this model, when local servers

are overloaded, they first send the requests to a higher level

server, S0. This model provides low-delay shared resource for

mobile users in multiple locations, compared to remote clouds.

However, the communication delay to the higher level server

may still be too high for delay-sensitive tasks.

To address this issue, we propose to deploy a regional

proxy server which is close to some mobile users in both

L1 and L2, if such a regional proxy location can be found.

2018 International Conference on Computing, Networking and Communications (ICNC): Green Computing, Networking, and
Communications

978-15386-3652-7/18/$31.00 ©2018 IEEE 757

This strategy is shown in Fig. 1(d). Like the hierarchical

deployment method, RPS can provide shared resource for

users at multiple locations. Since the proxy location is chosen

such that the communication delay between mobile users and

this proxy location is comparable to the delay between mobile

users and the local servers, RPS enables resource sharing for

users in multiple locations at no additional delay.

B. Main Contributions and Paper Organization
Our main contributions in this paper are as follows:

• We propose two novel cloudlet server deployment strate-

gies that can help to reduce cloudlet system’s response

time for mobile applications.

• We consider important server capacity allocation prob-

lems for all of the four cloudlet deployment strategies

using the queueing system model; we provide closed form

and/or optimal solutions for most of the problems.

• Theoretical analysis and simulations verify that the pro-

posed LCS and RPS have great potential in reducing

system’s response time for mobile applications.

The rest of the paper is organized as follows. Section II

presents the system model and basic performance measure-

ment. In Section III, we consider the server capacity allocation

problems for both flat deployment and LCS. In Section IV, we

consider the server capacity allocation problems for both hier-

archical deployment and RPS. Related simulation results are

provided in Section V. We conclude our paper in Section VI.

II. PRELIMINARIES

We consider the scenario of a wireless metropolitan area

network. The network has a set of access points that are

deployed at n locations/areas, L1, L2, · · · , Ln. The service

provider deploys a cloudlet server Si at Li to process mobile

application requests. We assume that the inter-arrival time of

application requests at Li follows exponential distribution with

a mean value of 1/λi. The execution time of all requests

follows exponential distribution with a mean value of 1/μ
when they are executed at a reference speed. We say the

processing speed is 1 when it equals the reference speed.

Server Si has a processing speed of ci, which represents its

capacity in processing mobile application requests. Then, the

execution time of requests processed at Si follows exponential

distribution with a scaled mean value of 1/(ciμ).
An important argument that we will use frequently is that,

requests that have exponentially distributed inter-arrival time

with mean value of 1/λ is equivalent to requests that have

Poisson distributed arrival rate with mean value of λ [4]. Given

that the execution times of the the requests are exponentially

distributed with a mean value of 1/μ, we can also say that

the service rate is Poisson distributed with a mean value of

μ. Consider a single location with a unit-speed server, the

system can be modeled as an M/M/1 queueing system [4]

with an arrival rate of λ and a service rate of μ. We define

the response time for an application request submitted to the

cloudlet as the time that it spent on waiting for the service

plus the service time. Notice that, this response time includes

the communication delay between the local cloudlet servers

and other servers, but does not include the communication

delay between mobile users and cloudlet servers. Essentially,

the response time is the total amount of time that the request

spends in the cloudlet system.
We have the following results for the queueing system. 1.)

The system is stable, i.e., has bounded expected response time,

if and only if μ > λ. 2.) When the system is stable, the

expected response time for all requests is T̄ = 1
μ−λ .

III. OPTIMAL SERVER CAPACITY ALLOCATION FOR FLAT

DEPLOYMENT AND LCS
A. Flat Deployment

We first consider the server capacity allocation problem

using flat deployment. Assume that we only have the budget

to provide a total computing capacity of C for all the servers.

Location Li has a request arrival rate of λi. Our server capacity

allocation problem is to find the capacity allocation for all the

servers such that the expected response time for all requests

is minimized. In flat deployment, the expected response time

for requests at Si can be calculated as: T̄f,i =
1

ciμ−λi
.

Since a fraction of λi/
∑n

i=1 λi of all the requests are

processed at server Si, the expected response time for all the

requests in the system can be calculated as

T̄f =

n∑
i=1

λi∑n
i=1 λi

1

ciμ− λi
. (1)

The server capacity allocation problem using flat deployment

strategy can be formulated as follows (denoted as Problem 1):

min T̄f (2)

s.t. λi − ciμ < 0, ∀1 ≤ i ≤ n. (3)
n∑

i=1

ci − C = 0. (4)

In this problem, ci’s are the optimization variables.
Theorem 1: Problem 1 has feasible solutions if and only

if C>
∑n

i=1 λi/μ. Given that, The minimum value for T̄f is:

T̄min
f =

(
∑n

i=1

√
λi)

2

(μC −∑n
i=1 λi)

∑n
i=1 λi

(5)

Proof: We apply KKT conditions to solve the problem

[5]. Let xi and y be the Lagrange multipliers associated with

constraints in Equation (3) and Equation (4), respectively. For

ease of presentation, let c and x be the vectors of ci’s and

xi’s, respectively. Define the Lagrangian function as follows:

L(c,x, y) = T̄f +

n∑
i=1

xi(λi − ciμ) + y(

n∑
i=0

ci − C). (6)

Applying the KKT conditions, we have:
∂L(c,x, y)

∂ci
= 0, ∀1 ≤ i ≤ n. (7)

xi(λi − ciμ) = 0, ∀1 ≤ i ≤ n. (8)

Since λi−ciμ �= 0, according to Equation (8), we have xi = 0,

∀1 ≤ i ≤ n. According to Equations in (7), we have

ci =

√
λi

yμ
∑n

i=1 λi
+

λi

μ
, ∀1 ≤ i ≤ n. (9)

2018 International Conference on Computing, Networking and Communications (ICNC): Green Computing, Networking, and
Communications

758

According to Equation (4), we have

n∑
i=1

ci =

n∑
i=1

√
λi

yμ
∑n

i=1 λi
+

∑n
i=1 λi

μ
= C. (10)

For y to have real values, we must have C>
∑n

i=1 λi/μ.

Thus C>
∑n

i=1 λi/μ is the necessary condition for Problem
1 to have feasible solutions. Given this, y can be solved as

follows:

y =
1

μ
∑n

i=1 λi

(
∑n

i=1

√
λi)

2

(C −∑n
i=1 λi/μ)2

. (11)

Then,

ci =
(C −∑n

i=1 λi/μ)
√
λi∑n

i=1

√
λi

+
λi

μ
. (12)

Thus, the minimum value of T̄f is:

T̄min
f =

(
∑n

i=1

√
λi)

2

(μC −∑n
i=1 λi)

∑n
i=1 λi

(13)

Next, we consider the server capacity allocation problem

using LCS. Assume that all the n local servers form a

cooperation group where any server can cooperate with any

other server. Denote pi,j as the fraction of requests, that are

generated from Li and executed at server j. When i = j, it

means that the requests are processed at the local server; when

i �= j, it means that this fraction of requests are sent to the

jth server for processing.

B. LCS with Negligible Communication Delay
We consider the case where the cooperation communication

delay is negligible first. With pi,j’s, the effective request arrival

rate at server Si can be determined as: λ
′
i =

∑n
j=1 pj,iλj ,

which is the sum of requests that are sent to Si from all

locations. Notice that we have
∑n

j=1 pi,j = 1 and
∑n

i=1 λ
′
i =∑n

i=1 λi. The expected response time for all requests pro-

cessed at location Li can be calculated as T̄c,i =
1

ciμ−λ
′
i

. Since

a fraction of λ
′
i/
∑n

i=1 λi of all the requests are processed

at Li, the expected response time for all requests can be

calculated as:

T̄c=

n∑
i=1

λ
′
iT̄c,i∑n
i=1λ

′
i

=

n∑
i=1

∑n
j=1 pj,iλj∑n

i=1 λi

1

ciμ−
∑n

j=1 pj,iλj
. (14)

The server capacity allocation problem can be formulated

as follows (denoted as Problem 2):

min T̄c (15)

s.t.
n∑

j=1

pj,iλj − ciμ < 0, ∀1 ≤ i ≤ n. (16)

0 ≤ pj,i ≤ 1, ∀1 ≤ i, j ≤ n. (17)
n∑

i=1

pj,i = 1, ∀1 ≤ j ≤ n. (18)

n∑
i=0

ci − C = 0. (19)

Theorem 2: Problem 2 is a convex optimization problem,

which can be solved in polynomial time.

Proof: The optimization variables for Problem 2 are ci’s
(∀1≤ i≤ n) and pi,j’s (∀1≤ i, j≤n). We first prove that T̄c

is a convex function of ci. Taking the derivative of T̄c over ci:

∂T̄c

∂ci
=

∑n
j=1 pj,iλj∑n

i=1 λi

∂
(

1
ciμ−

∑n
j=1 pj,iλj

)
∂ci

=

∑n
j=1 pj,iλj∑n

i=1 λi

−μ

(ciμ−∑n
j=1 pj,iλj)2

. (20)

The second order derivative of T̄c over ci is

∂2T̄c

∂c2i
=

∑n
j=1 pj,iλj∑n

i=1 λi

2μ2

(ciμ−∑n
j=1 pj,iλj)3

. (21)

Since ciμ−
∑n

j=1 pj,iλj>0, we have (∂2T̄c)/(∂c
2
i)>0 within

the feasible domain; thus, T̄c is a convex function of ci.
Then, we prove that T̄c is a convex function of pj,i. The

partial derivative of T̄c over pj,i is

∂T̄c

∂pj,i
=

∂
(∑n

j=1 pj,iλj
∑n

i=1 λi

1
ciμ−

∑n
j=1 pj,iλj

)
∂pj,i

=
1∑n

i=1 λi

∂ 1
ciμ∑n

j=1
pj,iλj

−1

∂pj,i

=
1∑n

i=1 λi

1

(ciμ∑n
j=1 pj,iλj

− 1)2
ciμλj

(
∑n

j=1 pj,iλj)2

=
ciμλj∑n
i=1 λi

1

(
∑n

j=1 pj,iλj − ciμ)2
. (22)

Then,

∂2T̄c

∂p2j,i
=

ciμλj∑n
i=1 λi

−2

(
∑n

j=1 pj,iλj − ciμ)3
. (23)

Since
∑n

j=1 pj,iλj−ciμ<0, we have ∂2T̄c/∂p
2
j,i>0 within

the feasible domain; thus, T̄c is a convex function of pj,i. So,

the original optimization problem is a convex optimization

problem that can be solved within polynomial time.

C. LCS with Non-negligible Communication Delay
Assume that the bandwidth between each pair of two servers

is B, and that the communication volume for a request to be

sent to a cooperation server is proportional to its execution

time at unit speed, i.e., α/μ. The time it takes to send a request

to a cooperation server is tc = α/(Bμ). Requests that are

processed locally are not affected by the communication delay;

thus, the expected response time in each location as T̄c,i =
1/(ciμ− λ

′
i).

We consider the requests that originate from location Li.

Recall that pi,j is the fraction of λi that is executed on server

Sj . If a request is sent to another server, then, its expected

response time will be the expected response time of the other

server plus the time it takes to send the request to the other

server. Thus the expected response time for all requests that

originate from location Li can be calculated as follows:

2018 International Conference on Computing, Networking and Communications (ICNC): Green Computing, Networking, and
Communications

759

(a) Hierarchical Deployment (b) RPS

Fig. 2. Hierarchical deployment and RPS. S0 represents the higher level
server and the regional proxy server in (a) and (b), respectively. In (a), local
servers send requests to S0; in (b), some users send requests to S0 directly.

T̄
′
c,i = pi,iT̄c,i +

n∑
j=1,j �=i

pi,j(T̄c,j + tc). (24)

The server capacity allocation problem can be formulated as

follows (denoted as Problem 3):

min T̄
′
c =

n∑
i=1

λi∑n
i=1 λi

T̄
′
c,i (25)

s.t. Equations. (16)-(19).

Theorem 3: Problem 3 is a convex optimization problem,

which can be solved in polynomial time.

Proof: Problem 3 has the same constraints as that of

Problem 2. We only need to prove the convexity of T̄
′
c using

similar approaches as in the proof for Theorem 2. Due to space

limit and its redundancy, we omit the proof here.

We can observe that, if we let pi,i = 1 and let pi,j = 0 when

i �= j in Problem 3, then we have T̄
′
c,i = T̄c,i, and λ

′
i = λi,

which further suggests that T̄
′
c,i = T̄c,i = T̄f,i. It indicates that

Problem 3 reduces to Problem 1 given the pi,j values. In other

words, Problem 1 is a special case of Problem 3. Similarly,

Problem 1 is a special case of Problem 2. Thus, the minimum

objective function values of Problem 3 and Problem 2 are less

than or equal to that of Problem 1.

IV. OPTIMAL SERVER CAPACITY ALLOCATION FOR

HIERARCHICAL DEPLOYMENT AND RPS

A. Hierarchical Deployment

We still assume that we only have the budget to provide a

total computing capacity of C. For hierarchical deployment,

the higher level server, S0 as shown in Fig. 2(a), has a capacity

of c0. The time to send a request to S0 from a local server is:

th = α/(bμ), where b is the bandwidth between local servers

to the higher level server. Denote that a fraction of pi of all

the requests from location Li are sent to S0 from Si.

The local server Si has an effective arrival rate of (1 −
pi)λi and an effective service rate of ciμ. Thus, the expect-

ed response time for requests processed at Si is: T̄h,i =
1

ciμ−(1−pi)λi
. S0 has an effective arrival rate of

∑n
i=1 piλi, and

an effective service rate of c0μ. Thus, the expected response

time for S0 is: T̄h,0 = 1
c0μ−

∑n
i=1 piλi

+ th.

The expected response time for all requests in the system

can be calculated as:

T̄h =

n∑
i=1

{
(1− pi)λi∑n

i=1 λi

1

ciμ− (1− pi)λi

}

+

∑n
i=1 piλi∑n
i=1 λi

(
1

c0μ−∑n
i=1 piλi

+ th). (26)

In hierarchical deployment, from the service provider’s

point of view, we have control over all the local servers as

well as the higher level server. We can control pi’s to achieve

the best performance. The server capacity allocation problem

can be formulated as follows (denoted as Problem 4):

min T̄h (27)

s.t. 0 ≤ pi ≤ 1.∀1 ≤ i ≤ n. (28)
n∑

i=1

piλi − c0μ < 0. (29)

(1− pi)λi − ciμ < 0, ∀1 ≤ i ≤ n. (30)
n∑

i=0

ci − C = 0. (31)

Theorem 4: Problem 4 is a convex optimization problem

that can be solved in polynomial time.
Proof: The proof is similar to that of Theorem 2. Due to

space limit and its redundancy, we omit the proof here.

B. RPS
In RPS, S0 is the regional proxy server, and pi is still the

fraction of requests that originate from Li and sent to S0. The

average response time for all requests is:

T̄p =

n∑
i=1

{
(1− pi)λi∑n

i=1 λi

1

ciμ− (1− pi)λi

}

+

∑n
i=1 piλi∑n
i=1 λi

1

c0μ−∑n
i=1 piλi

. (32)

We can see that, given the same pi’s, using RPS can result

in a smaller expected response than that of hierarchical de-

ployment, due to the lack of the communication delay, th. In

practical systems, we may not have the same pi’s for the two

strategies. It is definitely not true that RPS is always superior

to hierarchical deployment. Our goal is to show that RPS has

the potential to reduce system’s response time.
The server capacity allocation problem using RPS can be

formulated as follows (denoted as Problem 5):

min T̄p (33)

s.t. Equations (29)-(31)

We consider the problem with fixed pi’s, i.e., only ci’s are

optimization variables. The reason is that in practice, though

a service provider have full control over the local servers and

the proxy server, it may not have control over mobile users’

behaviors.
Theorem 5: Problem 5 has feasible solutions if and only

if C>
∑n

i=1 λi/μ. Given that, the minimum value of T̄p is:

T̄min
p =

√∑n
i=1 λi +

∑n
i=1

√
(1− pi)λi

μC −∑
i=1 nλi

. (34)

Proof: We use the same techniques as that in Theorem 1.

Details are omitted due to space limit.

2018 International Conference on Computing, Networking and Communications (ICNC): Green Computing, Networking, and
Communications

760

V. SIMULATIONS

A. Simulation Settings
The mean execution time of all requests are set as 1/μ =

0.4, with the units as seconds. The inter-arrival times 1/λi of

application requests are randomly generated within [0.5, 1].
We choose α = 100 such that the communication delay is

comparable to execution time with practical bandwidth values.

In the first group of simulations, we compare the optimal

expected response time of five cloudlet systems. The first

system, denoted as “Flat”, uses the purely independent flat

deployment. The second one, denoted as “Coop w/o delay”

represents a system using LCS without cooperation commu-

nication delay. The third one, denoted as “Coop with delay”,

uses LCS with communication delay. The fourth one, denoted

as “Coop fixed”, uses LCS with fixed server capacity; the fixed

server capacity is naively set as C/n. The fifth one, denoted

as “No coop fixed”, is a system without cooperation and the

servers’ capacities are naively set to the same values as in

“Coop fixed”. For each simulation, we change the bandwidth

for local cooperation from 20 Mbps to 1000 Mbps. We conduct

two sets of simulations, with each simulation targeting systems

with n=5 and 10 locations, respectively.

In the second group of simulations, we also compare the

optimal expected response time of five cloudlet systems. For

comparing these systems, we keep pi’s the same in each

system; also, pi’s take the same value for different locations.

The first system “Regional proxy” uses RPS. The second

(“Hierchical 1”), third (“Hierchical 2”), fourth (“Hierchical

3”), and fifth (“Hierchical 4”) use hierarchical deployment

with communication bandwidths as 20 Mbps, 50 Mbps, 100

Mbps, and 500 Mbps, respectively. For each simulation, we

vary pi’s from 5% to 60%, with a step size of 5%. We conduct

two sets of simulations, with each simulation targeting systems

with n=5, and 10 locations, respectively.

B. Simulation Results
The results for the first comparison group are presented

in Fig. 3. We can see that LCS without considering the

communication delay has the minimum expected response

time, which is consistent with our theoretical results. Taking

the communication delay into consideration (“Coop with de-

lay”),the system’s response time is still no greater than that of

“Flat”. when bandwidth is low and delay is large, “Coop with

delay” chooses not to cooperate; when bandwidth is large,

“Coop with delay” chooses to cooperate and thus achieves

smaller response time. When the bandwidth for cooperation

increases, the system’s response time decreases, because the

time spent on sending the requests is reduced. Comparing

“Coop fixed” against “No coop fixed”, we can see that, even

when the capacity on the servers are fixed, allowing local

cooperation among them still has the potential to reduce the

system’s response time.

The results for the second comparison group are presented

in Fig. 4. If RPS is possible, “Regional proxy” always achieves

the minimum response time. When the pi increases, meaning

that more requests are sent to the regional proxy center, the

system’s expected response time decrease. When pi is too

� ��� ��� ��� ��� ��� ��� ��� 	��
�� ����

���

���

���

���

���

���

��	

��

�
�
�
�
�
��
�
�	
�

�
�
�

�
��
�

�

���������

	
���

	��	��	�����

	��	�����	��

	��	�����

	�	��	�����

� ��� ��� ��� ��� ��� ��� ��� 	��
�� ����

���

���

���

���

���

���

��	

��

�
�
�
�
�
��
�
�	
�

�
�
�

�
��
�

�

���������

	
���

	��	��	�����

	��	�����	��

	��	�����

	�	��	�����

Fig. 3. Comparisons between flat deployment and LCS. n=5 and 10 for
the left and right sub-figures, respectively.

��� ��� ��� ��� ��� ���

��	

���

���

���

���

��	

���

�
�
�
�
�
��
�
�	
�

�
�
�

�
��
�

�

����������

	
������	�����

	�����������	�

	�����������	�

	�����������	�

	�����������	�

��� ��� ��� ��� ��� ���

���

��	

���

���

���

���

��	

���

�
�
�
�
�
��
�
�	
�

�
�
�

�
��
�

�

����������

	
������	�����

	�����������	�

	�����������	�

	�����������	�

	�����������	�

Fig. 4. Comparisons between hierarchical deployment and RPS. n=5 and
10for the left and right sub-figures, respectively.

small, increasing pi may result in slightly increased response

time; this means that when few users can send requests to a

regional proxy server, it is better not to adopt RPS. Using

hierarchical deployment, due to the communication delay

between local servers and the higher level server, the system’s

response time is much greater than that of RPS. Also, as pi
increases, the system’s expected response time may increase

or reduce, which is the results of two conflicting factors:

when pi increase, more requests can enjoy the shared resource,

and their execution time reduces; however, more requests will

experience the communication delay at the same time. If the

bandwidth from local servers to the higher level server is small,

the system’s response time increase as pi increases. If the

bandwidth is large, the system’s response time may decrease

with pi at some point.

VI. CONCLUSIONS

In this paper, we consider the cloudlet service problem from

the service provider’s point of view. We propose two cloudlet

server deployment strategies that can help to reduce system’s

response time for mobile applications. We demonstrate the

potential advantages of the two strategies over traditional flat

deployment and recently proposed hierarchical deployment

methods.

REFERENCES

[1] H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend
and perspectives,” in 2nd International Conference on Digital Information
and Communication Technology and it’s Applications, May 2012, pp.
195–202.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[3] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, Apr. 2016.

[4] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of Queueing Theory, 4th ed. New York, NY, USA: Wiley-Interscience,
2008.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

2018 International Conference on Computing, Networking and Communications (ICNC): Green Computing, Networking, and
Communications

761

		2018-06-19T16:05:49-0400
	Certified PDF 2 Signature

