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Trust is a central component of social interactions among humans. Many applications motivate the consider-
ation of trust evaluation in online social networks (OSNs). Some work has been proposed based on a trusted
graph. However, it is still an open challenge to construct a trusted graph, especially in terms of selecting
proper recommenders, which can be used to predict the trustworthiness of an unknown target efficiently
and effectively. Based on the intuition that people who are close to and influential to us can make more
proper and acceptable recommendations, we present the idea of recommendation-aware trust evaluation
(RATE). We further model the recommender selection problem as an optimization problem, with the objec-
tives of higher accuracy, lower risk (uncertainty), and lower cost. Four metrics: trustworthiness, expertise,
uncertainty, and cost, are identified to measure and adjust the quality of recommenders. We focus on a 1-
hop recommender selection, for which we propose the FluidTrust model to better illustrate the trust-decision
making process of a user. We also discuss the extension of multi-hop scenarios and multi-target scenarios.
Experimental results, with the real social network data sets of Epinions and Advogato, validate the effec-
tiveness of RATE: it can predict trust with higher accuracy (it gains about 20% higher accuracy in Epinions),
lower risk, and less cost (about a 30% improvement).
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1. INTRODUCTION
With the rapid development of Internet technology, online social networks (OSNs) are
becoming more and more popular. OSNs are organized around users. Participating
users join a network, publish their profile and any content, and create links to any
other users with whom they associate. The resulting social network provides a basis
for maintaining social relationships, for finding users with similar interests, and for
locating content and knowledge that has been contributed or endorsed by other users.
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Fig. 1. (a) An example of a social network showing that s has many friends who can provide recom-
mendations on t; (b) The objective graph, in which a subset of friends are selected as recommenders,
{r1, ..., rm} ⊆ {u1, ..., un}.

The trust mechanism is a tool that has been used to facilitate decision-making in di-
verse applications, ranging from ancient fish markets to state-of-the-art e-commerce.
In OSNs, various applications have motivated the tremendous attention of trust evalu-
ation, such as hiring managers who want to recruit new employees, service consumers
who are looking for service providers, e-business buyers who are finding sellers, sci-
entists who are searching for collaborators, etc. In other words, trust issues exist in
any application whenever a person (e.g., source s) needs to estimate the trust level of
another (e.g., target t), so as to decide whether or not to conduct further interactions.

1.1. The Motivation
A single person usually has a limit of known persons, due to his limited time and
energy. A famous example is the Dunbar’s number, or 150-rule [Dunbar 1992]: there is
a suggested cognitive limit to the number of people with whom one can maintain stable
social relationships. Hence, friends take an important role of making recommendations
(Fig. 1). Several models have been proposed to estimate the trustworthiness of a given
target from a source, taking advantage of the propagative (or weak-transitive) property
of trust: if s trusts v, and v trusts d, then s can infer some trust on d. In the above
process, v takes the role of a recommender, to help s make a proper estimation of
d’s trustworthiness. In this sense, it is similar to a referral system, which naturally
captures the manner in which people help each other in finding trustworthy experts
[Pushpa et al. 2010]. Many useful findings have been made. However, most of the
existing trust models deal with the information aggregation in a small trusted graph,
for which several challenges remain open:

(1) It is unclear which users should be selected as recommenders into the trusted
graph. That is, “how to build the trusted graph, especially for selecting a proper
subset of users.”

(2) There is no ground truth on how much the real trust s falls on d, especially when s
knows little about d.

(3) Research is lacking on how the trust evolution [Tang et al. 2012] will affect trust
evaluation in future interactions.

(4) Existing models are solely based on trust ratings. Other closely related concepts
in practical applications, e.g., a recommender’s expertise (on the topic, target, and
even the preference and bias of the source), the risk (uncertainty), and the possible
cost, are usually overlooked.

In reality, it usually happens that a user has many friends; selecting different sub-
sets of these friends may lead to making different decisions, taking different risks, and
paying different costs. Therefore, we focus on exploring the factors that are involved
in the process of trust evaluation, and developing an efficient scheme to solve the rec-
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ommender subset selection problem, to meet the goals of higher prediction accuracy,
lower risk (uncertainty), and less cost.

1.2. Main Ideas and Our Contributions
“It is not what you know, but who you know that makes the difference.” Our basic idea
is to find people who are the most suitable to serve as recommenders, as to help the
source make a proper decision. That is, choosing the one who can enhance the “visibil-
ity” of the source. To make it simple, we are coping with “How do you find the users
that reflect your tastes the most?” We try to apply the idea of recommendation [Massa
and Avesani 2007a] to trust evaluation, based on the observation that people who are
close and influential to us, and who have more expertise on the related topics and even
the target, can make more proper and acceptable recommendations for us.

We propose a novel model to select proper neighbors, which we call recommenders,
for evaluating a target’s trustworthiness. Our goal is to develop a comprehensive mod-
el, which can tell what the trust level of a target is; more importantly, it can provide
through whom the goal can be realized. Our contributions are as follows:

(1) We propose the idea of recommendation-aware trust evaluation (RATE for short).
Since trust itself is usually personalized, it is natural to identify some proper rec-
ommenders who often have similar ideas or opinions as the source, and who have
more expertise on the topic and the target, as to estimate the trustworthiness of
the target.

(2) We identify four metrics, trustworthiness, expertise, uncertainty, and cost, to com-
prehensively measure and adjust the quality of recommenders. Those metrics can
indicate the preference of a user (i.e., one’s personal level of trust in a friend, who is
a possible recommender), the degree to which a friend knows the source, the topic
and the target, the historical behavior and fluctuation of his friend, and the cost
and availability of his friend as a recommender, respectively.

(3) We focus on the 1-hop (i.e., the direct neighbor of source) recommender selection
strategies and trust-decision making, for which we propose the FluidTrust model
to better illustrate a user’s trust-decision making process. We also analyze other
more complex scenarios when it needs multi-hops for the source to reach the target,
or when there are multiple targets.

(4) We evaluate RATE using two real trust networks, Epinions (www.epinions.com)
and Advogato (www.advogato.org). The results demonstrate how each metric can
impact the performance of RATE, and show that RATE can predict trust with high-
er accuracy (it gains about 20% higher accuracy in Epinions and 1.8% in Advogato),
lower risk, and less cost (about a 30% improvement).

The remainder of this paper is organized as follows: Section 2 surveys related work.
Section 3 states the problem we address, and provides some preliminaries. Section 4
presents the overview of our approach. Sections 5 and 6 describe the 1-hop recom-
mender selection scheme and possible extensions. Section 7 describes the experimental
evaluation. Finally, Section 8 concludes this paper and suggests future work.

2. RELATED WORK
Generally speaking, trust models we are considering use a graph to reflect the relations
between users, which is usually named trusted graph. A node in the graph represents a
user in OSNs, and a directed edge represents the trust relation from a user to another,
with its weight being the trust degree.

Golbeck proposed TidalTrust [Golbeck 2005], which can generate a recommendation
regarding how much one person should trust the other, based on the shortest strongest
trusted paths. Massa et al. [Massa and Avesani 2007b] proposed MoleTrust, which
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uses a reduced directed acyclic graph for trust calculation. In both TidalTrust and
MoleTrust, only one-dimensional information (i.e., the trust) is used.

Wang and Wu [Wang and Wu 2011] proposed a multi-dimensional evidence-based
trust management system with multi-trusted paths. They proposed algorithms to sim-
plify complex trusted graph. However, how to construct such a trusted graph is not
mentioned. Our previous work in [Jiang et al. 2014] proposed SWTrust, to generate
small trusted graphs for large OSNs. The information used to construct trust is users’
active domains, which are stable and objective compared to subjective trust ratings.
Liu et al. proposed two approaches in [Liu et al. 2010] and [Liu et al. 2013] to deal
with the multi-constrained optimal trusted path selection problem. In their work, the
trust, the social intimacy degree, and the role impact factor are considered to improve
the quality of trust prediction. However, the uncertainty and cost are overlooked.

Some work considers the factor of uncertainty. Jøsang et al. [Jøsang et al. 2006]
proposed a trust model with subjective logic, in which they use b, d, and u to represent
belief, disbelief and uncertainty respectively, where b, d, u ∈ [0, 1] and b+ d+u = 1. The
confidence of a trust value is equivalent to the certainty of the corresponding opinion.
Liu et al. proposed a trust model using three-valued subjective logic [Liu et al. 2014].
They introduce the concepts of posteriori and priori uncertainty spaces.

Based on trusted graph, some trust models use the graph analogy-based approach.
For instance, RN-Trust [Taherian et al. 2008] emulates a trusted graph with a resistive
network. However, RN-Trust may not be suitable for large scale social networks, due
to the complexity of calculating the equivalent resistance value. GFTrust [Jiang et al.
2015] calculates trust using generalized maximum flow, based on a trusted graph.

We can see there is still room for research on selecting proper recommender and
considering multiple proper metrics. We have got some preliminary results in [Jiang
et al. 2013], which briefly presents the idea of selecting recommenders. In the current
paper, we provide more details for the metrics, concepts, and experiments. The new
proposed FluidTrust model is incited by FluidRating, a rating prediction scheme pro-
posed in [Jiang et al. 2014; Jiang et al. 2015]. In those works, we are trying to predict a
user’s opinion on a specific item. Meanwhile, FluidTrust in this paper is used to better
illustrate the process of 1-hop recommender selection and trust-decision making, and
the opinion is on a user, rather than on an item.

Similar problems have been studied in some other work [Yolum and Singh 2003;
Yolum and Singh 2005; Liang and Shi 2008; Pushpa et al. 2010; Etuk et al. 2013].
[Yolum and Singh 2003] studies the properties of referral systems, and analyzes two
elements of expertise and sociability. The former represents the quality of services a
provider can provide, and the latter represents the quality of referrals a recommender
can provide. In our paper, we focus on the recommender (referrals) and we identify
four metrics to better measure the quality of a recommender. [Yolum and Singh 2005]
further studies how to develop robust, self-organizing referral networks, and claims
the flexible referrals are essential for locating trustworthy services: Consumers can
help each other find desired service providers. [Liang and Shi 2008] studies two kinds
uncertainties about the effects of ratings on building trust relationships: algorithm un-
certainty and factor uncertainty. They find that ratings are not always helpful. [Pushpa
et al. 2010] tries to find experts via referrals, in a co-author social network. They find
that more than four neighbors can guarantee the number of experts found. [Etuk et al.
2013] describes a trust-based approach to information fusion, which exploits diversi-
ty among information sources. The aim is similar to our work, i.e., to select a small
number of candidates to query for evidence.
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3. PROBLEM FORMULATION
3.1. Recommender Selection Problem (RSP)

Definition 3.1. Recommender Selection Problem (RSP): Given a social network G =
(V,E), V is the set of nodes and E is the set of links (or edges). For two nodes, s
and d in V , s is the source and d is the target. For the safety of user interactions in
OSNs, we wonder how to design an efficient scheme to select the best recommenders
R = {r1, ..., rm}, from the neighbor set of s Ns = {u1, ..., un} (m ≤ n), with the goals of
making a proper decision (to trust or not trust d), meeting the optimal requirements of
higher accuracy, lower risk (uncertainty), and less cost.

According to the distance from recommenders to the source, the problem can be di-
vided into two sub-issues, to cope with 1-hop neighbors (the direct neighbors of source)
and multi-hop chains, respectively. The task of selecting 1-hop neighbors is similar to,
but more challenging than, the Jury Selection Problem (JSP) [Cao et al. 2012]. [Cao
et al. 2012] proves that JSP, within a given budget and with the goal of minimize the
error rate, is NP-complete. Our RSP problem can also be specified into such an NP-
complete problem, e.g., restrict the budget and set the goal of minimizing the mean
error (or maximizing the Fscore). For the determination of multi-hop chains, it can be
taken as executing 1-hop JSP multiple times, which is also NP-complete. A simplified
problem is finding only an optimal path, which is a Multi-Constrained Optimal Path
(MCOP) selection problem [Liu et al. 2013; Korkmaz and Krunz 2001], and also has
been identified to be NP-complete [Korkmaz and Krunz 2001; Jaffe 1984].

Since our goal is to study the process by which a user selects recommenders and
makes trust-decisions, we would like to place further analysis on the problem com-
plexity in future work. At the current stage, we will focus on proposing some heuristic
algorithms and checking the key factors in the process.

3.2. Preliminaries
There are two preliminaries that are closely related to our work.

(1) Jury Selection Problem (JSP). It is used to choose the most reliable and feasible
subset of all possible “jurors” to vote on a question. In JSP of [Cao et al. 2012],
each juror has only two choices of 0 or 1; some jurors are selected by considering
the two factors of the jury error rate and the cost. In our problem of RSP, each
recommender may give a trust level in [0, 1], i.e., more choices; and we consider
more metrics to measure the quality of recommenders.

(2) Small-world characteristics of online social networks. Small-world network theory
[Watts 1999] suggests that “there exist short paths between any two persons,” and
[Kleinberg 2000] provides an algorithmic view. Moreover, OSNs have been validat-
ed to bear the small-world network features [Watts 1999; Yuan et al. 2010]. There-
fore, it can serve as the foundation of searching trusted chains from the source to
the target.

4. SOLUTION OVERVIEW
The goal of trust evaluation is to estimate the trustworthiness of an unknown target,
through proper intermediate recommenders. Our solution framework is shown in Fig.
2. There are mainly three parts, as follows:

(1) Metrics identification. We identify some metrics to describe the trust-related user
features, and to regulate the trust evaluation systems.

(2) 1-hop recommender selection. We aim to explore a rational approach to select an
optimal subset of recommenders, when there are enough 1-hop (or direct) neigh-
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Fig. 2. Solution framework of RATE.

bors of s who know d. Many issues need to be addressed, such as “what kind of
neighbor can be deemed as a good one,” “how many neighbors should be selected,”
and “what can we do if the selected neighbors have different opinions towards d?”

(3) Extension of multi-hop and multi-target scenarios. In reality, it may need multiple
hops for s to reach d. Moreover, s may need to evaluate the trustworthiness of
multiple targets. We discuss both scenarios in the extension.

To address the recommender selection problem and to better illustrate a user’s trust-
decision making process, we extend FluidRating scheme in [Jiang et al. 2014], which
uses fluid dynamics theory to predict a user’s rating on an item. In FluidRating, we
simulate the recommendation among users as fluid exchange and mixture. Fluid tem-
perature indicates an opinion on an item. In this paper, we propose the FluidTrust
scheme, which considers more factors on selecting qualified recommenders and the dy-
namic process of trust-decision making. Moreover, fluid temperature indicates trust on
a user, instead of on an item. Details will be given in the next section.

4.1. Metrics
In order to select the most proper recommenders for current user a, we need to identify
proper metrics and assign proper values for a neighbor b, from the view of a. Based on
the observations in real life, we present the following four metrics:

(1) The trustworthiness of b from a’s view, is denoted as tab.
(2) The expertise of b from a’s view, is denoted as eab.
(3) The uncertainty of b from a’s view, is denoted as uab.
(4) The cost of a’s inviting b as a recommender, is denoted as cab.

We combine the four metrics as a metric vectorMab =< tab, eab, uab, cab >. The nota-
tions used in this paper are described in Table I. All the variables are normalized into
the range of [0,1]. The details of these metrics are as follows.

4.1.1. Trustworthiness. We take the trustworthiness of a person b from a, equally with
the trust that a puts on b, representing “a commitment to an action, based on a belief
that the future actions of that person will lead to a good outcome [Golbeck 2005].”
This metric is a subjective opinion of current user a, according to his direct experience
of interactions with a friend b. We let the metric fall into the range of [0,1], with 0
representing no trust and 1 representing full trust.
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Table I. Notations.

Symbol Description
G = (V,E) online social network
a/b/lab two nodes a, b, and the link between them
Na the neighbor set of a
tab the trustworthiness of b from a’s view
eab the expertise of b from a’s view
uab the uncertainty of b from a’s view
cab the cost of selecting b from a
Mab the metric vector for a selecting b

Pa1...an a trusted path from a1 to an

If two persons have direct interactions, they will build first-hand trust in each other.
If not, they may build second-hand trust through intermediate users. In real trust
networks including Epinions and Advogato, the trust opinions are explicitly expressed.
We will use this information to assess the direct trust.

4.1.2. Expertise. In a particular trust evaluation task, we use the “expertise” to repre-
sent a neighbor’s capability to make proper recommendations, including his knowledge
on the topic, the target, and the source. Here, it is a broader concept, which combines
the origin expertise and the affinity between two users [Wang et al. 2014].

This metric has two important features: (1) it is relatively objective compared to the
subjective trust, since it considers some objective information; (2) it indicates some
“mutual understanding,” i.e., “I know that you know me well.” Therefore, a higher
expertise can lead to a higher probability, for recommenders to make a proper recom-
mendation and for the current user to adopt such a recommendation. For instance,
the expertise eab indicates both the knowledge of b and the degree that a will take
b’s advice, e.g., 80% adoption, or total adoption. Similarly, we let the metric fall into
the range of [0,1], with 0 representing no expertise and adoption, and 1 representing
highest expertise and total adoption.

To assess the expertise of a recommender b, we combine his topic-related degree
topicb, target-related degree targetb, and his affinity with a, affab, as the following:
eab = χ1 · topicb + χ2 · targetb + χ3 · affab, where 0 < χi < 1, and

∑
χi = 1. For instance,

topic (or target)-related degree in the Epinions web site can be calculated with the
number of domains of the topic (or target) covered by b [Jiang et al. 2014]. The affinity
can be gained by integrating their similarity and tie strength, as in [Wang et al. 2014].

4.1.3. Uncertainty. Uncertainty can increase the risks of transaction. One important
goal of selecting qualified recommenders is to reduce the uncertainty, so as to lower
the risk of failure. In the trust evaluation scenario, we use this metric to indicate an
accumulative measure of the fluctuation of b, according to the historical interactions.
It also indicates how much the confidence a can put on b. Therefore, we mainly focus
on the success ratio of all the interactions in which a has rated b. When the evidence
for success dominates, the uncertainty is lower, and vice versa. We let the metric fall
into the range of [0,1], with 0 representing no uncertainty, and 1 representing complete
uncertainty.

To assess the uncertainty of a user b, we count the number of interactions (e.g.,
reviews in Epinions) that are rated by a, denoted as numab. Within those interactions,
we count the number of those a rated as helpful or very helpful, denoted as numhigh

ab .
Then, the uncertainty is calculated as uab = numhigh

ab /numab.

4.1.4. Cost. Just as in daily life, when a user a wants to contact b, either directly or
indirectly, some cost will be charged. The cost may be the time, communication, or sim-
ply the money he will take. Note that direct contacts to strangers may lead to a larger
cost than those to indirect contacts. In an extreme case, a source can conduct multiple
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direct contacts to any target, to test the trustworthiness himself, which may be quite
resource-consuming. Therefore, the essence of trust evaluation is to search proper rec-
ommenders, who already know the target well, through their previous experiences.

In our work, we take the intuition that, the more close the relationship between two
users, the less cost it will take to help each other. Therefore, we explore the information
of tie strength to represent the cost. For instance, the more papers two authors have
co-written in a scientific collaboration network, or the more the two users have co-
rated each other in Epinions, the stronger the tie between them. The cost between a
user and his direct neighbor is normalized into the range of [0,1], with 0 representing
lowest cost, and 1 representing highest cost.

It is worth noting that, the assessments of the four metrics can be flexibly designed
according to specific context.

4.2. Utility Functions and the Objective
In our model, we define two utility functions, denoted as F and G, as the measurements
of the quality and the risk/cost of social trusted paths, respectively. For a trusted path
Pa1...an , the functions take the above four metrics t, e, u, and c as the arguments in the
following two equations:

FPa1...an
= ωt · tPa1...an

+ ωe · ePa1...an
(1)

GPa1...an
= ωu · uPa1...an

+ ωc · cPa1...an
(2)

where ωt, ωe, ωu and ωc are the weights of t, e, u, and c, respectively (the weights are
determined by the source s); moreover, 0 < ωt, ωe, ωu, ωc < 1, ωt + ωe = 1, ωu + ωc = 1.

We combine F and G in a normalized utility function as follows:

UPa1...an
= λ · FPa1...an

+ (1− λ) · (1− GPa1...an
), λ ∈ [0, 1] (3)

For a trusted graph (i.e., multiple trusted paths), the utility can be calculated based
on the above equations and the aggregation policy (e.g., common strategies like Max-
Min and Max-Ave in [Jiang et al. 2014], or FluidTrust in this paper). The objective is
to select the neighbors that satisfy multiple constraints and yields the best utility (i.e.,
maximize the normalized utility), with the weights specified by the source s. Note that,
the utility function can also be used to measure a single recommender v, by considering
the path Psvd (s is the source and d is the target).

As we have mentioned before, our focus will be on proposing some heuristic algo-
rithms, taking the utility functions to serve as the selection rules.

5. RATE: 1-HOP RECOMMENDER SELECTION
In this section, we focus on the 1-hop recommenders selection, i.e., when the source
can reach the the target via his direct neighbors. Four issues need to be addressed:

(1) How to measure the quality of a recommender? We should know what kind of rec-
ommender can be taken as ‘good’, before identifying good ones.

(2) How many recommenders are enough, and are efficient for, decision-making? Intu-
itively, it will be much safer if we select more recommenders, to avoid bias and to
make a comprehensive decision. Then comes the question “when to stop (selecting
more)?”, i.e., determining the size of the optimal recommender set.

(3) Trust aggregation and conflict resolution. We should make a final decision by con-
sidering the opinions of the optimal recommender set. Most importantly, it usually
happens that a different person has a different view on the same target. Therefore,
we should design a flexible approach to resolve the possible conflicts.
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Fig. 3. Illustration of FluidTrust model.

(4) Trust evolution and the state transition of recommenders. If s decides to trust d, and
conducts interactions with t, he will have first-hand information about d. Then, he
may update his opinions (the four metrics we define in this paper) on all his neigh-
bors, by comparing his own experience and their recommendations. Accordingly,
some recommenders may receive higher scores because of their effective recom-
mendations; meanwhile, some others’ scores may be decreased.

Incited by what people do in real life, we take the 1-hop recommender selection
process as follows: s first sorts his neighbors according to their qualities. Then, he
requests the advice of the one with highest quality, takes part of the received advice,
and forms his initial opinion. Next, he continues to request the second one. If the
second one’s opinion is consistent with s, s will increase his confidence on his initial
idea; otherwise, he will doubt either the target, or the recommenders, or even both. The
process can be continued until some m recommenders have been considered and s has
got enough confidence. From real life experience, we know that the earlier a different
opinion occurs, the higher the probability that s will have doubts about the target.

Taking the idea of FluidRating [Jiang et al. 2014], we model the system as shown in
Fig. 3. Each user is modeled as a container, with a pipe connecting him and one of his
neighbors, say s and v. The width of a pipe is equal to tsv, i.e., the trustworthiness of
v from s’s point. The length of a pipe indicates the cost csv. Fluid temperature is equal
to tvd, i.e., the target’s trustworthiness from the point of v. s owns a valve installed in
the pipe connecting s and v. Moreover, s has the right to open the valve and listen to
neighbors’ advice, i.e., alow some fluid to flow into his container. Next, s will update
his fluid height according to the degree to which he adopts v’s advice, i.e., esv. Fig. 4(a)
shows a toy example of recommender selection, and Fig. 4(b) shows the corresponding
system constructed using FluidTrust model.

In the following subsections, we first introduce a new concept of “the quality of rec-
ommenders (QoR).” Then, we discuss the four issues in detail.

5.1. The Quality of Recommenders
Incited by the well-known concept of “quality of service (QoS)”, which consists of sev-
eral attributes, and is used to illustrate the ability of services to guarantee a certain
level of performance, we present a new concept, quality of recommender (QoR).

Definition 5.1. Quality of recommender (QoR) comprises requirements on a recom-
mender, taking trustworthiness, expertise, uncertainty, and cost, as attributes.

In RATE, users can set multiple quality constraints as the thresholds of the four
metrics, denoted as Qθ(θ ∈ {t, e, u, c}). Only neighbors who meet all the requirements
can be taken as qualified and selected as recommenders. Moreover, the quality of a
recommender can be measured by the utility function in Eq. 3. Since the quality of a
recommender may change along with new interactions, we further define their states.
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Fig. 4. (a) A toy example of 1-hop recommender selection. (b) illustration of FluidTrust model.

Definition 5.2. State of a recommender. A recommender has two possible states,
active and inactive, according to his QoR quality. Only the recommender who meets
the QoR constraints is in the active state, i.e., he is ready to be selected.

Taking Fig. 4(a) for instance, s may specify Qt > 0.5, Qe > 0.4, Qu < 0.3, Qc < 0.5,
then v1 and v2 can be selected. In another case, s, who cares more about trustworthi-
ness, may even specify Qt ≥ 0.8; then, only v1 can be selected.

From the example, we can see that there is a tradeoff between the quality require-
ments and the availability of qualified recommenders. We take a neighbor as “quali-
fied” if he meets the quality requirements specified by the source (or a previous inter-
mediate recommender in multi-hop scenarios).

5.2. Selecting Recommender Set
We first propose some coarse-grained approximation for the size of optimal recom-
mender set. Based on this, we implement the reliability model to aggregate trust. In
the next subsection, we will apply FluidTrust to refine the size and trust aggregation.

5.2.1. Coarse-grained Approximation. Suppose there are n neighbors, then the possible
size of a subset has 2n cases. Generally speaking, the more recommenders we select,
the higher the probability that we may predict properly; however, this will lead to a
higher cost to pay, and more complexity in the aggregation of different options. There-
fore, we expect to select fewer recommenders, while guaranteeing a higher prediction
accuracy and higher utility (larger F and smaller G). Three possible choices are as
follows, which can be taken as coarse-grained approximations:

(1) Method 1: Selecting all qualified neighbors.
(2) Method 2: Selecting a fixed number of qualified neighbors, e.g., 3, 6, etc.
(3) Method 3: Selecting a fixed proportion of qualified neighbors, e.g., 1/3, 1/6, etc.
(4) Method 4: Flexibly selecting some top m qualified neighbors, m ≤ n.

For Choice 4, we present a heuristic approach (lines 5-9, Algorithm 1): we continue to
select qualified recommenders until the number of next hop neighbors is larger than
the current ones. The basic intuition comes from the view of information diffusion
[Newman 2010], which says the information can be propagated if there are more next
hop neighbors than current ones.

Algorithm 1 shows the process of 1-hop recommender selection. For line 2, a user
v will assign a metric vector value for each neighbor, according to the description in
the overview section (Section 4). Without loss of generality, we suppose each user has
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ALGORITHM 1: BasicRATE(G, s, d)
Input: G, a social network; s, source; d, target.
Output: Rs, an optimal subset of referrals.

1 for each neighbor v in Ns do
2 Calculate the metric vectorMsv.
3 keep the qualified neighbors who meet the quality constraints specified by s, in terms of the

thresholds of the four metrics: trustworthiness, expertise, uncertainty, and cost.
4 Sort the qualified neighbors in descending order.
5 for i : [0,m] do
6 Add the best recommender ri ∈ Ns to Rs.
7 i← i+ 1.
8 if the neighbor set of Rs is larger than Ns then
9 End the selection process.

already known the value. Then, line 2 takes O(1) of time complexity; lines 1-3 takes
O(n), where n is the number of v’s neighbors. For line 4, the time complexity is O(n ·
log n) using the quick sorting approach. For lines 5-9, it takes O(m) to select the top m
recommenders, m ≤ n. Therefore, it takes a total time complexity of O(n · log n).

5.2.2. Trust Aggregation and Conflict Resolution using Reliability Model. We make use of the
aggregation method in the reliability model (e.g., [Jiang et al. 2014]), where the trust
value in the last hop to d is the direct trust, and the trust value from the source to the
last intermediate node is taken as the reliability (of direct trust). Trust aggregation
calculates the final trust value. Two commonly used aggregation functions are MaxT
and WAveT . MaxT takes the trust value of the most reliable neighbor of d. WAveT
takes the weighted average value of all qualified neighbors of d. Taking Fig. 4(a) for
instance, tvid, i ∈ {1, 2, 3, 4} are direct trust, while tsvi , i ∈ {1, 2, 3, 4} are their reliability.
Suppose v1 and v2 are selected qualified recommenders. Taking MaxT aggregation, we
will get tsd = tv1d = 0.8; taking WAveT aggregation, we will get tsd = (0.8 · 0.8 + 0.7 ·
0.6)/(0.8 + 0.7) = 0.7067.

For the possible conflict, we take the way of post-treatment. That is, we first aggre-
gate the opinions of qualified recommenders, by taking MaxT or WAveT aggregation.
According to the final trust, if s decides to trust d and conducts direct interactions, he
will get the first-hand information about d. That information will be used to validate
and adjust the quality of recommenders. The process, together with the direct trust of
s on d, is taken as “trust evolution.”

5.3. Applying FluidTrust For Fine-grained Trust Aggregation
We design Algorithm 2 to apply the FluidTrust model into the process of recommender
selection and trust-opinion formulation. Before introducing the details, we make the
following assumptions: (1) All containers are the same size and are higher than 1.
Since the confidence or certainty is at most 1, this setting will avoid overflow. (2) Each
pipe is installed with a valve, and s has the right to open the valve to allow fluid to
come in. (3) Pipes are installed at the bottom of all containers, and all containers are
placed in the same horizontal level. (4) s has a special copy container s0, which can
absorb fluid from s. Moreover, we take a discrete and asynchronous approach. Each
time that s wants to listen to some advice, he will open a valve and allow fluid to flow
in for a duration of ∆. s0 will keep and mix fluid absorbed from s. s’s container will be
cleaned up and kept empty at the end of a time slot.

There are two basic operations in FluidTrust: (1) allowing new fluid to come in (i.e.,
a person receives some recommendation); and (2) updating fluid temperature (i.e., the
person refines his opinion). The former is implemented using Torricelli’s law [Torricelli
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ALGORITHM 2: FluidTrust(G, s, d)
Input: s, source; Qs, sorted qualified neighbor list of s; d, target.
Output: Rs, an optimal subset of referrals.

1 SubProcess: AllowFluidFlowing(s,v)
2 {s pays the cost proportional to the length of the pipe connecting s and v.
3 s opens the valve to allow v’s fluid coming in. The volume is calculated using Eq. 4.
4 s adopts v’s advice with a percentage of wsv. }
5 Suppose u is the most qualified neighbor in Qs.
6 Call AllowFluidFlowing(s,v) and s forms his initial opinion.
7 for other qualified and unvisited neighbor v′ in Qs do
8 if s has reached his required confidence then
9 Terminate the process.

10 else
11 Call AllowFluidFlowing(s,v′);
12 s will mix the new fluid with existing ones using Eqs. 5 and 6.
13 if the advice of v′ is opposite to the current opinion of s then
14 s will drop some fluid to decrease his confidence/certainty using Eq. 7.

1643]. It states that the speed of efflux, σ, of a fluid through a sharp-edged hole at the
bottom of a tank filled to a depth h is the same as the speed that a body (in this case
a drop of water) would acquire in falling freely from a height h, i.e., σ =

√
2gh, where

g is the acceleration due to gravity. As an application of this law, the speed of flowing
fluid in our case will be σsv =

√
2ghv. Considering the cross-sectional area tsv of the

pipe and the duration of the time slot ∆, the volume of flowing fluid in this time slot,
Θvs, can be calculated as follows:

Θvs =
√

2ghv · tsv ·∆ (4)

Since s only adopts v’s advice with a percentage of esv, s0 will absorb the amount of
esv ·Θvs fluid. The remaining fluid in s will be cleaned up. Suppose at the ith time slot,
s0 already has the amount of fluid Θs0(i), and the new coming fluid is Θvs. The mixed
fluid volume will be:

Θs0(i+ 1) = Θs0(i) + esv ·Θvs (5)

According to the law of energy conservation, the fluid temperature after mixing up
is calculated as follows:

τs0(i+ 1) =
τs0(i) ·Θs0(i) + τv ·Θvs · esv

Θs0(i+ 1)
(6)

Eq. 6 is essentially
∑

(volume · temperature)/
∑

volume. In Eq. 6, τv is the fluid tem-
perature in v’s container.

In real life, if we hear some different opinion, we may doubt and rethink our current
one, and our confidence regarding our current opinion will decrease more or less. To
reflect this point, in FluidTrust, if the new coming opinion is different from the current
one, we will decrease s’s confidence with a parameter η ∈ [0, 1]. That is,

hs0 = hs0 · η. (7)

In Algorithm 2, the source visits at most all neighbors. Suppose that number is n.
Each time he visits a neighbor, only a constant time is taken. Therefore, the complexity
of Algorithm 2 is O(n).
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ALGORITHM 3: Evolution(G, s, d)

Input: t∗, the calculated trust; tsd, the direct trust from s to d.
Output: Update the metric vector for each neighbor in Ns.

1 if tsd ≥ Qt then
2 for each neighbor v in Ns do
3 Let tvd represent the trust value from v to d.
4 if tvd ≥ Qt then
5 s will updateMsv with + operation.
6 else
7 s will updateMsv with − operation.
8 else
9 Conduct opposite operations with the above case.

ALGORITHM 4: MultiHop RATE(G, s, d)

Input: G, a social network; s, source; d, target, d /∈ N(s).
Output: MCOP (s, d), multi-constraint optimal trusted paths.

1 Let L be the max length of a trusted path.
2 for i : [1, L] do
3 Start from s, do local greedy breadth-first search with basicRATE algorithm.
4 i← i+ 1.
5 if There exist paths from s to d then
6 Calculate the metric vector for the paths using Eqs. 3-6.
7 Evaluate trust using Reliability model or FluidTrust model.

5.4. Trust Evolution and the State Transition of Recommenders
We assign each recommender two possible states, active or inactive (Fig. 5). Accord-
ing to their contributions of recommendation, s can adjust their quality. Through this
way, s may change the states of some recommenders from inactive to active (with +
operation), due to their helpfulness; and vice versa.

Algorithm 3 shows the process of trust evolution. Without loss of generality, we only
consider the evolution when the calculated trust t∗ ≥ Qt, and s thus decides to conduct
direct interactions with d. We do not cope with the scenarios in which a person does
not take action, as his friends suggest.

Many functions can be defined for the + and − operations. Just taking the uncer-
tainty for instance, we can increase the success times for + and the failure times for
−. We would like to put the design of the + and − operations into the future work.

6. EXTENSIONS
We discuss two possible extensions: one is the scenario that needs multi-hops to reach
the target, the other involves multi-targets that need to estimate the trustworthiness.

6.1. Multi-hop Scenarios
When it needs multiple hops to reach the target, the propagation operations of the
four metrics, trustworthiness, expertise, uncertainty, and cost should be determined.
We define the four equations for a trusted path.

-
+

QoR Threshold

InactiveActive

Fig. 5. The state transition graph of a recommender.
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Fig. 6. (a) An example of a multi-target scenario: s needs to know multiple targets; (b) The optimal evalua-
tion graph: s first evaluates some targets, then, it evaluates the remains via pre-known trusted ones.

6.1.1. Trustworthiness of a path. Again, we use the idea of the reliability model, in which
trust propagation calculates the reliability of a trusted path. A commonly used method
is Multi, which takes the product of trust values in all edges, as in the following:

tPa1...an
=

∏
laiai+1

∈Pa1...an

taiai+1
(8)

6.1.2. Expertise of a path. We use a similar method with trustworthiness when calcu-
lating the expertise through a path P (a1, ..., an), as in the following:

ePa1...an
=

∏
laiai+1

∈Pa1...an

eaiai+1
(9)

6.1.3. Uncertainty of a path. If we take uncertainty as the probability of failure, then
the uncertainty of a path is defined as follows:

uPa1...an
= 1−

∏
laiai+1

∈Pa1...an

(1− uaiai+1
) (10)

The above equation can be seen like this: the probability that the trusted path
Pa1...an becomes a success, is the same that all intermediate nodes behave well and
finally come to a success, i.e.,

∏
laiai+1

∈Pa1...an
(1− uaiai+1

). Then, the probability of fail-
ure is what remains.

6.1.4. Cost of a path. It is natural to summarize all the costs of each intermediate
recommender to get the cost of a path, as in the following:

cPa1...an
=

∑
laiai+1

∈Pa1...an

caiai+1
(11)

It is straightforward that a shorter path will lead to less cost if the average cost on
each edge is the same.

The process of the multi-hop scenario is as follows: start from s, and do a local greedy
breadth-first search with Algorithm 1. If there exist paths from s to d, calculate the
metric vector for the paths. Then, aggregate their results by MaxT or WAveT in the
reliability model, or FluidTrust model, as mentioned before.

Algorithm 4 shows the process of multi-hop recommender selection, which aims to
find multi-constraint optimal trusted paths. We take a local greedy approach. It takes a
maximum of L hops, while each step takes O(n·log n) for 1-hop recommender selection.
According to the small-world characteristic of OSNs [Watts 1999], L is usually a very
small constant number (e.g., 6). Therefore, it takes a total time complexity ofO(n·log n).
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ALGORITHM 5: MultiTarget RATE(G, s,D)

Input: G, a trusted graph; s, source; D, target set; s /∈ D.
Output: MT (s,D), multi-target trusted graph.

1 while there exists a target d ∈ D that hasn’t been evaluated trust do
2 Step 1: s selectively conducts direct contacts with some d, to evaluate his trustworthiness,

as well as the quality as a recommender.
3 Step 2: s continues to evaluate the trustworthiness of other targets, via pre-known targets.
4 s gradually adjusts his trust opinions according to his direct interaction experiences.

6.2. Multi-target Scenarios
We mainly consider the multi-target scenario as shown in Fig. 6(a): a new manager
joins a department; to make his future work run smoothly, he needs to become familiar
with his staff as soon as possible. To this end, he can frequently and directly contact
each staff member; he can also meet some of his staff initially, while evaluating other
staff members through some pre-known, trusted ones (Fig. 6(b)). According to further
direct interactions with other staff members, he can gradually adjust his initial trust
opinions (Algorithm 5).

7. EXPERIMENTAL EVALUATION
We evaluate the performance of RATE in two real social network data sets.

7.1. Experimental Design
7.1.1. Evaluation Technique. We use a standard evaluation technique in machine learn-

ing: leave one out. If there is an edge between two nodes, that edge is masked, and
trust is calculated through algorithms; then, we compare the calculated value with
the masked value.

7.1.2. Data Set and Preprocess. We use two real trust network data sets, i.e., Advoga-
to (www.advogato.org) and Epinions.com (www.epinions.com). Advogato is an online
social networking site dedicated to free software development. We use the snapshot
collected in June 2012. It contains 56,667 links and 7,436 users. The average degree
is 18.969, and the max degree is 969. On Advogato, users can certify each other on
4 different levels: Observer, Apprentice, Journeyer, and Master, which we assign 0.4,
0.6, 0.8, and 1.0, respectively, to numerate the level of trust.

Epinions is an online community web site where users can write reviews and rate
other users’ reviews. We use the sub set in [Jiang et al. 2014], which has 3,168 n-
odes and 51,888 edges; the average degree is 32.758, and the maximum degree is 748.
Epinions has only a binary trust value (i.e., 1 represents trust and 0 represents no
trust). However, we want the trust value to be real-valued. So we introduce Richard-
son’s technique [Richardson et al. 2003], which uses the concept of the quality of users
assigning a trust value to each node. Each user has a quality measurement qi ∈[0,1].
For our experiments, the quality of a user is chosen from two normal distributions of
µ = 0.25 (representing bad nodes) and µ = 0.75 (representing good nodes). Without loss
of generality, we set the proportions of good and bad nodes to be 90% and 10% (Since
it has shown that Epinions is a very friendly environment). For any pair of users, a
and b, the trust rating from node a to node b, denoted as tab, is uniformly chosen from
[max(qb − δab, 0),min(qb + δab, 1)]. In addition, δab = 1 − qa is a noise parameter that
determines how accurate users are at estimating the quality of the user that they are
trusting. Other metrics are set as described in Section 4.2.
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7.1.3. Accuracy Metrics. We mainly consider the metric of trust accuracy, which repre-
sents the ability of predicting whether a user will be trusted or not. We use the same
metrics in [Jiang et al. 2014]:

— Precision : At ∩ Bt/Bt. At is the number of s/d pairs on which s trusts d directly,
Bt is the number of s/d pairs on which s trusts d, by trust calculated through an
algorithm. Precision is the ratio of both the real and predicted trust users over the
predicted trust ones. A higher Precision indicates a higher prediction accuracy.

—Recall : At ∩Bt/At. Recall is the ratio of both the real and predicted trust users over
the real trust ones. A higher Recall indicates a higher prediction accuracy.

— FScore : 2 · recall · precision/(recall+ precision). Usually, there is a tradeoff between
Precision and Recall. Therefore, we use FScore to measure them jointly.

7.1.4. Trust Prediction Strategies of Comparison. We implement four trust prediction s-
trategies for comparison, they are: AveR-MaxT, AveR-WAveT, MaxR-MaxT, and MaxR-
WAveT. If there are multiple paths from s to a node in Nt, AveR will take the av-
erage path weight as the reliability, while MaxR will take the maximal one. Since
there is no model considering all the metrics identified in this paper, we choose typical
graph-based trust models for accuracy comparison. The models are: TidalTrust [Gol-
beck 2005], MoleTrust [Massa and Avesani 2007b], and SWTrust [Jiang et al. 2014].

Experimental parameters are set as the following (in default): L ∈ [2, 6], th ∈
[0.5, 0.9], wt = we = wu = wc = 0.5, λ = 0.8, and (Qt, Qw, Qu, Qc) = (0.5, 0.5, 0.5, 0.7).
For Method 1: selecting all neighbors, we actually select the first 20 trusted paths to
construct the trusted graph. For Method 2: the fixed-number approach, we select at
most 6 qualified neighbors in default. For Method 3: the fixed-proportion approach,
we select at most 1/3 of all qualified neighbors. To test the effects of RATE, we conduct
experiments for the four strategies. Since the results show similar patterns, we only
present the results using AveR-MaxT.

7.2. Experimental Results and Analysis
We first compare the strategies with or without sorting recommenders by their QoR
value, as to validate the effects of our proposed method. Next, we analyze the impact
factors such as the maximum length and the trust threshold. Then, we test the Flu-
idTrust scheme. Finally, we present the comparison with other trust models.

The Effects of QoR. Tables II and III show the results of prediction accuracy. We
gain several findings: (1) It shows significant improvements by sorting qualified neigh-
bors with their QoR, which indicates the effects of RATE. It gains at about 22.4% high-
er accuracy. (2) Also, the fixed-number strategy shows its advantage when compared to
the heuristic and fixed-proportion strategies. The reason is that it actually uses more
qualified neighbors than the other two strategies. We also record the uncertainty and
cost. Here, only the results of fixed-proportion selection are shown in Figs. 7(a) and
7(b). The results indicate that both the average uncertainty and the average cost are
decreased with sorted neighbors, which shows the advantage of RATE. In all the pos-
sible parameters settings, the least improvement occurs when L = 6; it is 33.45% for
uncertainty, and 52.13% for cost (Note that it is only a rough estimation since some
edges may be counted multiple times).

The Effects of Max Length. If the max length is large, then there will be more
hops from source to destination. Also see the results in Tables II and III. With the
increase of max length, the prediction accuracy is decreased. Taking the fix-number
selection (without sorting) strategy for instance, the decrease percentage is at least
2.55% comparing L = 6 to L = 2, in Epinions, while 0.1% in Advogato. Meanwhile,
the uncertainty and the cost are increased. The increase percentage is 232.94% and
148.03% in Epinions, while 29.04% and 36.86% in Advogato. The finding is consistent
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Table II. The accuracy comparison of the four methods, in Epinions.

Max Length Method 1 Method 2 Method 3 Method 4
2 0.5285 0.8442 0.7077 0.8492 0.6815 0.8178 0.8705
3 0.5321 0.8645 0.7 0.861 0.6429 0.7907 0.861
4 0.5065 0.833 0.6622 0.8145 0.6545 0.805 0.8145
5 0.5116 0.8393 0.6605 0.8124 0.6382 0.785 0.8124
6 0.5095 0.8367 0.6513 0.8011 0.6474 0.7963 0.8011

Trust threshold Method 1 Method 2 Method 3 Method 4
0.6 0.4173 0.7116 0.5786 0.7116 0.429 0.5277 0.5133
0.7 0.3123 0.5887 0.4786 0.5887 0.3418 0.4204 0.3841
0.8 0.2099 0.41 0.3333 0.41 0.0952 0.1171 0.2581
0.9 0.1754 0.2158 0.1754 0.2158 0.18 0.2214 0.2158

Note: (1) For the same method, the 1st column shows the FScore that does not sort neighbors with QoR, and the 2nd column
does. (2) The default threshold is 0.5, while the default maximum length is 4.

Table III. The accuracy comparison of the four methods, in Advogato.

Max Length Method 1 Method 2 Method 3 Method 4
2 0.9357 0.9798 0.956 0.9688 0.9524 0.9717 0.985
3 0.9373 0.9798 0.9604 0.9688 0.9695 0.9719 0.9818
4 0.9326 0.9796 0.9606 0.9686 0.9738 0.972 0.9808
5 0.9275 0.9788 0.9576 0.9678 0.9709 0.972 0.9797
6 0.9266 0.9768 0.9548 0.9658 0.96 0.972 0.9797

Trust threshold Method 1 Method 2 Method 3 Method 4
0.6 0.8716 0.9757 0.9375 0.9672 0.9542 0.9719 0.985
0.7 0.8716 0.9757 0.9375 0.9672 0.9598 0.9719 0.9837
0.8 0.8716 0.9757 0.9375 0.9672 0.9598 0.9719 0.9759
0.9 0.7063 0.9733 0.8729 0.9538 0.8471 0.9599 0.985
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Fig. 7. The comparison of accuracy, average cost, and uncertainty in Epinions.

with both real life and previous work, i.e., shorter path is better, since people tend to
trust close friends rather than strangers.

The Effects of Trust Threshold. Tables II and III show the effects of increasing
trust threshold. The prediction accuracy decreases more significantly compared to that
of increasing max length. Taking fixed-number (without sorting) for instance, the FS-
core of Qt = 0.5 is 0.6622, while Qt = 0.9, only 0.1754 remains. We analyze the reason
to be that: too large of a trust threshold makes many paths untrustworthy, and less
information can be used to predict trust. This finding validates that there is a tradeoff
between the quality of recommenders and the availability of qualified recommenders.

Test FluidTrust. We test FluidTrust with the setting L = 2, that is, there are two
hops from source to target. Other parameters are set as default. We let ∆∗ =

√
2g ∗∆,

to adjust the speed of fluid flows. Some representative results are shown in Fig. 9. (1)
Fig. 9(a) shows that, in both Epinions and Advogato, when the source requires more
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Fig. 8. The comparison of accuracy, average cost, and uncertainty in Advogato.
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Fig. 9. The required number of neighbors with respect to the confidence and ∆∗ =
√

2g ∗∆.
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Fig. 10. The comparison with other models.

confidence on his estimation, the number of visited neighbors will increase. It is con-
sistent with real life experience that, one’s confidence is built through reinforcements
from others. (2) The parameter of ∆∗ indicates the amount of received recommendation
from a recommender, and a larger ∆∗ indicates a larger amount. Fig. 9(b) shows that,
in both Epinions and Advogato, when ∆∗ is small (e.g., ∆∗ = 1), the required number
of neighbors will be large. However, when ∆∗ is large enough, i.e., ∆∗ ≥ 2, the required
number of neighbors remains stable. (3) We also test the effects of η (i.e., the decrease
ratio when meeting conflict recommendation). Surprisingly, it has little effect on the
result. We analyze the meta results, and find the reason: although the source has vis-
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ited several neighbors before he reaches a specified confidence, he actually only takes
the advice of about three qualified neighbors; this is because some qualified neighbors
have no idea about the target (and cannot construct a trusted path).

Comparative Study. Figure 10 shows the FScore with respect to the max length,
using TidalTrust [Golbeck 2005], MoleTrust [Massa and Avesani 2007b], SWTrust
[Jiang et al. 2014], and RATE. The results indicate that RATE has a better and more
stable performance compared to other models. SWTrust performs the second best, s-
ince it also considers selecting neighbors with topic and target related degrees. Tidal-
Trust performs a little better than MoleTrust, since the latter considers some less-
reliable paths. RATE also has an advantage in terms of less uncertainty and cost. We
do not display results here, since it may be unfair to make such a comparison.

7.3. Summary of Experiments
The above experiments validate the effectiveness of our proposed RATE, especially
in that it can improve the prediction accuracy (it gains about 20% higher accuracy
in Epinions and 1.8% in Advogato), while decreasing the risk (uncertainty) and cost
(about 30% improvement). Meanwhile, we get some interesting findings from the ex-
periments, including that the increased number of intermediate nodes (more hops)
will decrease the accuracy while increasing the risk (uncertainty) and cost; there is a
tradeoff between QoR constraints and the availability of qualified recommenders.

8. CONCLUSION AND FUTURE WORK
We propose a recommendation-aware trust evaluation (RATE) scheme, where we take
a new perspective on the selection of good recommenders, to help people make proper
decisions. We identify four metrics: trustworthiness, expertise, uncertainty, and cost,
to measure the user features, and to adjust the recommenders dynamically. We focus
on the 1-hop recommender selection strategies. We also make a simple description of
coping with other more complex scenarios with multi-hops or multiple targets.

We validate the effectiveness of RATE with experiments in two real social network
data sets. In the future work, we would like to analyze the theoretical bounds of the
size of an optimal sub set (of recommenders) and the probability of successfully making
a trust decision. Another interesting direction includes analyzing the complexity of the
RSP problem, and applying the RATE scheme into real trust evaluation applications.
Also, many works can be done for the design of + and − operations in trust evolution.
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