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Synchronous Data Flow (SDF) is a useful computational model in image processing, com-
puter vision, and DSP. Previously, throughput and buffer requirement analyses have been
studied for SDFs. In this paper, we address energy-aware scheduling for acyclic SDF-
s on multiprocessors. The multiprocessor considered here has the capability of Dynamic
Voltage and Frequency Scaling (DVFS), which allows processors to operate at different
power/energy levels to reduce the energy consumption. An acyclic SDF graph can first
be transformed to an equivalent homogeneous SDF graph and then to a Directed Acyclic
Graph (DAG) for one iteration of it. We propose pipeline scheduling to address two closely
related problems. The first problem is minimizing energy consumption per iteration of the
acyclic SDF given a throughput constraint; the second problem is maximizing through-
put given an energy consumption constraint per iteration of the acyclic SDF. Since the
space of valid total orders of the transformed DAG is exponential, and finding the opti-
mal order is no easy task, we first derive a valid total order, which can be achieved via
various strategies, based on the DAG. Given the derived order, we design two dynamic
programming algorithms, which produce optimal pipeline scheduling (including pipeline
stage partitioning and the frequency setting for each stage), for the two problems, respec-
tively. We also compare the performances of using various strategies to derive a valid total
order. Analyses, experiments, and simulations demonstrate the strength of our proposed
pipeline scheduling and dynamic programming algorithms.

Keywords: Dynamic voltage and frequency scaling (DVFS); synchronous data flow (SDF);
directed acyclic graph (DAG); pipeline scheduling; dynamic programming.

1. Introduction

1.1. Preliminaries on DVFS and SDF

The main design goal of modern computational systems has been to improve com-

puting capability. Recently, the high energy consumption in these systems has also

become an important issue, because it not only results in high electricity bills, but

it also increases the requirements for the cooling system and other system com-

ponents. To facilitate energy-efficient design, the Dynamic Voltage and Frequency

Scaling (DVFS) scheme is widely used [1] [2].
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Over the past two decades, tremendous works have been done regarding energy-

aware scheduling on DVFS-enabled platforms. Both circuit-level design and system

scheduling have been studied in [3] and [4], respectively. It is impossible, and not

necessary, to provide all of the existing research here; we refer the readers to com-

prehensive surveys in [5] and [6], where the task models that are covered are mainly

traditional ones, namely, framed-based tasks, periodic tasks, sporadic tasks, and

tasks with precedence constraints. The basic idea of the DVFS strategy is to re-

duce a processor’s processing frequency, as long as tasks’ predefined constraints are

not violated. Since the power consumption of the processor is proportional to the

cube of the processing frequency, while the overall execution time of a task is just

inversely proportional to the processing frequency, DVFS provides the possibility of

minimizing energy consumption, given a certain performance/timing requirement.

Synchronous Data Flow (SDF) [7] [8] is a useful computational model in image

processing, computer vision and DSP, for example, signal transforming and MP3

audio coding and decoding, etc. An SDF can be represented by a directed graph,

which is called an SDF graph, where nodes represent the SDF actors, and arcs

represent the dependence and data communications between the actors. From now

on, we will use the application model and its corresponding graph interchangeably.

For example, the SDF graph in Fig. 1(a) represents a simple SDF. A1, A2, A3, and

A4 represent the SDF actors. The directed arcs represent the dependence and data

communications between the actors. The numbers put at the beginning of an arc and

at the end of an arc represent the number of data token(s) produced by the source

of the arc, and the number of data consumed by the sink of the arc, respectively.

For signal processing applications, we can consider that there are infinitely many

raw signal data coming in at the actor A1 and, after the processing by all of the

actors, the results come out from the actor A4.

Most existing works on SDF focus on the throughput analysis on multiproces-

sors. Consider scheduling general SDFs on multiprocessor platforms; if the number

of processors is unlimited, the formula of the optimal throughput of the SDF can

be derived after transforming its SDF graph to its equivalent Homogeneous SDF

(HSDF) graph (an HSDF is an SDF in which every actor consumes and produces

only one data token from each of its inputs and outputs). To achieve this optimal

throughput, it may be necessary to schedule several iterations of the transformed

HSDF on the platform at one time. The number of iterations scheduled at one time is

called the unfolding factor. The authors in [9] propose a technique for finding a mini-

mal unfolding factor for multiprocessor implementation. If the number of processors

is limited, the problem of finding the minimal optimal unfolding factor and deriv-

ing the corresponding schedule, which maximizes the throughput, is NP-hard [7].

The authors in [10] address allocating and scheduling an SDF on a multiprocessor

platform, subject to a minimum throughput requirement. They develop a complete

search algorithm, based on constraint-programming, without transforming the SDF

into its equivalent HSDF. The same authors in [11] introduce acceleration techniques
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(a) An SDF. (b) The transformed HSDF. (c) List scheduling for one iteration.

(d) Pipeline scheme to schedule the graph, the grey task blocks
represent the second iteration of the graph.

Fig. 1. A motivational example. Pi is used to denote processors; the same practice applies to other
figures in this paper.

that significantly reduce the runtime of the constraint-programming by pruning the

search space without compromising optimality.

Other works on SDFs consider buffer minimization under a throughput con-

straint [12]. The buffer comes from the fact that in an SDF, the number of data

tokens produced by an actor may not be consumed immediately. A major concern

in these works is to calculate the buffer size, formulate the optimization problem

with a throughput constraint, and then solve it. Since our work in this paper has

little to do with buffer requirements, we ignore the details here. In various works,

the methods used to handle throughput are quite similar to traditional throughput

analysis; however some of them present novel approaches to handle throughput, such

as the pipeline scheduling in [13] and [14].

1.2. Motivational Example

In SDFs, an important metric is the throughput. A typical energy-related problem

for SDFs lies in minimizing energy consumption per iteration of the SDF, given a

throughput constraint. Here, we consider minimizing energy consumption per iter-

ation, given a throughput constraint for an Acyclic SDF (ASDF, an SDF in whose

corresponding graph there exists no loop) as shown in Fig. 1(a). An SDF graph can

be transformed into its equivalent HSDF graph [15]. Fig. 1(b) shows the HSDF,

where Ai,j is the jth copy of the ith actor. In the HSDF, the number of token(s)

produced and consumed on any arc is 1; thus, we omit the symbols on the arcs.

Generally, an HSDF is further transformed into a DAG for the ease of scheduling.

In this example, the transformed DAG is the same as the HSDF. Assume that the

execution cycle(s) of any actor is C. The throughput constraint of the graph is set

as Fc. The number of processors is 3.
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To schedule a transformed DAG on a multiprocessor platform, maximizing the

throughput is equivalent to minimizing the schedule length of one iteration of the

DAG. To achieve a short schedule length, a widely used heuristic is a list scheduling

scheme combined with the Largest Task First (LTF) strategy. It basically selects

ready actors from the graph to be executed on free processors; after the completion

of some task, the precedence relations should be updated. When there are more

ready actors than free processors, it selects the largest actor(s) first. The scheduling

derived by this scheme is shown in Fig. 1(c). To save the energy consumption, the

most commonly used approach is to stretch the whole application, such that its

throughput is exactly Fc [16]. Thus, the whole application finishes at time 1/Fc;

the execution frequency is 4C/(1/Fc) = 4CFc. Recall that the power consumption

is the cube of execution frequency. The energy consumption of one iteration of the

SDF is E1 = (4CFc)
3(6C/(4CFc)) = 96C3F 2

c .

There are several reasons for adopting a pipeline scheduling [13]. The first rea-

son is the infinitely repeating nature of DSP applications. Instead of focusing on one

iteration, we should consider the overall performance of a scheduling. The second

reason is that there are no loops in an ASDF and its transformed HSDF. This fact

makes a pipeline scheduling possible. The third reason is that, a pipeline scheduling,

like a list scheduling, also does not need one processor to be able to execute all of

the actors. The fourth reason is that, in a perfect pipeline scheduling, processors will

not be idle even when precedence constraints exist. This fact is the main reason why

a pipeline scheduling is efficient. Thus, a pipeline scheduling is friendly for practical

design and implementation. Of course, pipeline scheduling has some disadvantages.

For example, it requires the platform to keep several copies of the application simul-

taneously, which increases the buffer requirement. This aspect is out of the scope of

our paper.

Pipeline stage partitioning can be conducted based on a valid total order of the

actor copies in the DAG. A valid total order of the DAG is A1,1 → A2,1 → A2,2 →
A2,3 → A3,1 → A4,1. Based on this, the optimal stage partitioning can be derived,

which is shown in Fig. 1(d). To meet the throughput constraint, each stage must

finish within time 1/Fc; thus, the execution frequencies for all of the three stages

are: 2C/(1/Fc) = 2CFc. The energy consumption for one iteration of the SDF is

E2 = (2CFc)
3(6C/(2CFc)) = 24C3F 2

c .

It can easily be seen that the energy consumption of list scheduling (E1) is

four times that of pipeline scheduling (E2), and thus, pipeline scheduling can save

a significant amount of energy. Similarly, pipeline scheduling can also have a far

better performance for the problem of maximizing throughput, given an energy

consumption constraint per iteration of an ASDF.

1.3. Our Work and Contributions

In this paper, we address energy-aware scheduling of Acyclic SDFs (ASDFs) on

DVFS-enabled multiprocessor platforms. We first transform the ASDF into its e-
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quivalent HSDF, and then to a DAG. We derive a valid total order, which can be

achieved via various strategies, and then we adopt a pipeline scheduling based on

this order. Our main contributions can be outlined as follows:

• We propose adopting pipeline scheduling for general ASDFs with the energy-

aware consideration. More specifically, we consider two closely related prob-

lems, namely, minimizing energy consumption per iteration of the ASDF

given a throughput constraint, and maximizing throughput given an energy

consumption constraint per iteration.

• For a given total order derived from the transformed DAG, we design two

dynamic programming algorithms, which produce optimal scheduling (in-

cluding both pipeline stage partitioning and the frequency setting for each

stage), for the two problems, respectively. To derive a valid and good to-

tal order, we also adopt the list scheduling scheme combined with the LTF

strategy.

• We compare our overall scheduling with other pipeline scheduling schemes

and a non-pipeline scheduling scheme. Our pipeline scheduling achieves a

near-optimal solution, namely, within 2% greater than the ideal minimal

energy consumption; while the energy consumption of none-pipeline based

scheduling is several times that of the optimal solution. Besides, the dy-

namic programming-based pipeline partitioning method reduces the energy

consumption by up to 2%, compared to a simple partitioning method.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 presents the problem settings

and definitions. We address the first problem extensively, which is minimizing energy

consumption per iteration given a throughput constraint for ASDFs in Section 3. The

second problem, maximizing throughput given an energy consumption constraint per

iteration, is addressed in Section 4. Some analytical analyses of our algorithm are

presented in Section 5. Experiments and Simulations are provided in Section 6. The

related research on energy-aware scheduling for SDFs is provided in Section 7. A

brief conclusion is made in Section 8.

2. Problem Settings and Definitions

In our paper, we address energy-aware scheduling for Acyclic SDFs (ASDFs). We

will present some basic concepts of SDFs and ASDFs in subsection 2.1. To adopt

pipeline scheduling, a procedure is needed to transform an ASDF into a DAG;

this procedure is described in subsection 2.2. The platform model is described in

subsection 2.3. Subsection 2.4 provides the definitions for the two problems that we

consider in this paper.
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2.1. Fundamentals of SDFs

SDFs [7] [8] are widely used to model DSP and multimedia applications where

data communications between functional actors are known a priori. An SDF can be

represented by an SDF graph, Gs = (Vs, Es), where Vs represents the actor set of

the SDF, and Es represents the arc set of the SDF. |Vs| = n is the total number

of actors in the SDF. Vertex vi ∈ Vs represents SDF actor Ai, whose execution

requirement is the number of execution cycles ci. Each arc e ∈ Es can be described

by a five-tuple (src, snk, prd, cns, tok), where src and snk represent the source actor

and sink actor of arc e, respectively. One unit of data is called a data token, or just

token for short. prd and cns represent the number of data tokens produced to arc e

by the source actor src and the number of tokens consumed by the sink actor snk,

respectively. Initially, the arc e may have tok pre-filled tokens, called initial tokens.

Though prd and cns values of each arc can be determined before execution, they

can be different from each other. Thus, there might be data tokens that should be

buffered on the system.

An SDF is called consistent if there exists a schedule such that no deadlocks

will happen during the execution, and data buffers on each edge will not increase

unboundedly. The first aspect, that no deadlocks will happen during execution, is

affected by initial tokens on the arcs of the SDF. The second aspect, that data buffers

on each edge will not increase unboundedly, is guaranteed if a non-null repetition

vector can be calculated based on the graph Gs [7]. In this paper, we consider

practical SDFs, so we assume all SDFs we are considering are consistent. A minimal

integer repetition vector q = [q1, q2, · · · , qn] can be calculated, where qi represents

the number of copies that actor Ai should execute in one iteration. The throughput

of an SDF graph is the number of iterations that execute per unit time.

Also, a pseudo-polynomial time algorithm exists that transforms a consistent

SDF, Gs into its equivalent HSDF, Gh = (Vh, Eh), where an HSDF is an SDF in

which every actor consumes and produces only one token from each of its inputs

and outputs. Vh contains qi copies of Ai, ∀i = 1, 2, · · · , n. |Vh| = N is the total

number of actor copies in the transformed HSDF. The execution requirement of

actor Ai in one iteration is qici. The total execution requirement of one iteration is

Ct =
∑n

i=1 qici. The transformed HSDF can be further transformed into a DAG, for

ease of scheduling.

Related concepts can be better described by a trivial example, which is shown in

Fig. 2. Fig. 2(a) is a simple SDF. The top actor, A1, is the starting actor. The small

black circle on the arc represents the initial token of the arc; each actor’s execution

cycle is 1. The minimal repetition vector of the SDF is q = [2, 1], which means, in one

iteration of the SDF, actor A1 should be executed two times, and actor A2 should

be executed once. Fig. 2(b) shows the equivalent HSDF of the SDF. Ai,j represents

the jth copy of the ith actor in the SDF. Assume that we have three processors to

execute this SDF. By adopting a list scheduling combined with the largest task first

strategy, we only need two processors, and the optimal throughput can be achieved
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(b) Transformed HSDF graph.

     
 

     

  

   
 

(c) A list scheduling.

Fig. 2. A simple example to demonstrate some basic concepts.

as 1/2 in the scheduling shown in Fig. 2(c). If we unfold the two iterations of the

application, all of the three processors can be used, and a better throughput can be

achieved as 2/3 in the scheduling shown in Fig. 2 (d). The number of iterations that

are scheduled together is called the unfolding factor.

SDFs can be classified into two categories, namely, Cyclic SDFs (CSDFs) and

Acyclic SDFs (ASDFs). If there exist loops in its corresponding graph, the SDF is

a CSDF; otherwise, it is an ASDF. In this paper, we consider scheduling ASDFs.

2.2. ASDF Preprocessing for Pipeline Scheduling

Given an ASDF, Gs = (Vs, Es), it can be first transformed into its equivalent HSDF,

Gh = (Vh, Eh) [15]. Since no loops exist in a Gs, there will not be any loop in Gh. The

transformed Gh can be further transformed into a DAG, Gd, simply by ignoring the

initial tokens on all of the arcs. Actually, the transformation from an HSDF to a DAG

can be conducted by removing arcs of the HSDF that contain initial token(s) [15].

The DAG achieved in this way is useful for multiprocessor scheduling that does not

overlap multiple iterations of the SDF. However, pipeline scheduling may actually

overlap multiple iterations, because a former stage of the next iteration may begin to

execute before the execution of a latter stage of the current iteration. To implement

pipeline scheduling, we adopt the transformation from an HSDF into a DAG as

follows: first, eliminate initial tokens on all of the arcs in HSDF; then, transform the

modified HSDF into DAG in the same way as in [15]. We denote the transformed

DAG by Gd = (Vd, Ed), where Vd contains qi copies of actor Ai. |Vd| = N is the

total number of actor copies.

The following example shows why our transformation can enable pipeline

scheduling, while the original transformation method in [15] cannot. Fig. 3(a) shows

a transformed HSDF, whose arc from A1,1 to A2,1 has one initial token. All ex-

ecution cycles of the actors are equal to each other. The transformation adopted

in [15] will produce a DAG in Fig. 3(b); based on this DAG, a valid total order can

be A2,1→A1,1→A3,1. Since we have three processors, each actor is mapped to one

stage according to this order, which means that A2,1 is mapped to the first stage,

A1,1, the second stage, and A3,1, the third stage. However, it can be noticed that

A2,1 of the second iteration cannot begin to execute when A1,1 of the first iteration

has not finished due to the lack of data token(s). Thus, the DAG derived from this

transformation is not valid for pipeline scheduling. Our transformation method will
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(a) HSDF graph (b) Transformation in [15] (c) Our transformation

Fig. 3. Transform an HSDF graph to a DAG.

produce the DAG in Fig. 3(c). It is easy to verify that all valid total orders derived

in this way are suitable for pipeline scheduling. Whether or not an arc has initial

token(s) in our transformation method, the precedence constraint from the source

of the arc to the sink of the arc still exists, and any total order derived from our

transformed DAG will not encounter the case of lacking data token(s). Thus, our

transformation method will produce the DAG, whose any valid topological sorting

is valid for pipeline scheduling.

2.3. Platform Model

We consider a multiprocessor platform with m DVFS-enabled processors. We as-

sume ideal processors whose frequency ranges are continuous on [0,+∞). The pow-

er consumption model that we consider in this paper is widely adopted by existing

works [16] [17]. We assume that all of the processors have the same power consump-

tion properties. Processors can operate in two modes: one is run mode, where the

power consumption only consists of dynamic power p = f3; the other one is idle

mode, where the processor consumes no power. Additionally, we assume that when

a processor has no task to execute, it transitions into idle mode immediately, with-

out any overhead. The time it takes to execute one copy of actor Ai (with required

execution cycles ci) can be calculated as ci/f . Thus, the energy consumption to

execute one copy of actor Ai is e = (ci/f)f
3 = cif

2.

Although data communications exist in the execution of SDFs, we assume tightly

compact platforms, where the communication time is negligible compared to actors’

execution times; communication time is not explicitly considered in this paper. These

ideal assumptions help us to find the optimal scheduling, as will be shown later; in

practical systems, the optimal scheduling (under the ideal assumptions) can be mod-

ified for practical problems, and still have good performances. For example, when

communication times are non-negligible, a communication time can be incorporated

as part of the corresponding actor’s execution time; thus, our proposed algorithm is

still applicable, after some modifications.

2.4. Problem Definitions

Given an ASDF Gs = (Vs, Es), we first transform it into its HSDF and then into

a DAG, Gd = (Vd, Ed). |Vd| = N is the total number of actor copies of one itera-
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tion of the ASDF. To schedule it on a multiprocessor platform with m (m ≤ N)

DVFS-enabled processors, our goal is to first derive a valid total order, and then

conduct pipeline stage partitioning and determine the frequency setting for each

stage to solve the following two problems: 1) minimizing energy consumption per

iteration given a throughput constraint and 2) maximizing throughput given an

energy consumption constraint per iteration. We define the two problems in detail.

Minimizing Energy Consumption per Iteration Given a Throughput Constraint :

this problem first requires deriving a valid total order based on the transformed

DAG. Assume that the ordered sequence V = (v1, v2, · · · , vN ) is a valid total order.

Then, it is required that we partition this ordered sequence of actor copies to m̄

(m̄ ≤ m) stages and determine the frequency setting for each stage, such that the

throughput of the DAG is greater than or equal to Fc and the energy consumption

per iteration of the DAG is minimized.

Maximizing Throughput Given an Energy Consumption Constraint per Iteration:

this problem first requires deriving a valid total order based on the transformed

DAG. Assume that the ordered sequence V = (v1, v2, · · · , vN ) is a valid total order.

Then, it is required that we partition this ordered sequence of actor copies to m̄

(m̄ ≤ m) stages and determine the frequency setting for each stage, such that the

energy consumption per iteration of the DAG is less than or equal to Ec and the

throughput of the DAG is maximized.

Importation notations that are consistently used in this paper are listed in Ta-

ble 1. Some of the notations will be made clear later in this paper.

Table 1. Notations used in this paper

Notation Description

Gs,Gh,Gd the original ASDF, the transformed HSDF, and the
transformed DAG, respectively.

Ai the ith actor of the ASDF.
Ai,j the jth copy of Ai in the HSDF and DAG.
ci the execution requirement of one copy of Ai.
qi the number of copies of Ai.
V=(v1,· · ·,vN ) the total order derived from the DAG.
c(vi) the execution cycles of actor copy vi.
N the total # of actor copies of one iteration of the ASDF.
m the total number of processors.
Fc, Ec the throughput constraint and energy constraint for the

first problem and second problem, respectively.
Ci,Ei,fi the execution cycles, energy consumption, and execution

frequency, respectively, for the ith stage.
Ct the total execution requirement of the ASDF.
e(i, j) the minimal energy consumption when partitioning the

first i elements of V into j stages.
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3. Minimizing Energy Consumption per Iteration Given a

Throughput Constraint

In this section, we will address the problem of minimizing energy consumption per

iteration of an ASDF given a throughput constraint in detail. We will first analyze

the problem and provide several important facts about a pipeline partitioning in

subsection 3.1. For a given total order derived from the transformed DAG, a dynamic

programming algorithm is presented to produce an optimal stage partitioning and

frequency setting for each stage in subsection 3.2. The analysis of this dynamic

programming algorithm is provided in subsection 3.3. In subsection 3.4, we describe

the method that is used to derive a valid total order from the transformed DAG.

Subsection 3.5 provides an example that illustrates the whole process of how we

address this problem.

3.1. Problem Analysis

As has been mentioned, a pipeline scheduling strategy requires that a valid total

order be derived from the transformed DAG, Gd = (Vd, Ed). However, the space

of valid total orders of the DAG is exponential in general; it is NP-hard to derive

an optimal total order. In the following, we will first address the pipeline stage

partitioning and the frequency setting problem when a valid total order of the DAG

has been given. Assume that the given total order is represented by an ordered

sequence, V = (v1, v2, · · · , vN ). V consists of qi copies of Ai, ∀i = 1, 2, · · · , n; N =∑n
i=1 qi is the total number of actor copies. The execution cycles of each actor can

be determined by recalling how we conduct the transformations and how we derive

the valid total order. Without loss of generality, denote the execution cycles of vi
by c(vi).

Before stage partitioning and determining the frequency setting, we observe sev-

eral important characteristics that will guide our solution. The following lemma

determines the optimal frequency setting for a given pipeline stage partitioning.

Lemma 3.1. If the number of execution cycles in the ith stage is Ci, i =

1, 2, · · · , m̄, the optimal frequency setting for the ith stage is fi = CiFc.

Proof. The execution time of the ith stage is Ci/fi if executing at frequency fi;

to satisfy the throughput constraint, Ci/fi ≤ 1/Fc, and thus fi ≥ CiFc. Energy

consumption of the ith stage is then: Ei = (Ci/fi)f
3
i = Cif

2
i ≥ Ci(CiFc)

2 = C3
i F

2
c .

Obviously, the minimal overall energy consumption requires that each Ei is mini-

mized, which means Ei = C3
i F

2
c . Consequently, fi = CiFc; besides, each stage has

the same execution time Tc = 1/Fc.

Another problem exists when addressing how many processors, or equivalently,

how many pipeline stages should be used in the optimal pipeline scheduling. The

following lemma tells us that the optimal pipeline scheduling should always use all

of the m processors.
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Lemma 3.2. The optimal pipeline scheduling that minimizes energy consumption

per iteration given a throughput constraint must use all of the m processors, or in

other words, it must partition all of the actor copies to m̄ = m stages.

Proof. This characteristic can be proven by contradiction. Assume that one op-

timal pipeline scheduling, Sopt, uses (m − 1) processors and achieves the minimal

energy consumption. Since N ≥ m, there must be one processor with more than one

actor. Without loss of generality, assume that the last stage (the (m − 1)th stage)

with execution requirement Cm−1 has more than one actor. The optimal energy con-

sumption of stage (m− 1) in this scheduling is Em−1 = C3
m−1F

2
c . Since, practically,

there are m processors, we can construct a new schedule, Snew, which further splits

the last stage into two stages. Assume that the resulting execution requirements of

the last two stages, the (m − 1)th and the mth stages, are C
′
m−1 and C

′
m, respec-

tively. C
′
m−1 + C

′
m = Cm−1, (C

′
m−1, C

′
m > 0). The optimal energy consumption of

the last two stages in the new scheduling is E
′
m−1+E

′
m = C

′
m−1

3
F 2
c +C

′
m

3
F 2
c . Since

Em−1−E
′
m−1−E

′
m=(C

3
m−1− (C

′
m−1

3
+C

′
m

3
))F 2

c=(C
′
m−1

2
C

′
m+C

′
m−1C

′
m

2
)F 2

c > 0, the

new schedule, which uses all of the m processors, achieves less energy consumption.

Thus, Sopt is actually not optimal in terms of minimizing energy consumption, so

the optimal pipeline scheduling must not use only (m − 1) processors. Further, we

can also show that an optimal pipeline scheduling must not use less than (m − 1)

processors. This completes the proof.

Next, we will consider how to derive the optimal stage partitioning given a

total order. Denote the minimal energy consumption to partition the first i actor

copies of V , namely, (v1, v2, · · · , vi) to j (j ≤ m) stages by e(i, j). For j = 1, there

is only one way to partition the first i elements into one stage, so the minimal

energy consumption to partition actor copies v1, v2, · · · , vi to one stage is e(i, 1) =

(
∑i

k=1 c(vk))
3F 2

c . e(i, j) is undefined when i < j, since each stage must have at least

one element. For j = 2, there are (i− 1) way(s) to partition the first i actor copies:

the first stage consists of the first (i− 1) actor copies, and the second stage consists

of the ith actor copy; the first stage consists of the first (i− 2) actor copies, and the

second stage consists of the (i − 1)th and the ith actor copies; · · · ; the first stage

consists of the first actor copy, and the second stage consists of the remaining (i−1)

actor copies.

To partition the first i actor copies into j stages, we can classify all possible

partitions into (i− j + 1) categories:

Category (1). Partition the first (i − 1) actor copies into (j − 1) stages; the ith

actor copy is the only element in the jth stage.

Category (2). Partition the first (i−2) actor copies into (j−1) stages; the (i−1)th

and the ith actor copies form the jth stage.

· · ·
Category (i− j + 1). Partition the first (j − 1) actor copies into (j − 1) stages;
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the jth, (j + 1)th, · · · , ith actor copies form the jth stage.

It is obvious that our goal is to find e(N,m), where N is the total number of

actor copies in V , and m is the number of processors, which is also the number of

pipeline stages.

The following observation is the key foundation for our dynamic programming

algorithm.

Lemma 3.3.

e(i, j) = min{ e(i− 1, j − 1) + (c(vi))
3F 2

c ,

e(i− 2, j − 1) + (c(vi−1) + c(vi))
3F 2

c ,

· · · ,
e(j − 1, j − 1) + (

∑i
l=j c(vl))

3F 2
c }, (3.1)

∀i ≥ j ≥ 2,

or, in a more compact form:

e(i, j)= min
k=j−1,···,i−1

{
e(k, j − 1) + (

i∑
l=k+1

c(vl))
3F 2

c

}
, (3.2)

∀i ≥ j ≥ 2.

Proof. Note that
∑i

l=k+1 c(vl))
3F 2

c is the energy consumption of the last stage (the

jth stage) which consists of actor copies vk+1, vk+2, · · · , and vi. e(k, j − 1) is the

optimal energy consumption for partitioning the first k stages to (j − 1) stages. We

can say that e(i, j) is achieved by searching through all of the (i − j + 1) possible

ways of partitioning the first i actor copies to j stages, and the minimal energy

consumption among all of these possibilities is chosen as e(i, j). Thus, e(i, j) is the

optimal energy consumption for partitioning the first i actor copies to j stages. This

completes the proof.

3.2. Algorithm Description

As has been stated, our goal is to find e(N,m), which can be achieved according

to Lemma 3.3. Another issue lies in retracing the partition that achieves the mini-

mal energy consumption. To this end, we introduce a data structure to record the

partition that achieves each e(i, j). It is easy to notice that a partition is unique-

ly determined by the ending elements of all its stages, so we only need to record

the j ending elements of the partition that achieves e(i, j). We use the ordered set

r(i, j) = {endi,1, endi,2, · · · , endi,j} to record the partition that achieves the e(i, j),

where endi,k, (k = 1, 2, · · · , j) is the index of the ending element (vendi,k) of the kth

stage of a partitioning that achieves the minimal energy consumption e(i, j). Thus,

the stage partition that achieves e(N,m) can be retraced by looking up r(N,m).
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Algorithm 1 Dynamic Programming to Minimize Energy Consumption per Itera-

tion Given a Throughput Constraint

Input: A valid total order, V = (v1, v2, · · · , vN ), of the transformed DAG, the exe-

cution requirements of vi being c(vi), ∀i = 1, 2, · · · , N , the number of processors,

m (m ≤ N);

Output: m pipeline stages and the frequency setting fj for each stage j, ∀j =

1, 2, · · · ,m;

1: for i := 1 to N do

2: Initialize e(i, 1) = (
∑i

k=1 c(vk))
3F 2

c ;

3: Initialize r(i, 1) = {i};
4: end for

5: for j := 2 to m do

6: for i := j to N do

7: e(i, j) = mink=j−1,··· ,i−1{e(k, j − 1) + (
∑i

l=k+1 c(vl))
3F 2

c };
8: Record the k∗ that minimizes e(i, j);

9: r(i, j) = r(k∗, j − 1)
∪
{i};

10: end for

11: end for

12: endN,0 = 0;

13: for j := 1 to m do

14: fj =
(∑endN,j

k=endN,j−1+1 c(vk)
)
Fc;

15: end for

Based on the three lemmas above, a dynamic programming algorithm can be

designed to achieve the minimal energy consumption per iteration of an ASDF for

a given total order, and it is outlined in Algorithm 1.

3.3. Algorithm Analysis

3.3.1. Complexity of Algorithm 1

The majority of the execution time of Algorithm 1 results from the overlapping loops

from line 4 to line 8. The outer loop runs O(m) times; each of the inner loops runs

O(N) times. The worst case time of calculating e(i, j) is O(N). The complexity of

Algorithm 1 is O(mN2). Notice that our scheduling is an offline approach; besides,

the SDF applications usually have a infinitely repeating characteristics, such as the

video coding and decoding, and the image processing, etc. Thus, the long execution

times of the applications will definitely compensate our algorithm’s complexity.

3.3.2. Optimality of Algorithm 1, Given a Valid Total Order

Theorem 3.1. Algorithm 1 produces an optimal stage partitioning and optimal

frequency setting for each stage that minimizes energy consumption while satisfying

the throughput constraint, given a valid total order.
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Fig. 4. An illustrative example.

Proof. This theorem is guaranteed by Lemma 3.1, Lemma 3.2, and Lemma 3.3

3.4. Deriving a Valid Total Order From the Transformed DAG

In the above analysis and solution, we have assumed that a valid total order is

given. Here, we will discuss how to construct a valid total order. For a DAG, any

list scheduling scheme can derive a valid total order. Since the space of all valid

total orders may be exponential, finding the optimal total order is no easy task.

We notice that Algorithm 1 attempts to arrive at a stage partitioning where the

execution cycles of each stage are well “balanced.” Intuitively, if, in a valid total

order, large actors gather together and small actors gather together, it is hard for a

stage partitioning to be well balanced.

In our overall scheme, we use a list scheduling combined with the Largest Task

First (LTF) strategy to construct a valid total order. Applying the LTF strategy

here can perturb the execution cycles of actor copies in the derived order, and thus,

results in a more balanced stage partitioning. We will show via experiments that

various other strategies, such as Smallest Task First (STF) and randomly picking

strategy, can also arrive at balanced partitioning.

3.5. An Illustrative Example

We will provide an example to illustrate our overall solution in this subsection.

Consider the ASDF graph shown in Fig. 4(a). Each arc’s number of produced tokens

and consumed tokens is put at the source port and the source port of the arc. Actors’

execution cycles are put beside the actor node. Fig. 4(b) is the transformed HSDF.

By removing redundant arcs and initial tokens (if there are any), the HSDF can be

transformed into a DAG, which is shown in Fig. 4(c). According to our list scheduling
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Table 2. ei,j values given by our dy-
namic programming algorithm.

ei,j j = 1 j = 2 j = 3

i = 1 1000 – –

i = 2 5832 1512 –

i = 3 19683 5913 2241

i = 4 46656 11664 6642

i = 5 85184 23408 10826

i = 6 148877 37259 16577

i = 7 238328 62558 29240

i = 8 328509 82593 39033

i = 9 438976 110656 49426

i = 10 571787 144503 64259

combined with the LTF strategy, a valid total order is A1,1 → A2,1 → A3,1 → A3,2

→ A2,2 → A3,3 →A3,4 → A4,1 → A4,2 → A4,3.

Assume that the throughput constraint is Fc. Algorithm 1 gives the ordered

set r10,3 = {3, 6, 10}, which indicates that the first 3 actor copies, A1,1, A2,1, and

A3,1, are partitioned to the first stage; actor copies 4 to 6, A3,1, A2,2, and A3,3, are

partitioned to the second stage; actor copies 7 to 10, A3,4, A4,1, A4,2, and A4,3, are

partitioned to the third stage. The pipeline stage partitioning is shown in Fig. 4(e).

The frequencies for the three stages are set as f1 = 27Fc, f2 = 26Fc, and f3 =

30Fc, respectively. Our dynamic programming algorithm can determine the minimal

energy consumption as e10,3 = 64259F 2
c , as shown in Table 2.

For comparison, a list scheduling that schedules one iteration of the ASDF is

shown in Fig. 4(d). After mapping the actors, the schedule length (in terms of the

number of execution cycles) is 41. Thus, the execution frequency is set as 41Fc. The

energy consumption of this scheduling is 413 ∗ (83/41)F 2
c = 139523F 2

c . Comparing

this list scheduling with our pipeline scheduling, we can see that our approach saves

a significant amount of energy.

4. Maximizing Throughput given an Energy Consumption

Constraint per Iteration

In this section, we address the problem of maximizing throughput given an energy

consumption constraint per iteration for an ASDF. The solution for this problem is

quite similar to that of the first one. So, we will just briefly present the main steps

and approaches.

4.1. Problem Analysis

We will provide some characteristics of the optimal stage partitioning and scheduling

to achieve the maximal throughput in the following.

Lemma 4.1. The execution times of all of the m̄ stages of the optimal scheduling,

which achieves the maximal throughput, must be equal to each other, i.e., T1 = T2 =

· · · = Tm̄.
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Proof. Prove by contradiction. Assume that in the optimal scheduling, Ti’s are not

equal. Specifically, several stages have the largest execution time, and several stages

have the second largest execution time. Without loss of generality, we assume that

the last x stages have the largest execution time Tmax and the next last y stages

have the second largest execution time Tnext. T1, T2, · · · , Tm̄−x−y < Tm̄−x−y+1 =

Tm̄−x−y+2 = · · · = Tm̄−x(= Tnext) < Tm̄−x+1 = · · · = Tm̄(= Tmax), where 1 ≤ x, y ≤
m̄, x+y ≤ m̄. Thus, the maximal throughput achieved by this scheduling is 1/Tmax.

The energy consumption of the last (x+ y) stages is:

Em̄−x−y+1 + Em̄−x−y+2 + · · ·+ Em̄ =∑m̄−x
i=m̄−x−y+1C

3
i

T 2
next

+

∑m̄
i=m̄−x+1C

3
i

T 2
max

. (4.1)

Let h(t) = ∑m̄
i=m̄−x−y+1C

3
i

t2
−
∑m̄−x

i=m̄−x−y+1C
3
i

T 2
next

−
∑m̄

i=m̄−x+1C
3
i

T 2
max

, (4.2)

which is obviously a differentiable and monotonically decreasing function in

[Tnext, Tmax]. g(Tnext) > 0, g(Tmax) < 0. According to the Mean Value Theorem [18],

there must exist a number Te ∈ (Tnext, Tmax) such that h(Te) = 0; in other words:∑m̄
i=m̄−x−y+1C

3
i

T 2
e

=

∑m̄−x
i=m̄−x−y+1C

3
i

T 2
next

+

∑m̄
i=m̄−x+1C

3
i

T 2
max

, (4.3)

which means we can set the frequency such that the energy consumption of the

last (x + y) stages remains unchanged, while they have the same execution time

Te, Tnext < Te < Tmax. Since all stages except the last (x + y) stages remain

unchanged, we can achieve a better throughput 1/Te > 1/Tmax, while the overall

energy consumption remains unchanged. Thus, the original scheduling is not the

optimal scheduling in terms of maximizing throughput. The proof is completed.

The following lemma shows that an optimal pipeline scheduling must also use

all of the m processors, or in other words, partitioning the actor copies to m stages.

Lemma 4.2. The optimal scheduling that achieves the maximal throughput must

use all of the m processors, i.e., it must partition all of the actor copies into m̄ = m

stages.

Proof. This fact can also be proven by contradiction. Assume that one optimal

scheduling has (m − 1) stages and all of the stages have the same execution time,

which is a fact that follows from Lemma 4.1. Since N > m, there must be a stage

that consists of more than one actor. Without loss of generality, assume that the

last stage, i.e., the (m − 1)th stage, has more than one actor. Its execution time

is Tm−1. Since there is one more processor, we can further partition the execution

time into two stages, the (m− 1)th and mth stages. The execution times of the last



Energy-Aware Scheduling for Acyclic Synchronous Data Flows on Multiprocessors 17

two stages are T
′
m−1 and T

′
m, respectively. Since we only partition the last stage

of the original scheduling, the throughput of the new scheduling will not increase.

Besides, we can notice that the energy consumption is the same as the original

scheduling. According to the proof of Lemma 4.1, the new scheduling cannot be an

optimal scheduling, for the execution times of all of its stages are not equal. More

specifically, the throughput of the new schedule can be further improved without

increasing the overall energy consumption. Thus, the optimal scheduling cannot only

have (m− 1) stages. It is also easy to show that an optimal scheduling cannot have

less than (m− 1) stages. Conclusion: the optimal scheduling must have m stages.

Next, we consider how to construct a stage partition given a valid total order

of the transformed DAG. Assume that the energy consumption is upper bounded

by Ec and that the number of execution cycles of each stage is Ci. Since execution

times of all stages are equal in the optimal scheduling, denoted by T , the problem

can be formulated as the following optimization problem:

max 1/T (4.4)

s.t.
∑m

i=1C
3
i /T

2 ≤ Ec. (4.5)

Obviously, in the optimal scheduling,
∑

C3
i /T

2 = Ec, which means T =√∑m
i=1C

3
i /Ec. Thus, maximizing throughput is equivalent to minimizing

∑m
i=1C

3
i .

Thus, given a valid total order of all the actors and overall energy constraint

Ec, to find a scheduling that achieves the maximal throughput is equivalent to

first finding a partition that achieves the minimal
∑m

i=1C
3
i , and then, stretching

each stage such that they all have the same execution time and the overall energy

consumption is exactly Ec. Denote the minimal
∑j

l=1C
3
l value to partition the first i

actors to j stages as cube(i, j). cube(i, j) also has the characteristics that are similar

to ei,j :

Lemma 4.3.

cube(i, j) = min{ cube(i− 1, j − 1) + (c(vi))
3,

cube(i− 2, j − 1) + (c(vi−1) + c(vi))
3,

· · · ,
cube(j − 1, j − 1) + (

∑i
k=j c(vj))

3}, (4.6)

∀i ≥ j ≥ 2,

or, in a more compact form:

cube(i, j) = min
k=j−1,··· ,i−1

{cube(k, j − 1) + (

i∑
l=k+1

c(vl))
3}, (4.7)

∀i ≥ j ≥ 2.

Proof. This fact is similar to Lemma 3.3, and can be proven in a way similar to

that of Lemma 3.3.
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Algorithm 2 Dynamic Programming to Maximize Throughput Given an Energy

Consumption Constraint per Iteration

Input: A valid total order, V = (v1, v2, · · · , vN ), of the DAG for the transformed

HSDF graph, the execution requirements of vi being c(vi), ∀i = 1, 2, · · · , N , the

number of processors, m (m ≤ N);

Output: m pipeline stages and the frequency setting fj for each stage j, ∀j =

1, 2, · · · ,m;

1: for i := 1 to N do

2: Initialize cube(i, 1) = (
∑i

k=1 c(vk))
3;

3: Initialize r(i, 1) = {i};
4: end for

5: for j := 2 to m do

6: for i := j to N do

7: cube(i, j) = mink=j−1,··· ,i−1{cube(k, j − 1) + (
∑i

l=k+1 c(vl))
3};

8: Record the k∗ that minimizes cube(i, j);

9: r(i, j) = r(k∗, j − 1)
∪
{i};

10: end for

11: end for

12: endN,0 = 0;

13: for j := 1 to m do

14: Cj =
∑endN,j

k=endN,j−1+1 c(vk);

15: end for

16: T =
√∑m

j=1C
3
j /Ec;

17: for j := 1 to m do

18: fj = Cj/T ;

19: end for

4.2. Algorithm

It can also be noticed that, given a valid total order, the optimal partition can be

achieved similarly to Algorithm 1. The main modification is just to replace e(i, j)

with cube(i, j). To avoid redundancy, we just give the algorithm to achieve the

optimal scheduling for the second problem. We also use the data structure r(i, j)

for retracing the optimal stage partitioning that achieves the maximal throughput.

Theorem 4.1. Algorithm 2 produces the optimal scheduling to achieve the maxi-

mal throughput, given a valid total order.

Proof. It is guaranteed by Lemma 4.1, Lemma 4.2, and Lemma 4.3.

4.3. The Illustrative Example

We also adopt a list scheduling combined with the LTF strategy to derive a valid

total order. For the same example in Fig. 4(a), our solution to the second problem
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will derive a same stage partitioning as that of the first problem.

Given the energy consumption constraint per iteration, Ec, the frequency for

each stage is set as fj = Cj/
√∑m

j=1C
3
j /Ec, and the maximal throughput is√∑m

j=1C
3
j /Ec.

5. Performance Analysis

We will present some analyses to verify the strength of our proposed energy-aware

scheduling methods. For both of the two problems, we first analyze the ideal optimal

solutions and then discuss two special cases where our method can achieve the

practical optimal pipeline scheduling.

5.1. The Ideal Optimal Solutions

For the practical problem, finding the optimal solution is no easy task for both of the

two problems. However, there exists a lower bound for any scheduling. The optimal

energy consumption, given a throughput constraint Fc, is achieved by ignoring any

precedence constraints and allowing each actor copy to be arbitrarily split. The

optimal energy consumption corresponds to the case where workloads on all of the

processors are exactly balanced, and they are stretched to finish exactly at 1/Fc.

The optimal frequency is fopt =
Ct

m/Fc
, where Ct is the total execution cycles of all

the actor copies. The ideal minimal energy consumption can be calculated as:

Eopt = (Ct/fopt)f
3
opt = C3

t F
2
c /m

2. (5.1)

Similarly, the optimal throughput, given an energy consumption constraint per

iteration Ec, is also achieved in this case, and the ideally maximal throughput can

be calculated as:

Fopt =
√

m2Ec/C3
t . (5.2)

In our simulations, which are presented in the next section, we will normalize our

results by these ideal optimal solutions.

5.2. A Special Case: Uniform Graphs

We denote a uniform ASDF as a graph in which all of the actors have the same

execution cycles. Obviously, all of the actor copies in the transformed DAG also

have the same execution cycles. Consequently, in any valid total order of the DAG,

the distribution of actor copy’s execution cycles are the same. Thus, the energy

consumption of the optimal pipeline scheduling will be the same for any valid total

order. Further, we notice that the dynamic scheduling algorithm attempts to derive

a more balanced partitioning. Assume that each actor copy’s number of execution

cycles is C = Ct/N . To achieve the most balanced partitioning, we first allocate

⌊N/m⌋ copies to each stage, and then, we allocate one extra actor copy to each of

the (N − m⌊N/m⌋) stages. In the end, (N − m⌊N/m⌋) stages have (⌊N/m⌋ + 1)
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actor copies, and (m − (N − m⌊N/m⌋)) stages have ⌊N/m⌋ actor copies. For the

first problem, assume that the throughput constraint is Fc. Therefore, the optimal

energy consumption of this case is:

E
′
opt =

(N−m⌊N
m
⌋)((⌊N

m
⌋+1)CFc)3+(m−N+m⌊N

m
⌋)(⌊N

m
⌋CFc)3

Fc

=
[(N−m⌊N

m
⌋)(⌊N

m
⌋+1)3+(m−N+m⌊N

m
⌋)⌊N

m
⌋3]C3

t F
2
c

N3 . (5.3)

We define the Normalized Energy Consumption (NEC) of a schedule as the energy

consumption of the schedule divided by Eopt. The practical optimal NEC of this

case can be calculated as:

R1 =
E

′
opt

Eopt
=

(N −m⌊Nm⌋)(⌊Nm⌋+ 1)3 + (m−N +m⌊Nm⌋)(⌊Nm⌋)3
N3

m2

. (5.4)

For the second problem, assume that the energy consumption constraint is Ec.

Thus, the optimal throughput of this case can be calculated as:

F
′
opt =

√√√√ N3Ec

C3
t

(N−m⌊Nm⌋)(⌊Nm⌋+ 1)3 + (m−N +m⌊Nm⌋)⌊Nm⌋3
. (5.5)

We define the Normalized Throughput (NT) of a schedule as the throughput of the

schedule divided by Fopt. The practical optimal NT of this case can be calculated

as:

R2 =
F

′
opt

Fopt
=

√√√√ N3

m2

(N−m⌊Nm⌋)(⌊Nm⌋+ 1)3 + (m−N +m⌊Nm⌋)⌊Nm⌋3
=

√
1

R1
. (5.6)

Experiments show that our pipeline scheduling and dynamic programming algo-

rithms also achieves the optimal NEC and NT for the two problems, respectively.

Thus, it shows the optimality of our dynamic programming algorithms for this spe-

cial case.

5.3. A Special Case: Transformed DAG is Linear

If the transformed DAG is a linear graph, there is only one valid total order that

can be derived from the transformed DAG. Notice that, previously in this paper, we

have proven that our dynamic programming algorithms achieve the optimal stage

partitioning for a given total order. Thus, our dynamic programming algorithms

achieve the optimal pipeline scheduling for this special case.

6. Simulations

We use the toolbox SDF3 [19] to randomly generate ASDF graphs; after that, our

methods are applied to these ASDFs. Experimental results verify the strength of

our approaches.
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6.1. Simulation Design

We design two groups of comparisons to verify two aspects of our scheduling method.

The first comparison verifies the strength of our pipeline scheduling against a list

scheduling. The second comparison verifies the optimality of the dynamic program-

ming given a valid total order, and compares various schemes to derive a good valid

total order from the transformed DAG.

6.1.1. First Comparison Group

In the first comparison, we compare our pipeline scheduling against a list scheduling.

A List Scheduling (LS) is a non-pipeline based scheduling, which is commonly used

to minimize the schedule length of a graph (thus, maximizing throughput). Basically,

at each scheduling point (when a processor becomes free), it selects the largest ready

task/actor first. Thus, an actor copy to processor mapping can be achieved; we use

the pre-power method in [16] to determine the optimal power supply for the graph.

6.1.2. Second Comparison Group

We also compare our pipeline scheduling against several other pipeline scheduling

schemes. We denote DP-LTF, DP-LCP, DP-STF, and DP-RDM as the methods

to derive a valid total order by using the LTF strategy, the Longest Critical Path

(LCP) first strategy, the Smallest Task First (STF) strategy, and the randomly

selecting strategy (RDM) before adopting the dynamic programming, respectively.

The critical path of an actor is defined as the longest path, from the current actor to

one of the finishing actors. The DP-LCP scheme selects the actor with the longest

critical path first when deriving a valid total order. To demonstrate the optimality of

the dynamic programming partitioning scheme, we design a naive mean partitioning

method, which is described as follows.

Naive mean partitioning: This method basically constructs a partitioning by

referring to the ideal optimal solution. It considers the tasks one by one, according

to a given total order. For the first stage, whenever considering whether the next

task should be added to this stage, compare the accumulated cycles of the first

stage with the ideal optimal solution. Assume that the existing number of cycles

in this stage is Ce, and that the number of execution cycles of the next actor copy

is cnext. The ideal optimal number of execution cycles for each stage is Copt,1 =

Ct/m. If |Ce − Copt > |Ce + cnext − Copt|, then include the next actor copy in the

first stage; otherwise, complete the construction for the first stage. Denote that

the execution cycles of the first i completed stages are C1, C2, · · · , Ci, 1 ≤ i ≤
m− 1. When constructing the (i+1)th stage, the optimal number of cycles is set to

be the remaining execution cycles divided by the remaining number of processors:

Copt,i+1 = (Ct −
∑i

k=1Ck)/(m− i). We approximate this optimal number of cycles

in a similar way to that of the first stage. This method repeats the processes until it

finishes partitioning all of them pipeline stages. In the comparison, we also adopt the
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Fig. 5. NEC comparison between list scheduling and pipeline scheduling.

LTF strategy to derive a valid total order for the naive mean partitioning method,

so we denote this scheme as NMP-LTF.

In our simulations, we let actors have integer numbers of execution cycles. For

an actor with C execution cycles, if we allow it to be split into C unit sub-actors,

and adopt dynamic programming to these sub-actors of all of the original actors,

the derived scheduling will serve as lower bound that is a tighter than the ideal

optimal solution. We denote this method as DP-UNIT, and also include it in the

comparison. We normalize the results of all of the methods according to the ideal

optimal solutions.

6.2. Simulation Settings and Results

As has been mentioned, the two problems considered in this paper are actually

closely related. This fact has also been revealed by the relationship between R1 and

R2 in Section 5.2. Thus, we will discuss the results for the first problem in detail,

and briefly provide the results for the second problem.

For the first comparison group, given a total number of actor copies, there are

two key factors that influence the NEC; they are the number of processors and the

execution cycles ranges of the actors. We evaluate the two methods in three settings.

For each setting, we use the SDF3 tool to randomly generate 1,000 ASDF graphs,

and we calculate the average NEC of DP-LTF and LS schemes of the 1,000 cases,

respectively. In Setting I, given the execution cycles range of [12, 20], we evaluate the

performance of the two methods for different numbers of processors. The NEC for

processor numbers 4, 6, 8, and 10 is presented in Fig. 5(a). In setting II, given a fixed

number of processors m = 6, we evaluate the performance of these three methods for

different execution cycles ranges of the actor copies. The NEC for execution cycles

ranges [4, 20], [8, 20], [12, 20], [16, 20] and [20, 20], is presented in Fig. 5(b). In setting

III, we evaluate the performance of these three methods for various combinations of

execution cycles range and the number of processors. The NEC in various cases are
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(b) Normalized throughput for different execution
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Fig. 6. NT comparison between list scheduling and pipeline scheduling.

Table 3. NEC for various execution cycles range and number of processor combinations.

NEC
m = 4 m = 6 m = 8 m = 10

DP-LTF LS DP-LTF LS DP-LTF LS DP-LTF LS

[4, 20] 1.00399 1.80251 1.00903 2.6834 1.01657 3.79357 1.02607 5.19984

[8, 20] 1.00344 1.79028 1.00788 2.63404 1.01353 3.70107 1.02087 5.02865

[12, 20] 1.00312 1.7787 1.00775 2.59117 1.01161 3.59962 1.01644 4.88953

[16, 20] 1.00248 1.7618 1.00849 2.57252 1.0055 3.57627 1.00608 4.85156

[20, 20] 1 1.69885 1.01476 2.4532 1 3.40141 1 4.61794

provided in Table 3. In all of these settings, we set the total number of actor copies

in the transformed DAG to be 40.

For the second comparison group, we notice that, when the variance of the actors’

execution requirements is small, all these methods produce similar results. Thus, to

distinguish them, we set the number of execution cycles range to be [1, 20], which

is the greatest variance in our setting, and just vary the number of processors from

2 to 16, with an increase step of 2. The result for this comparison is provided in

Fig. 7(a).

6.3. Simulation Analyses

In Fig. 5(a) and Fig. 5(b), the NEC of our proposed DP-LTF is just about 1.02,

which means that the energy consumption achieved by the two approaches is only

about 2% greater than the ideal optimal solution. However, the energy consumption

achieved by the LS is from 78% to 389% greater than the ideal optimal solution. As

the number of processors increases, the advantage of our proposed DP-LTF over LS

becomes obvious. In Table 3, the NEC of various combinations of execution cycles

range and number of processors for all of the three methods is provided. We can

see that DP-LTF has stable and good performance under various situations, while

the performance of LS decreases when the execution cycles range becomes large and

when the number of processors increases. This demonstrates the superiority of a

pipeline scheduling over the traditional list scheduling. This fact is also intuitive;
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Table 4. NT for various execution cycles range and number of processor combinations.

NT
m = 4 m = 6 m = 8 m = 10

DP LS DP LS DP LS DP LS

[4, 20] 0.99801 0.75279 0.9956 0.62436 0.9919 0.52960 0.98786 0.45664

[8, 20] 0.99839 0.75561 0.99609 0.63155 0.99319 0.53882 0.98964 0.46405

[12, 20] 0.99847 0.75621 0.99625 0.62955 0.99417 0.53733 0.99167 0.46437

[16, 20] 0.99879 0.76279 0.99570 0.64095 0.99748 0.54800 0.99723 0.47384

[20, 20] 1 0.77746 0.99269 0.65490 1 0.56012 1 0.48405

because of the precedence constraints, a list scheduling has a large possibility of

leaving processors idle. Consequently, to meet the throughput constraint, a high

frequency should be chosen, thus increasing the energy consumption.

In Fig. 7(a), comparing the NEC of the DP-LTF and NMP-LTF, we can see

that the DP-LTF always achieves a better solution. When the number of processors

increases, the advantage of DP-LTF over NMP-LTF is more obvious. This verifies

the optimality of our proposed dynamic programming algorithm for a given total

order. As we can see, for different methods to derive a valid total order, if dynamic

programming is adopted for pipeline stage partitioning, the NEC values do not differ

much from each other, especially when the number of processors is small. However

the DP-LCP method requires calculating the LCP of each actor before scheduling,

while DP-LTF and DP-STF only need to check the ready actors’ execution require-

ments. Thus, we prefer DP-LTF, DP-STF, and DP-RDM for their overall good and

stable performance and the simplicity of implementation.

The results for the second problem, namely, maximizing throughput given en-

ergy consumption constraint per iteration of the ASDF, are presented in Fig. 6,

Fig. 7(b), and Table 4, respectively. All of these results also demonstrate the strength

of pipeline scheduling and dynamic programming for pipeline stage partitioning. We

omit the detailed discussions on these results.

6.4. Additional Remarks

In our work, we assume that a processor’s dynamic power consumption is p = f3;

our approach is not limited by this assumption. Actually, our proposed pipeline

scheduling and dynamic programming algorithms work well for the general assump-

tion that the power consumption is p = fα, where α can be any real number greater

than or equal to 2.

In this paper, we only address energy-aware scheduling, and have not discussed

the buffer requirement of our approach. To consider the buffer requirement, some

rules and guidance can be applied to deriving a valid total order, such that the

buffer requirement can be minimized.

7. Related Works

Various works consider energy-aware issues for SDFs. The authors in [20] implement

an energy-efficient real-time CPU scheduler for multimedia signal processing appli-

cations. Their system verifies the applicability of DVFS in SDFs. [21] also deals with
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Fig. 7. NEC and NT comparisons.

energy minimization for scheduling SDFs on DVFS-enabled platforms. However, this

work focuses on the special case where an SDF has several frequency domains, and

the actors of the SDF need to be executed according to their input and output data

rates, as well as to their frequency domains. The authors of [22] address schedul-

ing (H)SDFs on DVFS-enabled multiprocessors. It takes both static and dynamic

power consumption into consideration. To minimize the energy consumption given

a throughput constraint, the problem is formulated as a convex optimization prob-

lem, which can be solved by a generic convex optimization solver; consequently, the

optimal frequency setting for each actor can be determined. The overall scheduling

only considers one iteration of the SDF. Although the optimal solution is derived,

it still may not be optimal since it does not consider the possibility of scheduling

several iterations of an SDF at one time, and due to the precedence constraints

among actors, some processors may still be left idle, and cannot be fully utilized.

SDFs belong to the broad category of streaming/workflow applications. A sur-

vey [23] by Anne Benoit, et al, summarizes existing works in this field, where various

application models, platform models, and performance metrics have been considered.

However, the main metrics are period and latency, and few of them consider energy

consumption. Specifically, [24] considers energy consumption as one metric, but it

only addresses the linear chain application model. Our work in this paper addresses

general ASDFs. [25] studied the problem of mapping streaming applications onto a

2-dimensional tiled CMP architecture, with the objective of minimizing the energy

consumption using DVFS, while maintaining a given throughput. In this paper, we

consider energy-aware scheduling for general ASDFs. We propose pipeline schedul-

ing for energy-awareness. Pipeline scheduling will not leave processors idle, even

though the precedence constraints among actors exist; thus, it can achieve good

performances for energy-aware scheduling.

8. Conclusion

We address the problems of minimizing energy consumption given a throughput

constraint, and maximizing throughput under an energy consumption constraint
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per iteration for ASDFs. We propose the pipeline scheduling scheme to schedule

the DAG. After transforming the ASDF to a DAG, we derive a valid total order,

which can be achieved via various strategies, from the transformed DAG. Given

the derived total order, we design two dynamic programming algorithms to produce

optimal pipeline stage partitioning, and the frequency setting, for each stage for

the two problems, respectively. We analyze our approaches in detail, and various

experiments verify the strength of our approaches.
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