
Joint Coflow Routing and Scheduling in Leaf-Spine

Data Centers

Yang Chen and Jie Wu

Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu}@temple.edu

Abstract

Communication in data centers often involves many parallel flows that all
share the same performance goal (e.g. to minimize the average completion
time). A useful abstraction, coflow, is proposed to express the communication
requirements of prevalent data parallel paradigms such as MapReduce and
Spark. The multiple coflow routing and scheduling problem makes it chal-
lenging to derive a good theoretical performance ratio, as coexisting coflows
may compete for the same network resources such as link bandwidths. In
this paper, we focus on the coflow problem in one popular data center in-
frastructure: the Leaf-Spine topology. We first formulate the problem and
study the path selection issue on this two-tier structure. In order to mini-
mize the average coflow completion time (CCT), we propose the Multi-hop
Coflow Routing and Scheduling strategy (MCRS) and prove that our method
has a reasonably good competitive ratio. Extensive experiments and large-
scale simulations show that MCRS outperforms the state-of-the-art heuristic
schemes under the Leaf-Spine topology.

Keywords: Data centers, Leaf-Spine, coflow, routing, scheduling.

1. Introduction

With the explosive growth of data-parallel computation frameworks such
as MapReduce [1], Spark [2], Google Dataflow [3], etc., modern data centers
are able to process large-scale data sets at an unprecedented speed. In these
frameworks, data flows for one job may share a common performance, utiliza-
tion, or isolation goal [4]. In other words, applications do not care about an
individual flow’s behavior in their completion time or the fair sharing among
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Figure 1: Coflow abstraction.

them, as the last flow of an application dictates the job completion. An ab-
straction, coflow [5; 6], is used to model such application-level information
scenarios. A coflow is defined as a collection of parallel flows with a common
performance goal [7], shown in Fig. 1. Similar to compute and storage ab-
stractions [8], coflows expose application-level relationships to the network.
In contrast, traditional point-to-point flows from different applications are
indistinguishable [9]. The all-or-nothing observation has been captured for
other resource types in data-parallel clusters, e.g., a job represents a set of
tasks and a distributed file or dataset represents a collection of on-disk or in-
memory data blocks are leveraged in almost all aspects of building systems,
improving performance, scheduling resources, and providing fault tolerance
[10; 11; 12]. What makes coflows unique and more general is the coupled
nature of the network, unlike independent resources such as CPU speed or
disk/memory capacity. One must consider both senders and receivers to al-
locate network resources. With the rise and development of Software Defined
Networks (SDNs) [13], the requirements of high performance networks are
becoming more and more intense. For example, in the aspect of the packet
loss rate, data centers usually claim it to be around 2% [14], while the re-
quirements of Wide Area Networks (WANs) and carrier-grade networks are
much higher [15]. Specifically, the carrier-grade performance is often associ-
ated with the term, five-nines, representing an availability of 99.999%. As a
result, the requirement of routing and scheduling coflows becomes more and
more intense.

In this paper, we aim to minimize the average coflow completion time
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(CCT). The start time of a coflow is defined as the earliest arrival time
of all flows within the coflow. Our network topology is a typical two-tier
Clos topology consisting of only two switch layers: the spine switch tier
and the leaf switch tier. This network structure is called Leaf-Spine. The
reasons for applying Leaf-Spine are introduced in the forth and fifth sections.
Additionally, we only route the flows within the coflows once in order to avoid
the unnecessary packet reorder cost and the chaos of deleting and inserting
new forwarding rules in the forwarding tables [16]. Meanwhile, we rescale
the assigned bandwidth in order to further improve network utilization only
when some flows finish their transmissions.

Take Fig. 2 as an illustrating example. In this example, there are two
coflows: coflow a has two flows, fa

1 and fa
2 , with the size of 1 Mb and 3

Mb respectively; coflow b has only one flow, f b
1 , with a size of 5 Mb. They

are generated at the same time and all the link bandwidths have a 1 Mbps
capacity. As a reference point, the optimal average CCT of this example is
4.5 s. The optimal routing and scheduling patterns are shown in Fig. 2(c)
and Fig. 2(f). The routing strategy tends to balance the traffic loads and
the scheduling method is the Minimum Remaining Time First strategy.

When paths of all flows are fixed, excellent scheduling strategies can min-
imize the average CCT based on the given routing by determining the se-
quence and bandwidth of flows to send out traffic. However, taking no con-
sideration of routing cannot optimize the average CCT. We use Fig. 2(a)
and (c) to illustrate it. Fig. 2(a) shows a possible case of routing. With a
naive scheduling such as fair sharing, both coflow a’ and b’s CCTs are 8s.
Obviously, this is not good enough scheduling, which indicates that schedul-
ing also plays an important role in minimizing the CCT. Fig. 2(c) shows the
optimal scheduling approach based on the given routing case. The average
CCT is 5.5s, which still has a 1s gap to the optimal value. This indicates
that a proper routing strategy is also necessary for a better performance in
minimizing the average CCT. Additionally, separately arranging inter and
intra coflows cannot optimize the average CCT, either. Fig. 2(b) and Fig.
2(d) show the results when we apply the separate inter and intra coflow rout-
ing and scheduling strategy from [17]. This strategy first optimizes a single
coflow’s CCT when it occupies the network resource, then, it proportionally
scales down the bandwidth according to different coflows’ optimal CCT val-
ues. With this method, all the coflows tend to be finished at the same time.
In our example, its average CCT is 6s, which has a 1.5s gap to the optimal
value. This example motivates our design of jointly routing and scheduling
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(c) Optimal routing.

(d) Optimal scheduling up on (a). (e) A fair scheduling up on (b).
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Figure 2: A motivating example, where Figs. (a)-(c) show different routing schemes, and
Figs. (d)-(f) show the executing flow scheduling for Figs. (a)-(c).
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multiple coflows. We made three novel contributions in this paper.
First, instead of routing in only one-hop paths, we allow for two-hop

paths and give a blocking probability comparison analysis, which can further
improve network bandwidth utilization [18].

Second, we present both inter-coflow and intra-coflow algorithms based
on two crucial observations. Our objective is to minimize the average CCT
under the special Leaf-Spine topology. A sound competitive performance
ratio is given with a detailed proof. What’s more, in order to further reduce
the average CCT, we apply the work conservation method to coflows when
there are available leisure bandwidth resources in the network.

Our third contribution is a comprehensive performance evaluation of our
algorithms by simulations and experiments. We have built a prototype to val-
idate the solutions in a real testbed, and we have also conducted simulations
to obtain performance result with the real data trace.

The remainder of the paper is organized as follows: Section 2 surveys the
related work. Section 3 states the motivation and the problem formulation.
Section 4 studies the path blocking probability and introduces the alterna-
tive options for coflow routing paths. Section 5 focuses on the intra and
inter coflow routing and scheduling solutions over key observations. We also
provide a theoretical performance analysis of our scheme and prove it has a
reasonably competitive ratio. Sections 6 and 7 include the experiments and
simulations, respectively. The paper concludes in Section 8.

2. Related Work

Though coflow management is a relatively novel topic, a growing body of
recent work [19; 20; 21; 17] has demonstrated that using coflows can signif-
icantly improve the communication performance of distributed data-parallel
applications [22]. The coflow abstraction is first proposed as ”a network-
ing abstraction to express the communication requirements of prevalent data
parallel programming paradigms” [6]. Coflows are studied through the com-
munication requirements of diverse cluster computing applications and are
proposed to use grouped data flows as the network model for data parallel
jobs. Then two solutions, Varys [20] and Aalo [21], both employ the coflow
concept to develop flow scheduling solutions to minimize the coflow comple-
tion time. Specifically, Varys optimizes the completion time given the size
of each flow of all coflows, while Aalo assumes there is no prior knowledge
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about the coflow sizes. However, neither of them provides a performance-
guaranteed solution for multiple coflows. Specifically, Varys focuses on the
single coflow routing and scheduling, while Aalo introduces only heuristic
solutions.

Originally, some papers [20; 21; 23; 24] study coflow scheduling only. For
example, Varys [20] proposes heuristic scheduling algorithms to minimize
the average CCT and meet coflow deadlines. Aalo [21] divides coflows into
various priorities using the Coflow-Aware Lest-Attained Service (D-CLAS)
algorithm based on the data amount they have already sent. Barrat [25] also
brings task-awareness into network optimization. Unlike the above central-
ized works, Barrat [25] proposes a distributed algorithm for task-aware flow
scheduling. Qiu et al. [23] make a contribution to the first polynomial-time
deterministic approximation algorithm for the multiple coflows scheduling
problem. CODA [24] is the pioneer in detecting coflows in the individual
flows with the help of machine learning techniques.

Rapier [19] proves that scheduling-only coflow strategies cannot optimize
the application-level performance. Rapier takes both coflow routing and
scheduling into consideration, and advances a heuristic solution for a sin-
gle coflow with an approximation ratio. However, the theoretical bound is
loose and they didn’t include any performance-guaranteed solution for mul-
tiple coflows. When it comes to flow scheduling, before coflow abstraction is
proposed, there are numerous scheduling methods for minimizing the aver-
age flow completion time (FCT) and meeting flow deadlines. DCTCP [26],
D2TCP [27], and L2DCT [28] focus on improving flow completion time by
modifying the default behavior of the TCP at end-hosts, and thus do not
require a modification of switches or host hardwares. They rely on Explicit
Congestion Notification (ECN) for congestion notification. PDQ [29] and
pFabric [30] tag priorities on the packets in order to minimize the FCT and
reduce congestion, but need to modify their hardware. Yu et al. [17] propose
a rounding-based randomized approximation algorithm to minimize the aver-
age CCT. Its approximation ratio has a probability constraint. However, the
time complexity of their proposed solution is easily out of control because
of solving a linear programming problem. Additionally, its approximation
ratio is linearly proportional to the number of coflows, which could be rel-
atively large when a large amount of coflows are included. [31] proposes a
near-optimal network design for coflows that can be implemented on top on
any transport layer (for flows) that supports priority scheduling. However,
the priority of each coflow as well as the ordering of all flows belonging to one
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coflow needs to be known in advance. We propose a performance-guaranteed
solution and prove it has a better approximation ratio in a special network
topology, compared to [17]. The single coflow routing and scheduling prob-
lem for minimizing the CCT has been proven NP-hard [32]. With multiple
coflows, the inter-coflows’ and intra-coflows’ paths will overlap and flows will
compete for the same link resources. In addition, cluster computing frame-
works are dynamic in providing enough prior knowledge, which demands an
online approach. As a result, we reduce the problem to a specific data cen-
ter topology, the two-tier Leaf-Spine structure. Additionally, we generate a
performance-guaranteed solution for multiple coflows with intuitive insights.

3. Framework

3.1. Motivation and Problem

This paper studies the multiple coflows’ online routing and scheduling
problem in order to minimize their average CCTs, which has been a popular
objective in several works [29; 30; 20; 21]. The coflow routing and schedul-
ing problem is challenging and current methods do not get good enough
theoretical results. It has been proven that even a single coflow trying to
minimize the CCT is NP-hard [32], not to mention multiple coflows. This
conceptual difficulty of the NP-hard problem arises from combining packing
constraints due to the existence of capacities with the path selection under
an arbitrary topology. What’s more, the multiple coexisting inter-coflows
and intra-coflows will overlap on paths with others, which will result in a
competition for the same network resources, such as link bandwidth. We are
motivated by the fact that none of a single routing, or a single scheduling,
or a separate inter- and intra- coflow routing-and-scheduling strategy is suf-
ficient enough to optimize the average CCT. Furthermore, in this paper we
focus on a special and simple two-tier Clos topology, the Leaf-Spine structure
[33; 34], which is quite popular in today’s data centers. We aim to propose
performance-guaranteed routing and scheduling strategies in the Leaf-Spine
topology.

We use Fig. 3 to further explain the definition of the coflow and some
key observations. In this example, we assume at time t, there are only two
coflows: coflows a and b. Coflow a in the yellow solid line has two flows,
f
(a)
1 from h1 to h3 and f

(a)
2 from h2 to h3, both with a workload size of 1Mb;

coflow b in the dotted blue line has two flows, f
(b)
1 from h1 to h2 and f

(b)
2

from h2 to h3, both with a size of 3Mb. They are generated at the same
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Figure 3: Coflow example.

time and all the links have a 1Mbps bandwidth. A possible path assignment
plan is shown in Fig. 3. The flows’ paths are all one-hop paths, which pass
through only one spine switch. The optimal scheduling plan arranges both
flows of coflow a with a bandwidth 0.25Mbps and both flows of coflow b with
a bandwidth of 0.75Mbps. After 1s, a new coflow c including only one flow
f
(c)
1 is generated from the source h1 to the destination h3. All the one-hop

paths from h1 to h3 are busy and the biggest available bandwidth for all the
paths is 0.25Mbps, which passes by L1, S2, and L3. Under this circumstance,
the optimal solution’s average CCT for these three coflows is 4.75s. However,
we notice that there is a detour two-hop path with an available bandwidth
of 0.75Mbps, whose path is the grey line through L1, S1, L2, S2, and L3.
Applying this path to f

(c)
1 , we get that the average CCT is 4.25s, which

is 0.5s shorter than the former one-hop path. This result inspires us not to
confine to only one-hop paths in the Leaf-Spine network. It is likely to obtain
a better average CCT by trading with a longer path.

There are two key observations in our strategy as follows:

Observation 1. Inter-coflow scheduling should apply the Minimum Remain-
ing Time First strategy.

This observation is inspired by the famous optimal job scheduling ap-
proach: Smallest Remaining Time First (SRTF) [35]. We are given a set
of jobs with different processing times. In order to minimize the total com-
pletion time, SRTF selects the process with the smallest amount of time
remaining until all jobs are finished. It’s a preemptive online method. In
this case, even if a coflow is occupying the bandwidth in the network, it
will be preempted by the new-coming ’smaller’ coflows. It is worth mention-
ing that our objective can be extended to minimizing the weighted average
CCT. Its corresponding optimal scheduling approach is Weighted Smallest
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Remaining Time First (WSRTF)

Observation 2. Big intra-coflows should be scheduled first when we have an
idle bandwidth.

It is intuitive that it is always the big flows in a single coflow that are the
last ones to finish their transmissions. As a result, in order to shorten the
average CCT, if there is leisure bandwidth available for multiple flows, we
should select the flows with a larger workload to execute first.

3.2. Model and Formulation

A Leaf-Spine network is modeled as a directed graph, G = (V,E), where
E is the edge set and V is the node set. The network size is denoted as
n = |V |. In data center networks (DCNs), each node, v ∈ V , can be a
server or a switch. Each edge, e ∈ E, has a capacity of Re. There are two
layers of switches: leaf switches and spine switches. A series of leaf switches,
L, form the access layer. These switches are fully meshed to a series of
spine switches, S. A coflow is a collection of related parallel flows with a
common performance goal (e.g. to minimize the average CCT in this paper).
Assume there are totally m coflows during the whole process. Here we need
to mention that some flows may have a different performance evaluation
metric, for example, delay-sensitive flows with a high priority. In this paper,
we do not include them in the input of our problem. Usually, the network
will reserve some bandwidth for these special flows [36]. Denote the ith coflow
as Ci (1 ≤ i ≤ m), which arrives at time Ti and contains wi individual flows.
Here we define the arrival time Ti of the coflow Ci as the earliest arrival time
of all individual flows within the coflow Ci. A flow j (1 ≤ j ≤ wi) within a
coflow Ci is defined by a 3-tuple (sj, dj, vj) ∈ Ci, where sj and dj ∈ V are the
source and destination nodes, and vj > 0 is the flow volume. The available

path set and the bandwidth for flow j in coflow Ci are denoted as P
(i)
j and

b
(i)
j , respectively. For the ease of reference, we summarize notations in Tab.

1.
Without loss of generality, we assume that a coflow Ci has all the infor-

mation about its flows and starts to transmit when it arrives at the network
at time Ti, which is similar to [17]. At time x ≥ Ti, a flow (sj, dj, vj) ∈ Ci is

then forced to be routed on p
(i)
j with a rate of b

(i)
j . Note that b

(i)
j can be zero

for some time x’s, which means that this flow is waiting for transmission.
Because we relax our problem on the special Leaf-Spine topology, the path
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Table 1: Symbols and Definitions.

Symbols Definitions

V,E, L, S, C set of nodes, edges, leaf, spine switches and coflows

m,n number of coflows and nodes

v, e, Ci a node, an edge, and the ith coflow

Ti, wi arrival time and number of flows in coflow Ci

sj, dj, vj source, destination, and volume of flow j

P
(i)
j , b

(i)
j path set and bandwidth of flow j in coflow Ci

for each flow is simplified. In our paper, we only allow one-hop and two-hop
paths, which limits the path length to be less than 4 units (1 unit is one link).
A one-hop path passes only one spine switch during the flow’s transmission,
and so on. The reason is introduced in the next section. Furthermore, the
number of paths between any pair of nodes is bounded by poly(n), because
there are |S| one-hop paths and |S|2 × (|L| − 2) two-hop paths and we have
O(|S| + |S|2 × (|L| − 2)) = O(|S|2 × (|L| − 2)) = O(n3) = O(poly(n)). A
routing and scheduling strategy for a coflow Ci is defined as

Si := {p(i)j (x), b
(i)
j (x)}wi

j=1 (1)

A time-slotted system is considered. We then define the CCT ti for coflow
Ci to be the minimum time such that

Ti+ti∑
x=Ti

b
(i)
j (x) ≥ v

(i)
j , for all 1 ≤ j ≤ wi (2)

which is the earliest time that all the flows in Ci finish transmitting their
data. We further define the total CCT for all the coflows as

t =
m∑
i=1

ti

Since frequent flow rerouting will cause a severe coordination overhead, which
is not desirable in practice, in our paper, each flow’s path can only be decided
once. A valid strategy guarantees that each link’s bandwidth is no less than
the sum of the assigned bandwidth for all the flows. Information about the
future coflows is not known. With the above settings, we define the online
multiple coflow routing and scheduling problem as follows:
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Problem 1. In a network, m coflows C1, C2, ..., Cm arrive at time T1, T2, ...,
Tm. The information of every coflow Ci := {(sj, dj, vj)}wi

j=1 is given at its ar-
rival, which includes the corresponding source-destination pair, and its vol-
ume. The available path set for the flow j ∈ Ci is P i

j consisting of its one-hop
and two-hop paths. The problem is designing an algorithm to find a valid
routing and scheduling strategy, {Si}mi=1, for each coflow so that the average
completion time of the coflows, t

m
, is minimized.

4. Routing Path Block Probability Analysis

In our paper, we assume that the routing path is either one-hop or two-
hops long under the Leaf-Spine topology. It was inspired by a recently pro-
posed distributed routing mechanism for Leaf-Spine topology, called CONGA
[36]. It schedules paths based on a real-time fabric congestion situation,
which is obtained through feedbacks from the remote switches. CONGA
limits packets to a one-hop routing path. However, traffic is likely to be
heavily unbalanced in data centers because of bursts in just a few congested
links, shown as the grey dotted lines in Fig. 4. Other colored lines are the
current idle links. In this example, when Server a wants to transfer a flow to
Server b, the blue one-hop path is chosen. But if the destination is Server c,
there are no available congestion-free one-hop paths, and CONGA will suffer
severe transmission delays. However, we notice that a two-hop yellow line
path [18], which detours at the second leaf switch, is able to avoid the con-
gested links. Consequently, in order to further balance the loads, we provide
an alternative to a two-hop routing path by leveraging relative leisure links to
relieve local traffic pressure when all direct one-hop paths are heavily-loaded.
The specific theoretical analysis is as follows:

Suppose there are |S| spine tier switches and |L| leaf tier switches. We use
ρb and ρn to denote the blocking and non-blocking probability of its paths.
p(i, k) is the non-blocking probability of the link from switch i to switch k.
As a result, the blocking probability of the one-hop path is calculated as

ρb(i, j) =
∏
k∈S

[1− p(i, k)× p(k, j)] (3)

So, the non-blocking possibility is

ρn(i, j) = 1− ρb(i, j) = 1−
∏
k∈S

[1− p(i, k)× p(k, j)] (4)
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Suppose L′ is the set of all the leaf switches except the flow’s source switch
i and destination switch j. The non-blocking probability of our path set is
calculated as

ρ′n(i, j)=ρn(i, j)+
∑

k,k′∈S,m∈L′
[p(i, k)× p(k,m)×p(m, k′)×p(k′, j)]

The difference between ρ′n(i, j) and ρn(i, j) is calculated as

ρ′n(i, j)−ρn(i, j)=
∑

k,k′∈S,m∈L′
[p(i, k)×p(k,m)×p(m, k′)× p(k′, j)]

Intuitively, the bigger the non-blocking probabilities of the links from the
source to the idle leaf switch and from the idle switch to the destination are,
the larger the difference of ρ′n−ρn is. That means our strategy’s advantage is
more obvious. The traffic spike between one pair of nodes and an unbalanced
bursty traffic condition can make our routing strategy superior [18].

Here it is worth to mention that multiple-hop (more than 2) paths can also
be applied to route flows, especially when the traffic distribution is extremely
unbalanced. However, a two-hop path uses double bandwidth resource of a
one-hop path, a three-hop path uses triple and a k-hop path uses k times,
indicating the extra bandwidth consumption increasing with the path length.
Additionally, a longer path needs a longer transmission time and more for-
warding entries in forwarding tables of the switches. However, Katta et al.
[16] point out the insufficient memories of the forwarding tables. As a re-
sult, we only allow one-hop and two-hop paths in this paper. We also do
the simulations to indicate the suitability of allowing no more than two-hop
paths. Additionally, in order to improve the performance, the turning point
from a one-hop path to a two-hop path is based on an empirical threshold
ratio. When the completion time of a single flow in a one-hop path is larger
than the threshold ratio times its completion time in a two-hop path, we
apply the two-hop path; otherwise, we still use its one-hop path. This is be-
cause applying two-hop paths utilizes more bandwidth, which may degrade
the network performance afterwards. Only when the two-hop paths can save
more time, we use the two-hop paths. We test the turning point effect in our
simulations as well.

5. Coflow Routing and Scheduling Strategy

We design our algorithms in order to satisfy several important properties
introduced in [19]:
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Figure 4: Unbalanced traffic situation.

• Scalability : Our scheme is necessarily an online system. Upon a new
incoming coflow, the algorithms must be able to quickly and efficiently
decide the routing paths, rates, and scheduling orders for all individual
flows in the coflow. For this purpose, it must run in real-time with a
low time complexity.

• Starvation-free: As our algorithm allows bandwidth preemption, we
must ensure that any coflow should not starve for an arbitrarily long
period, though this might worsen the average CCT in the network.

• Work-conserving : Work-conservation means that the network resource
sits idle only if there is no traffic demand in the network. We require the
algorithm to be work-conserving to fully utilize the network capacity
and to minimize the average CCT.

• Readily deployable: The system should be readily implementable with
existing commodity switches and easy to deploy without modifying any
network devices.

Our following algorithm, Multi-hop Coflow Routing and Scheduling strat-
egy (MCRS), optimizes the average CCT in the data-intensive Leaf-Spine
topology DCNs by considering both the routing and scheduling of the coflows.
In order to obtain scalability and ensure coexistence, MCRS mainly focuses
on large coflows in the DCNs. We use a site broker to periodically mea-
sure the usage of background traffic in each link, and update the available
bandwidth for the large coflows we need to schedule.

5.1. Single Coflow Routing and Scheduling

First, we consider the single coflow case: Ci := {(sij, dij, vij)}
wi
j=1. Accord-

ing to the above setting, for each flow j ∈ Ci, the source-destination pair
and the volume are given. The path set P i

j for each flow j ∈ Ci only includes
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one-hop and two-hop paths in order to limit the number of the paths for each
flow within O(n3). The capacity for each edge e is Re. Our goal is to find
a valid strategy for C with the minimum average CCT when it monopolizes
the network. We use Program A to describe the initial problem as follows:

min ti (5)

subject to

vij = bij × ti, 1 ≤ j ≤ wi (6)
wi∑
j=1

∑
e∈p

bjxj,p ≤ Re, e ∈ E (7)∑
p∈P i

j

xj,p = 1, 1 ≤ j ≤ wi (8)

xj,p = {0, 1}, 1 ≤ j ≤ wi (9)

In this program, variable ti denotes the CCT of C. Variable bij denotes the
average bandwidth of the j-th flow, and variable xj,p denotes whether or not
we choose path p for the j-th flow, which has an integer value of 0 or 1. It
is impractical to find the optimal solution of Program A, because it is not
only nonlinear, but also has binary variables. This problem is an integer
multi-commodity flow problem that is proven to be NP-hard [32]. Therefore,
we do some equivalence transformations to Program A. Based on the first
constraint, we know that the rate of each flow is directly proportional to its
volume, i.e., bij = αi × vij. As for the binary variable, we relax the binary
constraint to a continuous one. Thus, we have αi = 1

ti
and Program A can

be modified as:

max αi (10)

subject to

wi∑
j=1

∑
e∈p

αiv
i
jxj,p ≤ Re, e ∈ E (11)∑

p∈P i
j

xj,p = 1, 1 ≤ j ≤ wi (12)

0 ≤ xj,p ≤ 1, 1 ≤ j ≤ wi (13)
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Algorithm 1 The Intra-coflow Algorithm

In: Coflow Ci = {(sj, dj, vj)wj=1};
Out: ti for Ci and {pij, bij} for each flow belongs to Ci;

1: Calculate the optimal solution {yj,p, p ∈ P i
j}wj=1 for the Linear Program

B.
2: for each flow fj in Ci do
3: Choose the one-hop or two-hop path p ∈ P i

j with max{yj,p} as the
route pij for fj.

4: Find the link e∗ with the maximum (
∑

e∈pij
vij)/Re.

5: ti = (
∑

e∗∈pij
vij)/Re∗ .

6: for each flow fi in C do
7: bij = vij/ti.
8: return ti and {pij, bij}.

However, the product of the two variables αi and {xj,p} in its above first
constraint makes the problem a concave problem that is hard to handle. So,
we bring in new variables {yj,p} to replace the product, i.e., yj,p = αixj,p.
According to Eq. 14, we get αi =

∑
p∈P i

j
yj,p = 1

wi

∑wi

j=1

∑
p∈P i

j
yj,p. Conse-

quently, our problem can be transformed to the linear Program B as follows:

max
1

wi

wi∑
j=1

∑
p∈P i

j

yj,p (14)

subject to

wi∑
j=1

∑
e∈p

vjyj,p ≤ Re, e ∈ E (15)

yj,p ≥ 0, 1 ≤ j ≤ wi (16)

Program B is a linear programming problem that has
∑wi

j=1 |P i
j | variables

and |E| +
∑wi

j=1 |P i
j | constraints. The optimal fractional solutions, {yj,p}, of

the relaxed LP can be obtained in polynomial time using standard solvers.
We provide two algorithms for intra- and inter- coflows respectively in

Alg. 1 and Alg. 2. The algorithms are invoked whenever a new coflow comes
or an existing coflow finishes. More specifically, when a new coflow arrives,
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Algorithm 2 Smallest Remaining Coflow First Inter-coflow Algorithm

In: All the coflows C’s information Ci := {(sj, dj, vj)}wi
j=1;

Out: The coflow executing order;

1: Use the Intra-coflow Algorithm to calculate all the remaining coflows’
completion time ti;

2: Sort these coflows’ completion time ti non-increasingly according to their
transmission time;

3: while some coflows are not finished do
4: Apply the allocation to coflow with the smallest ti.
5: Schedule biggest flows if there are remaining bandwidths.

Alg. 1 is used to compute the path and bandwidth arrangement for each
single flow of it. Alg. 2 is used to sort the order of coflows that are waiting
to be transmitted. When an existing coflow finishes, the bandwidth of all
the links that are occupied by its flows will be released. As a result, we need
to decide which coflows should take up the released bandwidth. The details
of these two algorithms are as follows:

Alg. 1 is used to solve the single coflow routing and scheduling problem
with a minimum CCT. It first solves the linear program B in Line 1. Then
lines 2-3 schedule each flow to its one-hop path with the maximum band-
width and calculate its completion time. If it is less than the current coflow
completion time, we will try to check whether its two-hop paths have a path
with a larger bandwidth. After choosing the path with the shortest comple-
tion time, we scale up all the arranged flows in order to make sure they have
the same completion time in lines 4-5 and lines 6-7 allocate the bandwidths
for each flow. Line 8 returns the completion time of the coflow Ci as well as
the paths and allocated bandwidths for all flows of Ci.

Alg. 2 describes the inter-coflow arrangement method of MCRS. It is
easy to understand. Line 1 calls Alg. 1 to calculate the completion time of
each coflow. We sort the coflows in the order of their remaining completion
times in line 2 and execute them one-by-one in order in lines 3-4. Line 4
improves the performance by utilizing the leisure bandwidth resources.

Preliminaries: When we say an algorithm for the problem is ρ-competitive,
we mean that for all k (1 ≤ k ≤ m), the online algorithm returns a valid
strategy for each coflow in the set {(Ci, Ti)}ki=1 that has a completion time of
at most ρ times its minimum completion time under the offline setting. The

16



offline setting means that the information of the posterior coflows is known
in advance (the knowledge of (Ci, Ti) for j > i).

Theorem 1. The Alg. 1 is |S|2(|L| − 2)-competitive, where |S| and |L| are
the numbers of spine and leaf switches.

Proof: Suppose the solution of the Program B is {y′j,p}. From Alg. 1,
we route each flow to the path with the maximum {yj,p} and hence, we have
yj,p ≥ y′j,p/|S|2(|L| − 2), where |S|2(|L| − 2) is the maximum number of the
candidate paths for the flow j. This is a loose bound, because in practice, the
number of paths used in the optimal solution of Program B is much smaller
than the maximum number of paths. �

5.2. Multiple Coflow Routing and Scheduling

From Thereom 1, we know that the competitive ratio ρ of Alg. 1 executes
a single coflow. Then, we apply Alg. 2 to multiple coflows. The underly-
ing scheduling policy is based on the well-known minimum remaining first
(MRTF).

Theorem 2. Suppose the competitive ratio of Alg. 1 is ρ. Then, Alg. 2 is
(m+ 1)/2×ρ-competitive for the online multiple coflow routing and schedul-
ing problem.

Proof: Suppose OPT is the offline minimum completion time for {(Ci, Ti)}mi=1

and t is the completion time of our strategy. Denote OPTi as the opti-
mal completion time for coflow Ci. After applying Alg. 2, the coflows are
renumbered as C ′1, C

′
2, ..., C

′
m, whose completion time has the relationship of

OPT1 ≤ OPT2 ≤ ... OPTm. If our strategy is without work conservation, we
only allow one coflow to transmit after the last coflow finishes, which means
every coflow will monopolize the network. The time of this situation is t′ and
we have t < t′. Trivially, the completion time of the coflow i is

ti = OPT1 +OPT2 + ...+OPTi

Then, t′ can be represented as

t′ = t1 + t2 + ...+ tm

= (OPT1) + (OPT1 +OPT2) + ...+

(OPT1 +OPT2 + ...+OPTi)

=
m∑
i=1

(m− i+ 1)×OPTi

(17)
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Because of OPT1 ≤ OPT2 ≤ ... OPTm, apply the Chebyshev’s inequality,
and we get

m∑
i=1

(m− i+ 1)×OPTi ≤
1

m
(

m∑
i=1

OPTi)(
m∑
i=1

i)

=
1

m
(

m∑
i=1

OPTi)
m(m+ 1)

2

=
(m+ 1)

2
(

m∑
i=1

OPTi)

(18)

Thus, we have

t ≤ t′ ≤ (m+ 1)

2
(

m∑
i=1

OPTi) (19)

Therefore, our theorem is proven. �
Theorem 2 shows that our MUSR can achieve a reasonable performance

bound. Furthermore, the experiments in the next section show that our
strategy has a more superior performance than the current methods. Here
we need to mention that the approximation ratio of our proposed solution
is still linear to the number of coflows, but it is almost half of that of the
one in [17]. Additionally, with a special network topology, we can derive
the approximation ratio more specifically. We can combine the results of
Theorem 1 and Theorem 2 to get the following corollary.

Corollary 1. Our algorithm is |S|2(|L| − 2)(m+ 1)/2-competitive, where m
is the number of coflows.

Proof: According to Theorem 1, ρ = |S|2(|L| − 2). Then from Theorem
2, the approximation ratio of our algorithm is calculated as (m+ 1)/2× ρ =
(m+ 1)/2× |S|2(|L| − 2). Compared to the performance bound in [17], our
algorithm MCRS has a much tighter competitive ratio. �

5.3. Work-Conservation Improvement

From the above two algorithms, we know that each coflow will monopolize
the network when it is transmitting. However, some idle bandwidth will be
wasted, which should be used to execute more flows. We pursue the work-
conserving property by distributing the remaining bandwidth to flows to
further increase the overall system performance.

18



Figure 5: The front and back views of our testbed.

The challenge in distributing the remaining bandwidth is determining the
preempting order of flows. At first, for the coflows that have already been
scheduled, their CCTs cannot be improved by allocating more bandwidth to
their intra-flows. Therefore, among all the coflows, those that have not been
scheduled should have a higher priority in using the remaining bandwidth.
This also helps prevent coflow starvation. Within a coflow, we prefer to
allocate more bandwidth to the larger flows than to the smaller ones. This
is because the flows with a larger traffic volume are more likely to be the
bottleneck of a coflow, i.e., complete the transmission last if all the flows are
served by a best-effort delivery. Based on this observation, when there is
free bandwidth in the network, we allow the “elephant” flows to utilize the
resources first.

6. Testbed Evaluation

We evaluate MCRS using testbed experiments in this section and using
large-scale simulations in the next section.

6.1. Configurations

We do realistic transmission experiments on the testbed of our lab, whose
front and back photos are shown in Figure 5. The testbed contains two Cisco
switches (8 ports) and three Pica switches (48 ports). Each Pica switch
connects with two 64-bit Dell Power Edge R210 servers. Each server has 2.4
GHz CPU and 4 GB memory and is accessible via the connections offered
by the switches. Grnlntrn is the controller, which is constructed by a Dell
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Grnlntrn Server
10.2.0.1

Pica8-1-ctl Switch
10.2.0.2

Pica8-2-ctl Switch
10.2.0.3

Pica8-3-ctl Switch
10.2.0.4

Server 13
10.100.0.13

Server 14
10.100.0.14

Server 25
10.100.0.25

Server 26
10.100.0.26

Port 2
Port 45

Port 47Port 46

Port 1
Port 1

Port 3Port 2

Figure 6: Topology of the test bed.

Power Edge R210 server. The capacity of all the physical links in our testbed
is 1Gbps.

The topology we use is shown in Figure 6. We implement the configura-
tion of our toy example in Fig. 2. Due to the number of hardwares in our lab,
the testbed has a relatively small size. However, this paper tends to focus
on proposing some theoretical results instead of just heuristic ones. We hope
our performance-guaranteed solution in this paper can inspire more following
works. We utilize the virtual port transmission function of the Pica8 SDN
switch, which can serve as two independent switches when we generate two
virtual ports. Additionally, the virtual port can limit the transmission rate.
As a result, in Figure 6, Pica8-1 works as two spine switches in the example
and Pica8-2 and Pica8-3 work as leaf switches, respectively. Thus, we are
given two coflows: coflow a has two flows, fa

1 and fa
2 , with the size of xMb

and 3xMb respectively; coflow b has only one flow, f b
1 , with a size of 5xMb

(x ∈ 2nMb, n ∈ {0, 1, 2, 3, 4, 5, 6}). The source of fa
1 and f b

1 is Server 13,
while the source of fa

2 is Server 14. The destination of all flows is Server
25. All flows are generated at the same time. There are two comparison
transmission plans. The routing of the first comparison plan, shown in Fig.
2 (a), is an arbitrary routing while its scheduling is optimal corresponding
to its routing, shown in Fig. 2 (c). The routing of the first comparison plan,
shown in Fig. 2 (b), is an optimal routing while its scheduling is the fair
allocation scheme, shown in Fig. 2 (d). We use the average CCT to evaluate
the performance of our algorithm over the other two. The completion time of
each flow is measured as the end-to-end delay of transmitting the flow load
[37].
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Figure 7: Results of the testbed.

6.2. Evaluation Results

The results are shown in Fig. 7. Fig. 7(a) illustrates the transmission
time of two coflows including three flows in total. The time is measured
when there is only one flow transmitting through its path. It reveals the
shortest completion time of each flow with full support of bandwidth. We
test three flows with the traffic load starting at 1 Mb, 3 Mb and 5 Mb. Each
of them doubles their loads in the next round of transmission. So we have
tested 15 transmission times of distinct flows, shown in 7(a). The tendency
of each color-bar is similarly increasing. For each color-bar, when the load
of a flow doubles, its transmission time is also changed to nearly two times.
For example, the average tested transmission times of a 10 Mb flow and a 20
Mb flow are 88570 microseconds and 177211 microseconds. The time almost
doubles, which proves the correctness and generality of our testbed. We also
find that the ratio between the transmission time of a flow with a load 2x Mb
and that with a load x Mb is decreasing slightly when x is increasing. This is
because with the load increasing, the transmission time increases; the other
processing times, such as queueing delay and propagation delay, are roughly
constants, which has less influence on the flow’s completion time.

Fig. 7(b) shows the average CCT of the three algorithms. It is obvious
that our MCRS always has the least average CCT. The differences between
MCRS and other algorithms are larger when the traffic loads of flows are
heavier. When the loads are 1 Mb, 3 Mb and 5 Mb, the average CCT ratios
between MCRS and other two algorithms are 81.84% and 76.17%. When
the loads are 64Mb, 192Mb and 320 Mb, the average CCT ratios between
MCRS and other two algorithms are 81.76% and 74.90%, both of which
are smaller than the ratios with lighter traffic loads. It indicates that the
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longer transmission time is, the more outstanding our MCRS is compared
with the other two. Additionally, the Arbitrary Routing algorithm has a
better performance than the Fair Scheduling algorithm. It demonstrates that
scheduling is more important than routing to some extent when the objective
is to minimize the average CCT. Obviously, the joint routing and scheduling
strategy is better than either of the single influence factor algorithms since
both routing and scheduling factors effect the coflow transmission time.

7. Performance Evaluation

In this section, we evaluate our proposed algorithm’s, MCRS, perfor-
mance by packet-level simulations. We use a suite of production traces in
the Coflow-Benchmark as input in our simulations [38]. These traces are
synthesized based on the one-hour workload collected from Facebook. We
compare MCRS with the following state-of-the-art methods: 1) Scheduling-
only: MCRS with only one-hop paths no matter the link congestion; 2)
Routing-only (illustrated in Fig. 8(a)): all the individual flows (solid lines)
are routed by ECMP [39], in which all flows’ bandwidths are assigned by the
max-min fairness strategy; 3) Heuristic (illustrated in Fig. 8(b)): all coflows
(dashed line) equally share links (solid line) and bandwidth saving through
alignment with the maximum completion time in a non-preemptive way [40].
Here, we highlight our key results:

• For both the average and maximum coflow completion time, MCRS
outperforms the Routing-only, Scheduling-only, and Heuristic strate-
gies.

• MCRS has a satisfying performance in the aspects of CCT and the
maximum concurrent coflow number when applied to different traffic
loads.

• MCRS consistently outperforms the baseline Scheduling-only strategy
over a wide range of values for different coflow parameters, such as
the number of coflows, the size, the width, and the inter-coflow arrival
intervals.

7.1. Experimental Settings

Coflow Parameters: A coflow is measured by three main features: 1)
width: the total number of individual flows; 2) length: the size of the largest
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4. Simulation
l Four comparison algorithms

¡ MCRS: Multiple Coflow Routing and Scheduling (our method)

¡ Scheduling-only: MCRS with only one-hop paths (baseline)

¡ Routing-only*: All flows routed by ECMP (coflow non-awareness)

¡ Heuristic*: All coflows equally share links and bandwidth saving 
through alignment with the maximum time[2] (* non-preemptive)

Routing-only Heuristic

[2] Barrier-Aware Max-Min Fair Bandwidth Sharing and Path Selection in Datacenter Networks (IC2E ’16)

(a) Routing-only.

4. Simulation
l Four comparison algorithms

¡ MCRS: Multiple Coflow Routing and Scheduling (our method)

¡ Scheduling-only: MCRS with only one-hop paths (baseline)

¡ Routing-only*: All flows routed by ECMP (coflow non-awareness)

¡ Heuristic*: All coflows equally share links and bandwidth saving 
through alignment with the maximum time[2] (* non-preemptive)

Routing-only Heuristic

[2] Barrier-Aware Max-Min Fair Bandwidth Sharing and Path Selection in Datacenter Networks (IC2E ’16)

(b) Heuristic.

Figure 8: Illustration of comparison algorithms.

flow it contains; and 3) size: the total amount of data in megabytes. Similar
to [20; 17], we divide non-zero coflows into four categories as shown in Table
2. A coflow is W (wide) if it involves more than 50 flows and otherwise it
is N (narrow); a coflow is L (long) if its length is greater than 5MB and
otherwise it is S (short).

Network Topology: The network topology is shown in Figure 10, con-
sisting of 64 leaf and 32 spine switches. Each leaf switch is connected to
eight servers. Each link has a bisection bandwidth of ten Gbps. Our follow-
ing experiments prove the efficiency and superiority of our model, MCRS,
comprehensively. Our simulation is accomplished by using MATLAB.

Metrics: To compare our algorithms with the other three algorithms,
we measure the average CCT. The independent variable is the traffic load
ratio, which is the ratio between the sum of all the allocated bandwidth
and the total initial link capacity. To test the impact of coflow parameters,
we measure the improvement, η, in the average CCT when comparing two
schemes by changing the coflow parameters. Take Scheduling-only as the
baseline. It can be calculated as

η(%) =
ave CCT (Baseline)−ave CCT (MCRS)

ave CCT (Baseline)

We run multiple times for each case and calculate the average as our final
result.

7.2. Impact of Path Hops and Threshold

In this subsection, we test the relationship of the average CCT with the
path hops (path length) and the threshold, respectively. We change the
traffic load ratio from 0.1 to 0.9 with an interval of 0.1. In Fig. 9(a), each
line represents the result of routing flows in no more than k-hop paths (k =
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Figure 9: Impact of path hops and threshold.

Coflow type 1 2 3 4

Length Short Long Short Long

Width Narrow Narrow Wide Wide

Ratio of coflows 52% 16% 15% 17%

Ratio of bytes 0.01% 0.67% 0.22% 99.10%

Table 2: Coflow categories by length and width.

{1, 2, 3, 4}). We find that when the traffic load is heavy, the average CCT of
multiple-hop paths increases rapidly. For example, when the ratio changes
from 0.8 to 0.9, the average CCT of all four-hop paths becomes 40.2% longer.
However, when the traffic load is light from 0.1 to 0.6, it is acceptable of two-
hop paths since the average CCT is only 0.52 times on average larger than the
one-hop paths. However, the average CCT of three-hop paths is 1.73 times
larger than the one-hop paths. It indicates that applying two-hop paths
does not increase the bandwidth consumption too much while three-hop and
four-hop paths consume too much extra bandwidth leading to a much longer
average CCT. In Fig. 9(b), the result shows that the impact of the threshold
changing into two-hop paths on the average CCT. 65% has the minimum
average CCT, indicating the suitability of our threshold value. 50% is also
acceptable while 35% and 80% have relatively longer average CCTs. This
is because either too many or too few two-hop paths are far from optimal
scheduling and routing. Consequently, we allow one-hop and two-hops for
routing flows and the turning point is 65% of the longest coflow completion
time.
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Figure 10: Network topology for simulations.
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Figure 11: Performance comparisons between MCRS and others.
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7.3. Performance Comparison
In this section, we evaluate the performance of our strategy, MCRS,

against the Routing-only, Scheduling only, and Heuristic methods. Fig. 11
illustrates our results. We compare these methods in three aspects: the
average CCT (Fig. 11a), the maximum CCT (Fig. 11b), the number of
the concurrent coflows in the network (Fig. 11c) and the execution time of
applying the algorithms (Fig. 11d).

Fig. 11a shows that all these four strategies’ average CCTs increase with
the growth of the traffic load. It can be explained that with more coflows,
the competition for bandwidth becomes more severe and more coflows have
to wait a much longer time to transmit. We can observe that MCRS always
outperforms all the other methods. It can reduce the average CCT by up
to 71.3% compared to the Routing-only strategy, while Scheduling-only and
Heuristic can only reduce it by 50.0% and 32.2%. In this case, the coflow
scheduling will contribute more than the coflow routing when minimizing the
CCTs. Because Scheculing-only, Heuristic, and MCRS consider the coflow
routing, they have a better performance than Routing-only. MCRS reduces
by up to 31.7% compared to Scheduling-only. Moreover, we can see that
MCRS performs even better than Heuristic, which illustrates the advantages
of our intra and inter coflow routing and scheduling algorithms.

In the aspect of the maximum CCT among all the coflows, the tendency
of each line is still increasing with larger traffic loads, shown in Fig. 11b.
The reason is that with more coflows, the waiting time for coflows with a
longer remaining time increases. We can see that MCRS always has the
smallest CCT among all these four approaches, while Scheduling-only has
the largest. Compared to the Scheduling-only strategy, MCRS reduces the
maximum CCT by up to 69.2%, while Routing-only and Heuristc reduce it
by 17.9% and 68.1%. Though the difference between MCRS and Heuristic
is not so obvious, as in Fig. 11a, the results still show that MCRS is in an
advantageous position.

Next we investigate the number of concurrent coflows while executing the
schemes. Fig. 11c illustrates that both MCRS and Scheduling-only have a
small number of concurrent coflows on average. Compared to the Routing-
only approach, MCRS has only 50.1% of its coflows in the network when
the traffic load ratio is 60%, while Scheduling-only and Heuristic have 45%
and 48.3% of their coflows on average. This is because MCRS applies the
shortest remaining time first algorithm, which transmits the smallest number
of coflows at the same time.
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Figure 12: Performance improvement.

We further evaluate the execution times of running these four algorithms
in Fig. 11d. When the traffic load ratio becomes larger, the speed of their
execution times increases because more flows are included and more calcu-
lations are needed. The execution time of running our proposed algorithm,
MCRS, is the smallest. This indicates the advantage of its low time complex-
ity. Though Alg. Heuristic has the second best average CCT in Fig. 11a,
its execution time is the largest and is even 43.1% larger than that of MCRS
when the traffic load ratio is 0.8.

7.4. Impact of Coflow Parameters

We also study the impacts of different coflow parameters on the perfor-
mance of MCRS, such as the total coflow number, the coflow width, the
coflow size, and the inter-coflow arrival interval. We use the Scheduling-only
algorithm as the baseline. The basic fix settings of the coflow parameters are:
the coflow number is 100; the coflow width is 100; the coflow size is 500Mb;
the inter-coflow arrival interval is 500ms. Generally, in Fig. 12, we can see
that MCRS always outperforms the baseline under different scenarios.
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Coflow Number: To evaluate the impact of the coflow number on the
performance of the routing and scheduling schemes, we fix the other parame-
ters, i.e., setting the coflow width, the coflow size, and the mean inter-coflow
arrival interval as 100, 500MB, and 100ms, respectively [17]. We then inject
different numbers of coflows into the network, and calculate the improvement
of the average CCTs for MCRS compared with the baseline. Fig. 12a shows
that the improvement in the average CCT increases with the growth of the
coflow numbers. The reason is that more coflows would lead to a more severe
competition for the network resources, and the efficient solutions will gain
more benefits. MCRS can reduce the average CCT by up to 50.4% (see the
case of 100 coflows) when compared to the baseline.

Coflow Width: Recall that the coflow width is the number of flows
within it. In this experiment, we fix the coflow number, the size, and the
mean inter-coflow arrival interval as 100, 500MB, and 100ms, respectively,
and then we study the influence of the coflow width to the average CCTs.
Fig. 12b shows that the larger coflow width, the more improvement on the
average CCT is gained by each of the three schemes. The reason is still that
more data communication leads to a more severe competition for the network
resources. MCRS can reduce the average CCT by up to 53.8% compared to
the baseline.

Coflow Size: Here, we fix the coflow number, the width, and the mean
inter-coflow arrival interval to be 100, 100, and 100ms, respectively. In each
experiment, we then send coflows of the same size into the network. For
different coflow size, Fig. 12c shows that MCRS can reduce the average CCT
by up to 48.1% when compared to the baseline. In addition, the improvement
in the average CCTs basically increases with the growth of the coflow sizes.
This is because under the online setting, a larger coflow size leads to more
severe collisions among coflows. Compared to the baseline, MCRS can result
in a much smaller number of concurrent coflows in the network. Compared
with the baseline, our strategy also conducts scheduling, which contributes
to the relief of the collisions. Therefore, the larger the coflow size is, the more
improvement MCRS gains.

Inter-Coflow Arrival Interval: For each of the experiments in this
part, the mean inter-coflow arrival interval is fixed at a value by modifying
the intervals in the original setting. The other parameters are fixed as in the
previous sections. We investigate the intervals starting from 0, which means
that all coflows arrive at the same time (the same as the offline model).
The results are shown in Fig. 12d.Moreover, we can observe that when
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the interval becomes extremely large, the improvement of the schemes will
decrease significantly, i.e., when the interval is 2s, little improvement can be
gained. The reason is that if the interval is too large, most coflows will finish
their transmissions during the interval and there will be little interaction
among the coflows. In this case, the coflow routing will contribute more than
the coflow scheduling in minimizing the CCTs.

Therefore, two-hop paths are suitable to be applied into the routing,
while more hop paths incur too much bandwidth consumption. MCRS can
transmit coflows much faster than the Routing-only, Scheduling-only, and
Heuristic strategies and is more likely to be practical in real applications.
For different coflow parameters, MCRS has the performance improvement of
at least 41.8%. Coflow size improves performance least while coflow width
improves most.

8. Conclusion

In this paper, we focus on the coflow routing and scheduling problem
under the quite popular data center infrastructure: the Leaf-Spine topol-
ogy. The single coflow’s routing and scheduling problem has already been
proven to be NP-hard, and multiple coflows surely make the problem more
challenging. Our goal is to minimize the average CCT. First, we analyze
the path blocking probability of this two-tier structure and propose to apply
both one-hop and two-hop paths for all the flows. Then we propose two algo-
rithms for inter-coflow and intra-coflow routing and scheduling, respectively,
and theoretically prove that our strategy has a reasonably good competitive
ratio. Extensive experiments show that our algorithms outperform the state-
of-the-art schemes under the specific Leaf-Spine topology in different traffic
scenarios.
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