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Under the limited budget, 
how to choose labeled data 
from the crowd to improve 
the accuracy of the 
classifier most?
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Uncertainty

Confidence-based,  margin-based and entropy-
based uncertainty measures

Label !" and !# are the first and second most 
likely predictions for instance $ under the 
classification model %(Θ).
The margin is ) = + !" $, Θ − + !# $, Θ .
The uncertainty of the model about $ is . x =
1 −).
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Weighted Density

The unlabeled data 
set ! and true 
labels which are 
actually unknown.

The current 
training set and 
the current 
classifier.

Collecting the 
most uncertain 
data instance.

Collecting the 
instance with the 
highest weighted 
density.
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Crowdsensing Framework & Problem
In each round, we 
try to maximize 
data utility under 
the budget of a 
round.
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Online Algorithm

! ∈ (0,1)

Marginal contribution:() * =
( * ∪ -) − ((*)
Marginal efficiency:() * /c)

In each stage, we recruit the 
coming worker if 
1)the marginal efficiency is 
not less than the threshold.
2)the budget in that stage is 
not run out of.  

We update the threshold at 
the end of each stage.
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Threshold Updating

Motivation Data 
Utility

Framework & 
Problem Algorithm Evaluation

We continuously choose the instance with the largest marginal 
efficiency until the budget is run out of. We use !(#$ ∪ {'})/(1 − 1/-)
as the estimation of the optimal data utility. 

We choose an optimal worker set # ∈ /′ to maximize data utility. 
The efficiency is e = !(#)/(34). The threshold is  -/5.

The competitive ratio is 
0.1218 if
1) we set 5 = 4.0648 and 

3 = 0.4390;
2) the contribution of 

one instance is 
infinitely small 
compared with the 
total data utility 
achieved by our 
algorithm;

3) workers arrive 
randomly. 
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Evaluation
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Two-class classification(logistic 
regression)

Multiclass classification(SVM)

Accuracy achieved in each round under different data utility models 
(Human Activity Recognition Using Smartphones Dataset)
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Data utility vs. # of coming
instances under different 
algorithms

Data utilities vs. budget
under different online 
algorithms.



Conclusion
1) In this paper, we have studied the data utility maximization problem under the budget 
constraint when leveraging crowdsensing in machine learning. 

2) We come up with a novel data utility model to bridge the gap between the performance of 
the trained model and the collected instances. 

3)We further design a fair online algorithm and achieve a non-trivial competitive ratio. 


