
Directional and Explainable Serendipity Recommendation
Xueqi Li

lee_xq@hnu.edu.cn
Hunan University

Wenjun Jiang∗
jiangwenjun@hnu.edu.cn

Hunan University

Weiguang Chen
cwg@hnu.edu.cn
Hunan University

Jie Wu
jiewu@temple.edu
Temple University

Guojun Wang
csgjwang@gzhu.edu.cn
Guangzhou University

Kenli Li
lkl@hnu.edu.cn
Hunan University

ABSTRACT
Serendipity recommendation has attracted more and more atten-
tion in recent years; it is committed to providing recommendations
which could not only cater to users’ demands but also broaden their
horizons. However, existing approaches usually measure user-item
relevance with a scalar instead of a vector, ignoring user preference
direction, which increases the risk of unrelated recommendations.
In addition, reasonable explanations increase users’ trust and accep-
tance, but there is no work to provide explanations for serendipitous
recommendations. To address these limitations, we propose a Direc-
tional and Explainable Serendipity Recommendationmethod named
DESR. Specifically, we extract users’ long-term preferences with
an unsupervised method based on GMM (Gaussian Mixture Model)
and capture their short-term demands with the capsule network at
first. Then, we propose the serendipity vector to combine long-term
preferences with short-term demands and generate directionally
serendipitous recommendations with it. Finally, a back-routing
scheme is exploited to offer explanations. Extensive experiments
on real-world datasets show that DESR could effectively improve
the serendipity and explainability, and give impetus to the diversity,
compared with existing serendipity-based methods.

KEYWORDS
Recommendation, Serendipity, User Preference Direction, Explain-
ability

ACM Reference Format:
Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, Guojun Wang, and Kenli
Li. 2020. Directional and Explainable Serendipity Recommendation. In Pro-
ceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei,
Taiwan.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/1122445.
XXXXXXX

1 INTRODUCTION
With the extensive application of deep learning in recommender sys-
tems [7, 8, 11, 39], there has been an unprecedented improvement
on recommendation accuracy, exacerbating over-specialization. To
deal with this issue, researchers propose some serendipity-oriented

∗Wenjun Jiang is the corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/1122445.XXXXXXX

methods [3, 9, 26, 31] which are expected to recommend interesting
items beyond users’ discovery. So far, it is still challenging to find
serendipitous items, due to the collision between difference and
accuracy (both are pursued by serendipity recommendation) [21].

To address the challenge, some existing methods propose to
gather some basic recommended results [23, 30, 42], such as novel,
unexpected, and valuable items [23], as serendipitous recommenda-
tions. These recommended items may only meet either the accuracy
or difference requirements, hardly being regarded as serendipitous
ones. To deal with this problem, some others [24, 26] generate
serendipitous items based on the level of user-item relevance: the
items with a stronger association to users are accurate recommen-
dations, the items without associations are unrelated items, and
there are serendipitous items between the two, which could appeal
to users but are beyond their discovery. However, these methods
measure user-item relevance with a scalar, ignoring the guiding
role of user preference direction. To recommend more serendipitous
items and increase users’ acceptance, we propose a Directional and
Explainable Serendipity Recommendation method (DESR).

The following is an example to illustrate the effect that our
approach tries to reach, based on a randomly selected user on
MovieLens-1m1 [12] (UserID: 4824). As is shown in Fig. 1(a), for
the target user utar , there are five preference directions (we set
the direction from short-term demand to long-term preference as a
preference direction). Accuracy-oriented methods (ACC) tend to
recommend those items that are very close to utar ’s short-term de-
mand, (i.e., t5, t6).HAES [24], a recent serendipity recommendation
method, would be apt to recommend items that could attract users’
interests but couldn’t be discovered on their own (i.e., t0, t1, t2). It
focuses on determining a suitable distance between serendipitous
recommendations and the short-term demand (i.e., the radius of
the ring), but ignores user preference direction (i.e., the directions
of arrows). However, users are only interested in those items with
particular characteristics. As is illustrated in Fig. 1(c), there are
significantly distinct clusters of user-related items in the real-word
datasets. Considering users’ preferences in the figure, t1 and t2
would be possibly unrelated recommendations. To deal with this
problem, we attempt to integrate the demand-recommendation dis-
tance and user preference direction as a whole named serendipity
vector (i.e., the arrows in Fig. 1(b)). DESR would allocate a rec-
ommendation area for each serendipity vector, of which the ones
covering the items in Fig. 1(b) are drawn by ellipses. t0 and t4 are
the optimal recommendations in our method.

1https://grouplens.org/datasets/movielens/1m/

https://doi.org/10.1145/1122445.XXXXXXX
https://doi.org/10.1145/1122445.XXXXXXX
https://doi.org/10.1145/1122445.XXXXXXX

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li and Jiang, et al.

ACC

demand

t0

t1

t2

t3

t5

t6

t4

preference HAES

(a)

demand

t0

t3

t5

t6

t4

serendipity
vector DESR

t1

t2

preference1

preference2

(b)

0 25 50 75 100 125 150 175 200
0

25

50

75

100

125

150

175

200

0.0

0.2

0.4

0.6

0.8

1.0

(c)
Figure 1: An example to illustrate the effect our approach tries to reach.

As a key element of DESR, users’ preferences are usually ex-
tracted by neural methods, such as Recurrent Neural Network
[5, 10, 29] and Graph Neural Network [6, 16, 38], laying a solid
foundation for accuracy recommendation. They try to make the ex-
tracted preference and the ground truth preference label as similar
as possible in the process of training. Most neural methods usually
optimize for a specific task, which have a poor performance on
guaranteeing the generality and integrity of users’ preferences. For
example, if a direction (from demand to pre f erence0 in Fig. 1(a))
is set as labeled preference direction in the training of RNN, the
more similar the labeled direction and the predicted one become,
the better performance RNN will achieve, which ignores the prefer-
ences beyond the label. In addition, there is no work on generating
recommendations with user preference direction and providing ex-
planations in serendipity recommendation. In short, there are three
open challenges on directional and explainable serendipity recom-
mendation: (1) what are the users’ preference directions; (2) how
to generate serendipitous recommendations with user preference
direction; (3) explaining why the items are recommended.

Our Motivations. To address the above challenges, we have
three motivations. (1) Set users’ preference directions. We manage to
infer users’ various long-term preferences and short-term demands
as the basis of user preference direction in an explainable way. (2)
Generate serendipitous recommendations.We try to combine user-
item relevance with user preference direction to recommend items.
(3)Provide explanations.We strive to offer reasonable explanations
based on users’ histories.

We propose DESR which has composed of four parts: inferring
long-term preferences, capturing short-term demands, generating
recommendations, and providing explanations. The key contribu-
tions of this work are as follows:
(1) Preference extraction with GMM and demand capture with the
capsule network.We adopt Gaussian Mixture Model and the capsule
network to respectively capture users’ long-term preferences and
short-term demands. (Sections 3.1 and 3.2)
(2) Serendipity recommendation with serendipity vector. We inte-
grate item-user distances and users’ preferences as the proposed
serendipity vector and utilize it to generate serendipitous items,

strengthening the role of user preference direction. (Sections 2.1 and
3.3)
(3) Back-routing for explanations. We make the first attempt to pro-
vide explanations on serendipitous recommendations, increasing
users’ trust and acceptance. (Section 3.4)
(4) Proposal for novel fine-grained metrics. We define some novel
metrics based on the embedding representations, so as to distinguish
paradoxically equal recommendations. Especially, AD, a metric to
summarize accuracy and difference, plays a vital role in directly
measuring the serendipity. (Section 4.1)
(5) Improvements on overall performance.We conduct comprehen-
sive experiments on real-world datasets, MovieLens-1m2 [12] and
Amazon-Kindle-Store3 [13, 27]. Compared with existing methods,
DESR achieves better performance on serendipity, the balance
between accuracy and difference. E.g., it improves AD by 29.3%
on MovieLens-1m and 31.53% on Amazon-Kindle-Store, compared
with HAES, a recent serendipity-oriented method. (Section 4.3)

2 PROBLEM STATEMENT AND MODEL
OVERVIEW

In this section, we define the key concepts and the problemwe solve.
Then, we provide a brief overview of our solution. Notations are
described in Table 1, where we name a preference representation
as preCap by reference to the definition of capsule4 in [15] (i.e., it
is not an element in the capsule network). It is the same for reCap
and expCap.

2.1 The Key Concepts
The formal definitions of user preference direction and serendipity
vector are presented as follows.

Definition 1: User Preference Direction. Given an embed-
ding space, we set the preference direction as from a short-term
demand (denoted as deCap) to a long-term preference (denoted as
preCap). We define that the items on any preference direction of

2https://grouplens.org/datasets/movielens/1m/
3http://jmcauley.ucsd.edu/data/amazon/
4A capsule is a group of neurons whose outputs represent different properties of the
same entity.

Directional and Explainable Serendipity Recommendation WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 1: Notations

Symbol Description
U users {u0, u1, ... , un }, where utar is the target user
T items {t0, t1, ... , tm }
M a rating matrix with timestamps

itemCap a capsule representing the input item, ti ∈ T
preCap a capsule representing the long-term preference
deCap a capsule representing the short-term demand
reCap a capsule representing the recommended item
expCap a capsule used for the explanation

utar meet user preference direction, whose formal definition is given
by the proposedUPD function. An item, ti , meets User Preference
Direction whenUPD(ti) = 1,

UPD(ti) =

1

−−−−−−−−−→
ti−deCap

∥
−−−−−−−−−→
ti−deCap ∥

=
−−−−−−−−−−−−−−−−→
preCap−deCap

∥
−−−−−−−−−−−−−−−−→
preCap−deCap ∥

0 otherwise
. (1)

Taking Fig. 1(a) as an example, where t0 meets user preference
direction. If the optimal candidates (e.g., t0, t4, t6) are not enough to
generate recommendations, we pose that the items close to utar ’s
preference directions (e.g., t3) also satisfy user preference direction.

Definition 2: Serendipity Vector. The serendipity vector is to
draw optimal points for serendipitous recommendations. Its direc-
tion coincides with the corresponding user preference direction, and
its magnitude denotes the range for serendipity recommendations.

2.2 Problem Definition
Given a user set, an item set and a rating set, the purpose is to
recommend serendipitous items that meet user preference direction
and offer a reasonable explanation for each item recommended.

Input. The input is an initial user-item record set, I (U ,T ,M), and
a target user, utar , whereU is a user set, T is an item set denoted
by itemCaps, andM is a rating matrix with timestamps.

Output. The goal is to generate a list of potential items,Ttar ⊂ T ,
each one of which is represented as a reCap, and provide expla-
nations for utar , so as to enhance recommendation serendipity (a
balance between difference and accuracy) and explainability.

Objective.

Maximize serendipity(Ttar ,utar), (2)

where ∀reCap ∈ Ttar meets user preference direction.

2.3 Model Overview
We propose a directional and explainable serendipity recommen-
dation approach named DESR, whose framework is illustrated in
Fig. 2. (1) Long-term Preferences Extraction. The component tries to
infers users’ long-term preferences as preCaps, with an unsuper-
vised method based on GMM. (2) Short-term Demands Capture. The
capsule network is exploited to capture users’ short-term demands,
deCaps, in consideration of its success on representation and ex-
plainability. (3) Recommendations Generation. Based on preCaps
and deCaps, we calculate the serendipity vector and generate recom-
mendations (denoted as reCaps). (4) Back-routing for Explanations.
A back-routing strategy from reCaps to itemCaps is employed to
provide explanations for utar .

itemCapitemCap deCapdeCap reCapreCappreCappreCap

Figure 2: The framework of DESR.

3 DESR: THE DETAILS
In this section, we introduce the details of each component inDESR:
long-term preferences extraction, short-term demands capture, rec-
ommendation generation, and back-routing for explanations.

3.1 Long-term Preferences Extraction
In this subsection, we give a brief introduction for Gaussian mixture
model and exploit it to develop a comprehensive representation of
users’ long-term preferences based on their all historical items.

3.1.1 Gaussian Mixture Model. GMM (Gaussian mixture model)
[33] is extensively used in clustering analysis, which could be
viewed as a linear combination of multiple Gaussian distributions.
We define GMM, P(y |θ), that we employ in this paper, as follows,

P(y |θ) =
K∑
k=1

αkϕ(y |θk), (3)

ϕ(y |θk) =
1

√
2πσk

exp(−
(y − µk)

2

2σ 2
k

), (4)

where αk is a non-negative mixture weight,
∑K
k=1 αk = 1, which

represents the significance ofϕ(y |θk), andϕ(y |θk) is the k-th Gauss-
ian density function. θk = (µk ,σ

2
k) is the parameter of ϕ(y |θk),

which respectively denotes its mean and square. In the clustering
analysis with GMM, µk denotes the k-th clustering center of sam-
ples like y, and σ 2

k represents the corresponding clustering level.
The process that a large amount of discrete points converge into

K clusters with GMM, is similar to the process that lots of items
rated by utar are abstracted into multiple different preferences.

3.1.2 Preference Extraction. Users’ preferences are usually pre-
dicted by RNN as a single vector, which couldn’t reflect the various
aspects of the long-term preferences. Motivated by the similarity be-
tween the two processes (i.e., clustering and preference extraction)
and the success of GMM on clustering, we employ it to comprehen-
sively represent users’ long-term preferences.

First, we represent items as vectors and group them by users.
Then, for each user, we adopt the grouped items as the input of
GMMand utilize the EM algorithm [34] to determine the parameters

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li and Jiang, et al.

Input
Capsules B

Prediction
Vectors V

Output
Capsules A

Item Capsule

Mⅹd

Demand Capsule

1ⅹd

Capsule
Network

Demand Capture

Output Capsule

Lⅹ(d/L)

Prediction Vectors

(ML)ⅹ(d/L)

Figure 3: The process of the capsule network.

in Eq. 3. Finally, similar items are gathered to a cluster, represented
by a Gaussian function (see Eq. 4), where µk denotes k-th long-term
preference of the corresponding user.

3.2 Short-term Demands Capture
We briefly review the capsule network and describe the process of
capturing short-term demands with recent related items, which is
also an indispensable task in the directional recommendation.

3.2.1 The Capsule Network. A capsule is a group of neurons whose
outputs represent various properties of the particular entity [14, 35],
alleviating the limitation on the representation of CNN and RNN.
As is shown in Fig. 3, the capsules at the higher level, A, are the
abstraction of capsules at the lower level, B. In the abstraction
process, an iterative routing-by-agreement algorithm [35] is used:
a capsule, bi ∈ B, prefers to send its output to aj ∈ A when the
"prediction vector" of bi is more similar to aj . With the processing,
similar lower-level capsules tend to gather as a higher-level capsule,
which could have an overall representation of lower-level capsules.

The part-to-whole process is similar to the process of item-to-
demand in the recommender systems. It inspires us to adopt the
capsule network to capture users’ short-term demands.

3.2.2 Demand Capture. Fig. 3 displays the process of capturing
short-term demands, where M items (denoted as itemCaps) are
employed as the input capsules to predict a demand capsule, deCap.
The transformation from itemCaps to output capsules is completed
with the routing-by-agreement scheme [35]. Different from the orig-
inal capsule network [35], there are L output capsules, each one of
which is a d

L -dimension vector representing a distinct characteristic.
We concentrate all output capsules as a predicted deCap.

In training of the capsule network, there are twomajor tasks, data
pre-process and loss function definition. (1) Data Pre-process.We
group items by users, sort all items within group in chronological
order to generate the input. For each sorted item list, per M items
(denoted as itemCaps) are selected as the input, and the next one is
set as the label. (2) Loss Function. Our goal is to make the predicted
demand, ˆdeCapi , and the labeled demand, deCapi , as similar as
possible, Hence, MSE (Mean Squared Error) is adopted as the loss
function:

loss =
1
n

n∑
i=1

(deCapi − ˆdeCapi)
2, (5)

where n is the number of training samples.

3.3 Recommendation Generation
Based on long-term preferences and short-term demands, we deter-
mine the serendipity vector and generate recommendations.

3.3.1 Serendipity Vector Calculation. The serendipity vector plays
a guiding role in DESR, determining the location for serendipitous
recommendations in the embedding space. Its calculation is divided
into two steps: determining the magnitude and setting the direction.

Determining the magnitude. Users usually know items near
thedeCap (a capsule to denote short-term demand) well and take no
interest in items far away from it. Between the two, there would be
an area containing serendipitous items (i.e., reCaps), which are not
apparently familiar for users but meet their short-term demands. It
is crucial to find a suitable distance between the deCap and reCap
(see Fig. 4) – the magnitude of serendipity vector.

Suppose (1) users with multiple preferences tend to accept more
different items and (2) they are more familiar with items on the
preference direction which involves more historical items. Then,
the magnitude of serendipity vector would be related to the scope of
the long-term preferences, S(utar), and the familiarity for preCap
(a capsule to represent a long-term preference), F (preCap). We
quantify S(utar) and F (preCap) as follows,

S(utar) = fS (K) (6)
F (preCap) = fF (|{t1, t2, ..., tp }|), (7)

where utar has K long-term preferences and {t1, t2, ..., tp } is an
item cluster corresponding to preCap. fS and fF are to normalize
K and |{t1, t2, ..., tp }| to a suitable range, (0, limS) and (0, limF)
respectively. Based on the quantification of S(utar) and F (preCap),
we estimate the magnitude of serendipity vector, as follows,

∥
−−−−−−−−−−−−−−−−−→
serendipity vector ∥ =mbase (1 + S(utar))(1 + F (preCap)), (8)

wherembase denotes the minimum distance to find serendipitous
items for all users, which would float on different datasets.

Setting the direction. Besides determining a suitable magni-
tude, a proper direction of serendipity vector would also contribute
to serendipitous recommendation by cutting numerous unrelated
items down. Users usually prefer items with particular character-
istics, as observed in Fig. 1(c), which illustrates that the extension
from deCap should favor to users’ preferences. It motivates us to
set the direction of serendipity vector as user preference direction –
from the short-term demand to long-term preference, as follows,

−−−−−−−−−−−−−−−−−→
serendipity vector

∥
−−−−−−−−−−−−−−−−−→
serendipity vector ∥

=

−−−−−−−−−−−−−−→
preCap − deCap

∥
−−−−−−−−−−−−−−→
preCap − deCap∥

. (9)

3.3.2 Recommendation Generation. Serendipity vectors determine
the location to generate serendipitous items, and then we would
allocate recommendations to each of them. The sampling ratio on
i-th serendipity vector, si , is calculated as follows,

si =
Ti∑K
i=1Ti

, (10)

whereTi is the number of items related to the corresponding prefer-
ence, and there are K preferences of utar . For each user, we would
recommend LR items, of which there are si ∗ LR items generated
based on i-th serendipity vector.

Directional and Explainable Serendipity Recommendation WWW ’20, April 20–24, 2020, Taipei, Taiwan

deCap preference direction

the density of
familiarity

the density of
serendipity

reCap

Figure 4: The intuition on the magnitude of Serendipity Vec-
tor.

Table 2: Statistics of datasets.

Item Statistic
MovieLens-1m Amazon-Kindle-Store

users 6040 3061
items 3260 6073
ratings 998539 132594
density 5 5.07% 0.71%

3.4 Back-routing for Explanations
To increase users’ acceptance, a back-routing scheme, from reCaps
to itemCaps, is exploited to provide explanations in this subsection.

For each item recommended, reCaptar , wewould select apreCap
or deCap related to utar , which is the most similar to reCaptar , as
the basic for explanations, expCap,

expCap = Minimize dis(cap, reCaptar), (11)

where cap ∈ {deCap, preCap1, preCap2, ... ,preCapK }. A list of
items related to expCap, {t1, t2, ... , tE }, are selected to generate
explanations. There are two types of explanations: (1) explanation1:
"The item is similar to the items, {t1, t2, ... , tE }, which youwatched
for a long time." (2) explanation2: "The item is similar to the items,
{t1, t2, ... , tE }, which you recently watched.". We select explana-
tions based on the type expCap, as follows,

explanation =

{
explanation1 expCap∈preCaps
explanation2 expCap∈deCaps

. (12)

4 EXPERIMENTS AND RESULTS
We conduct comprehensive experiments on real-world datasets
to comparatively evaluate and demonstrate the effectiveness of
the proposed method. The experiment section is organized as fol-
lows. We (1) introduce basic experiment settings, including datasets,
baselines, and metrics; (2) verify the effects of parameters in the
proposed metrics and model; (3) compare our method with bench-
marks to illustrate its improvements; (4) verify the effectiveness of
components; and (5) show a case study for preference extraction
and explanation generation.

4.1 Experiment Settings
We develop the experiments on real-world datasets, MovieLens-1m
(ml-1m) [12] and Amazon-Kindle-Store (Kindle) [13, 27], where
we take the top 80% ratings as the training set and the rest as the
testing set according to the timestamps of ratings. The statistics of
datasets are shown in Table 2. We introduce data preprocessing,
baselines, and evaluation metrics.

5the density of the rating matrix, density = |S |
|U |∗|T |

0.0

0.2

0.4

0.6

0.8

1.0 Similariy
Euclidean Distance

(a) ml-1m

0.0

0.2

0.4

0.6

0.8
Similariy
Euclidean Distance

(b) Kindle
Figure 5: Visualization of item similarity and node distances
in the embedding space, where a circle represents a item-
item similarity factor, and a square denotes a node-node Eu-
clidean distance in the embedding space.

4.1.1 Data Preprocessing. In the experiments, we exploit proNE
[41] to represent items as embedding nodes, which is expected to
embed similar items closely in the embedding space. Its perfor-
mance is shown in Fig. 5, from which we find that there is usually
a smaller distance between similar items.

4.1.2 Baselines. We select awidely used serendipity-orientedmethod,
KFN [36], and a recent approach named HAES [24] as baselines.
In addition, considering DESR tries to make a trade-off between
difference and accuracy, a randommethod,RAND, and an accuracy-
based approach, ACCLSTM , are also adopted as benchmarks.

RAND. The random-based method randomly generates recom-
mendations from items which utar hasn’t rated in the history.

ACCLSTM . The accuracy-based recommendation is one of the
most widely used personalized recommendation methods. It recom-
mends movies consistent with users’ past behaviors. LSTM (Long
Short-Term Memory) is used as the basis ofACCLSTM in the paper.

KFN. The intention of KFN is similar to that of KNN, which is
to offer recommendations based on neighbors’ behaviors. KFN rec-
ommends items that dissimilar users dislike to improve serendipity.

HAES. HAES adaptively adjusts the level of relevance between
recommendations and utar with an elastic strategy, to reduce unre-
lated recommendations and improve recommendation serendipity.

4.1.3 Metrics. Recent years have seen significant development
in the embedding techniques and rapid growth in the number of
items, which calls for some fine-grained metrics to more accurately
evaluate the recommendation performance.

For instance, if ti and tj are recommended, but both of them
haven’t been rated by utar , they will be taken as equally negative
results. However, in the embedding space, if there is a smaller
distance between ti and utar , it will indicate that utar is more
familiar with ti . Hence, we propose some fine-grainedmetrics based
on the node-node distances in the embedding space, to distinguish
some paradoxically equal results (e.g., ti , tj). First, we measure the

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li and Jiang, et al.

Table 3: Metrics

Metric Abbreviation Description
accuracy (Eq. 16) - a metric to measure the recommendation accuracy

accuracy_pre f erence (Eq. 17) acc_pre a metric to measure the similarity of reCaps and preCaps
accuracy_demand (Eq. 18) acc_de a metric to measure the similarity of reCaps and deCaps

accuracy_all (Eq. 19) acc a metric to summarize accuracy, acc_pre and acc_de
diversity (Eq. 20) div a metric to measure the diversity of recommendations
di f f erence (Eq. 21) - a metric to measure the difference between recommendations and utar ’s history

di f f erence_all (Eq. 22) di f a metric to summarize diversity and di f f erence
AD (Eq. 23) - a metric to comprehensively measure acc and di f

distance between nodei and nodej , as follows,

disor i (nodei ,nodej) = fdis (embi , embj), (13)

dis(nodei ,nodej) =
disor i (nodei ,nodej)

dismax
. (14)

embi is the embedding vector ofnodei ,disor i is the original distance
in the embedding space between nodei and nodej calculated by
fdis (e.g, euclidean distance, cosine distance, etc.). Eq. 14 is used to
normalize disor i . If the euclidean distance function is used as fdis ,
fdis will be positively correlated to MSE, mean square error.

fdis (embi , embj) =
√
d ∗MSE(embi , embj), (15)

where d is the dimension of embedding vectors, and the euclidean
distance function is employed as fdis in the paper. We propose
some specific metrics (shown in Table 3) based on the dis function.

Accuracy. We define accuracy to access the recommendation
performance based on the recommended results and labeled items.

accuracy = 1 −
1
LR

LR∑
i=1

dis(ti , tlabel)

= 1 −
1
LR

LR∑
i=1

min({dis(ti , t1),dis(ti , t2)

... dis(ti , tLlabel)}),

(16)

where LR items are recommended for utar , and there are Llabel
labeled items ofutar in the testing set. For each recommended item,
ti , the distance between it and the labeled item, dis(ti , tlabel), is the
minimum value of all distances between ti and all labeled items.

Acc_pre. Accuracy_pre f erence (acc_pre) is defined to quantify
the similarity between recommendations and utar ’s long-term
preferences, preCaps. Given a recommended item, ti , where ti ∈
{t1, t2, ..., tLR }, we define acc_pre of recommendations, as follows,

acc_pre = 1 −
1
LR

LR∑
i=1

dis(ti ,preCaptar)

= 1 −
1
LR

LR∑
i=1

min({dis(ti ,preCap1),dis(ti ,preCap2)

... dis(ti ,preCapK)}).
(17)

Acc_de.Accuracy_demand (acc_de) is to quantify the similarity
between recommendations andutar ’ short-term demand,deCaptar ,

acc_de = 1 −
1
LR

LR∑
i=1

dis(ti ,deCaptar). (18)

Accuracy_all.Accuracy_all (acc) is defined to summarizeaccuracy,
acc_pre and acc_de as a whole, where η and θ represent the weights
of acc_pre and acc_de , respectively.

acc =
1

1 + η + θ
(accuracy + ηacc_pre + θacc_de). (19)

Diversity.We calculate the diversity of recommendations,diversity
(div), based on the distance between them in the embedding space,

div =
1

LR ∗ LR

LR∑
i=1

LR∑
j=1

dis(ti , tj). (20)

Difference. Di f f erence denotes the difference between recom-
mendations (R) and users’ histories (H), which is defined as follows,

di f f erence =
1

LR ∗ LH

LR∑
i=1

LH∑
j=1

dis(ti , tj), (21)

where there are LH items rated by utar in the history.
Difference_all.di f f erence_all (di f) is to sumdiv anddi f f erence

up, where λ and γ denote the weights of div and di f f erence ,

di f =
1

λ + γ
(λdiv + γdi f f erence). (22)

AD. Considering the objectives of serendipity recommendation
- both accuracy and difference - and the collision between acc and
di f , a metric that could comprehensively measure them is required.
The intuition ofAD is similar to that of F−score , balancingprecision
and recall , which inspires us to define a metric, AD, as follows,

AD =
acc ∗ di f

acc + di f
. (23)

4.2 Effects of Parameters
To enhance the flexibility of the proposed metrics and model, some
parameters are established. In this section, we vary these parameters
to investigate their effects on the performance.

4.2.1 Varying the parameters in metrics. There are lots of parame-
ters (i.e., η, θ , λ, γ) in our definitions for acc and di f , which make a
direct impact on the access of recommendation performance.

To check the effects of different parameters on acc , we succes-
sively set (η, θ) as (0.5, 0.5), (0.5, 1), (1, 0.5), and (1, 1), to assign

Directional and Explainable Serendipity Recommendation WWW ’20, April 20–24, 2020, Taipei, Taiwan

para0 para1 para2 para3

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ac
c@

5

(a) ml-1m

para0 para1 para2 para3

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ac
c@

5
(b) Kindle

para0 para1 para2 para3

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ac
c@

10

(c) ml-1m

para0 para1 para2 para3

0.25

0.30

0.35

0.40

0.45

0.50

0.55

ac
c@

10

RAND
ACCLSTM

KFN
HAES
DESR

(d) Kindle

Figure 6: Effects of parameters on acc. (para0: η = 0.5, θ = 0.5;
para1: η = 0.5, θ = 1; para2: η = 1, θ = 0.5; para3: η = 1, θ = 1.)

para0 para1 para2

0.3

0.4

0.5

0.6

0.7

0.8

di
f@

5

(a) ml-1m

para0 para1 para2

0.3

0.4

0.5

0.6

0.7

di
f@

5

(b) Kindle

para0 para1 para2
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

di
f@

10

(c) ml-1m

para0 para1 para2

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

di
f@

10

RAND
ACCLSTM

KFN
HAES
DESR

(d) Kindle

Figure 7: Effects of parameters on dif. (para0: λ = 0.5,γ = 1;
para1: λ = 1,γ = 0.5; para2: λ = 1,γ = 1.)

different weights to acc_pre and acc_de . We find that varying pa-
rameters exerts distinctly different impact on the performance for
most approaches, especially ACCLSTM and DESR. For example,
given top 5 recommendations on MovieLens-1m (see Fig. 6(a)),
DESR with a bigger weight on acc_pre improves acc by 5.69%,
while it decrease acc by 10.49% when a bigger weight is assigned
to acc_de , compared with ACCLSTM . A bigger weight of acc_pre
(i.e., (η, θ) = (1, 0.5)) makes DESR outperform ACCLSTM on acc .
That is because that our method is even more in line with users’
long-term preferences with the help of GMM (see Table 4). As a com-
parison, ACCLSTM (based on LSTM) is more expert in capturing
users’ current preferences instead of comprehensive preferences,
which is related to the forget gate of LSTM.

To verify the effects of parameters on di f , we successively set
(λ,γ), the weight of (div , di f f erence), as (0.5, 1), (1, 0.5), and (1, 1).

1 2 4 8 16 32 64
of output capsules

0.0118

0.0119

0.0120

0.0121

0.0122

0.0123

0.0124

0.0125

M
SE

(a) ml-1m

1 2 4 8 16 32 64
of output capsules

0.0079

0.0080

0.0081

0.0082

0.0083

0.0084

0.0085

M
SE

(b) Kindle

Figure 8: Effects of the number of output capsules.

0.1 0.4 0.7 1.0 1.3

0.46

0.48

0.50

0.52

0.54

0.56
top5 (ml-1m)
top10 (ml-1m)
top5 (Kindle)
top10 (Kindle)

(a) acc

0.1 0.4 0.7 1.0 1.3
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

(b) dif

0.1 0.4 0.7 1.0 1.3

0.22

0.23

0.24

0.25

0.26

0.27

0.28

(c) AD

Figure 9: Effects ofmbase

An interesting finding is gained: serendipity-oriented methods (i.e.,
KFN, HAES, DESR) perform better on di f when a bigger weight
is assigned to di f f erence , since they generate recommendations
which have a bigger difference with users’ histories. For example,
di f f erence is 38.71% bigger than div when the top 5 items are rec-
ommended on MovieLens-1m. In addition, we also find that overall,
our method performs poorer than HAES on di f , which demon-
strates that user preference direction brings it a bigger possibility to
reduce unrelated items.

Considering the equal need for acc_pre and acc_de on acc , div
and di f f erence on di f , we set each parameters (i.e., η, θ , λ, γ) as 1.

4.2.2 Varying the parameters in DESR. Some parameters are set
in our method, L andmbase , where L denotes the number of out-
put capsules in Section 3.2) andmbase (see Eq. 8) determines the
minimum magnitude of the serendipity vector. In this paper, we set
limS=0.1 and limF =0.2 (see Eqs. 6 and 7).

To determine the suitable number of output capsules, we set it as
1, 2, 4, 8, 16, 32, 64 respectively, whose comparison on MovieLens-
1m is shown in Fig. 8(a) and that on Amazon-Kindle-Store is shown
in Fig. 8(b). We find that it is hardly possible to capture accurate
short-term demands when L is too big or small, e.g., the capsule
network has the worst performance when the maximum (i.e., 64)
or the minimum (i.e., 1) is assigned to the number of output cap-
sules (see Fig. 8). This is related to the function of output capsules,
abstracting the features of itemCaps for decap, where L determines
the number of features. Setting L as 64 means determining a feature
on each dimension, while assigning 1 to L indicating that only one
feature is abstracted. According to the comparison on both datasets,
we find 8 is the optimal value for L and we set L as 8 in the following
experiments.

In addition, to improve the performance of DESR, it’s necessary
to find a suitable value asmbase . Since the biggest node-node dis-
tance in our embedding space is about 1.5, we vary the value of
mbase from 0.1 to 1.3 with an interval of 0.3 to check its effects
on recommendation. The results are shown in Fig. 9. We find that

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li and Jiang, et al.

Table 4: Comparison on original metrics. (ml-1m)

method accuracy@5 accuracy@10 acc_pre@5 acc_pre@10 acc_de@5 acc_de@10 div@5 div@10 difference@5 difference@10
RAND 0.15 0.15 0.128 0.129 0.291 0.291 0.739 0.831 0.819 0.918

ACCLSTM 0.461 0.454 0.428 0.42 0.541 0.533 0.314 0.389 0.383 0.697
KFN 0.238 0.225 0.297 0.268 0.358 0.349 0.054 0.472 0.686 0.867
HAES 0.293 0.291 0.245 0.239 0.386 0.383 0.551 0.632 0.638 0.832
DESR 0.352 0.344 0.683 0.668 0.437 0.429 0.398 0.536 0.533 0.784

Table 5: Comparison on original metrics. (Kindle)

method accuracy@5 accuracy@10 acc_pre@5 acc_pre@10 acc_de@5 acc_de@10 div@5 div@10 difference@5 difference@10
RAND 0.222 0.221 0.177 0.177 0.311 0.31 0.683 0.768 0.748 0.843

ACCLSTM 0.577 0.569 0.459 0.453 0.661 0.652 0.3 0.357 0.375 0.552
KFN 0.252 0.282 0.218 0.238 0.338 0.364 0.036 0.371 0.674 0.794
HAES 0.273 0.272 0.213 0.212 0.358 0.358 0.593 0.671 0.695 0.807
DESR 0.433 0.435 0.624 0.609 0.485 0.486 0.363 0.452 0.46 0.671

Table 6: Comparison on overall recommendation (ml-1m).

method acc@5 acc@10 dif@5 dif@10 AD@5 AD@10
RAND 0.19 0.19 0.777 0.874 0.152 0.156

ACCLSTM 0.477 0.469 0.348 0.543 0.201 0.252
KFN 0.298 0.28 0.37 0.669 0.165 0.198
HAES 0.308 0.304 0.595 0.732 0.203 0.215
DESR 0.491 0.48 0.466 0.66 0.239 0.278

Table 7: Comparison on overall recommendation (Kindle).

method acc@5 acc@10 dif@5 dif@10 AD@5 AD@10
RAND 0.237 0.236 0.715 0.805 0.178 0.183

ACCLSTM 0.566 0.558 0.338 0.455 0.212 0.25
KFN 0.269 0.295 0.355 0.582 0.153 0.196
HAES 0.282 0.281 0.644 0.739 0.196 0.203
DESR 0.514 0.51 0.412 0.562 0.229 0.267

by increasing ofmbase , the performance on acc becomes poorer
and the performance on di f becomes better. The reason is that
the biggermbase grows, the more unfamiliar the target user and
recommendations become. Another finding is that between the
two extremes, the most accurate recommendations and the most
different ones, there is balance point representing the serendipitous
ones. Whenmbase = 0.4, our approach reaches a balance point and
we setmbase as 0.4 in the following experiments.

4.3 Overall Comparison
We compare DESR with baselines to verify its effectiveness on
recommendation serendipity and show its promotion for diversity,
based on the top 5 and 10 recommendations, respectively. The
comparison on original metrics is illustrated in Tables 4 and 5.

4.3.1 Comparison on Serendipity. We compare DESR with base-
lines on acc , di f , and AD. The results on MovieLens-1m (ml-1m)
and Amazon-Kindle-Store (Kindle) are shown in Tables 6 and 7.

Compared with the existing best serendipity-oriented method,
HAES, (1) for top 5 recommendations, DESR improves AD by
17.73% on MovieLens-1m and 16.84% on Amazon-Kindle-Store; (2)
for top 10 recommendations, DESR improves AD by 29.30% on

MovieLens-1m and by 31.53% on Amazon-Kindle-Store. The en-
hancements demonstrate that our method achieves the best perfor-
mance on both datasets. The reason is thatDESR increases di f at a
lower cost of acc , where it improves di f by 21.89% at the cost of de-
creasing acc by 10.12% on Amazon-Kindle-Store, and increases both
acc and di f on MovieLens-1m(see Tables 6 and 7), compared with
ACCLSTM . It is closely associated with user preference direction. In
addition, we find that our approach performs better on MovieLens-
1m, which is consistent with the performance of embedding (see
Fig. 5). The possible reason is that the density of rating matrix on
MovieLens-1m, 5.07%, is even bigger than that on Amazon-Kindle-
Store, 0.71%, as is shown in Table 2. The intensive interactions
among users are beneficial to developing their relationship.

4.3.2 Comparison on Diversity. Another finding is that the more
accurate on the fine-grained preferences recommendations are, the
less diverse they are. However, our approach maximizes diversity
under the premise of ensuring recommendation accuracy, which
is illustrated in the comparison between ACCLSTM and DESR. It
increases div by 37.79% on MovieLens-1m (see Table 4), 26.61%
on Amazon-Kindle-Store (see Table 5) when the top 10 items are
recommended. It indicates that user preference direction gives our
approach a tremendous impetus to enhance recommendation di-
versity while preserving accuracy.

4.4 Verification on Components
After demonstrating the enhancements on overall performance, we
verify the effectiveness of components, preference extraction and
demand capture.

4.4.1 Verification on Preference Extraction. We illustrate the im-
provements achieved by preference extraction component and in-
vestigate how the number of preferences affect the performance.

The comparison on acc_pre (see Tables 4, 5) displays our im-
provements on preference accuracy, where DESR increases
acc_pre by at least 33.33% even compared to the accuracy-oriented
method (ACCLSTM). It illustrates that our approach could cater
to users’ long-term fine-grained preferences with the help of pref-
erence extraction. Another valuable finding is that our method
performs even better than other serendipity-oriented method, for
example, compared with HAES, it improves accuracy by 18.21%

Directional and Explainable Serendipity Recommendation WWW ’20, April 20–24, 2020, Taipei, Taiwan

1 3 5 7 9 11

0.35

0.40

0.45

0.50

top5 (ml-1m)
top10 (ml-1m)
top5 (Kindle)
top10 (Kindle)

(a) acc

1 3 5 7 9 11

0.5

0.6

0.7

0.8

0.9

(b) dif

1 3 5 7 9 11
0.23

0.24

0.25

0.26

0.27

0.28

(c) AD

Figure 10: Comparison on different user group.

1 2 3 4 5 6 7
epoch

0.0120

0.0122

0.0124

0.0126

0.0128

0.0130

M
SE

GRU
capsule

(a) ml-1m

1 2 3 4 5 6 7 8
epoch

0.00800

0.00825

0.00850

0.00875

0.00900

0.00925

0.00950

0.00975

M
SE

GRU
capsule

(b) Kindle

Figure 11: Comparison between the capsule network and
GRU on capturing users’ short-term demands.

on MovieLens-1m and by 59.93% on Amazon-Kindle-Store when
the top 10 items are recommended. It demonstrates that a compre-
hensive preference representation could promote recommendation
system to gain a better understand of users’ behavioral patterns,
which is also raised in [37].

There is a big difference among the numbers of preferences on
real-world datasets, where the maximum is 11 on MovieLens-1m
and 10 on Amazon-Kindle-Store and the minimum is 1 on both
datasets. We investigate the performance difference among various
user groups with different numbers of preferences, on acc , di f , and
AD. Based on the observations in Fig. 10, we find that DESR tends
to recommend different items to the users with more preferences,
and vice versa. Another finding is that the best overall performance
(AD) is achieved on the users whose preference number is at the
middle (e.g., 6 on MovieLens-1m and 8 on Amazon-Kindle-Store
when top 10 items are recommended). It is possibly related to that:
(1) for users with fewer preferences, there is too few historical
behaviors to model users’ preferences; (2) for users with many
preferences, the behavioral patterns are too difficult to capture.

4.4.2 Verification on Demand Capture. We compare the capsule
network with GRU (Gated Recurrent Unit, a form of RNN) which is
one of the best techniques for processing sequence data, to demon-
strate its superiority on demand capture.

We provide the same input for the capsule network and GRU and
set a unified dimension for the output. The dimension of input is
20 × 64, where 20 items (each one is represented as a 64-dimension
vector) are employed to predict the next item as a deCap. The
output is a 64-dimension vector. MSE (mean square error, see Eq. 5)
is adopted as the metric.

Fig. 11 depicts the comparison between the capsule network and
GRU, where they reach the same optimalMSE, 0.0119 onMovieLens-
1m and 0.0080 on Amazon-Kindle-Store. On MovieLens-1m (see
Fig. 11(a)), the capsule network reaches the best MSE at the fourth
epoch and GRU at the sixth epoch; on Amazon-Kindle-Store (see Fig.

reCap

preCap(GMM)

preCap(GRU)

Figure 12: Comparison between GMM and GRU on captur-
ing users’ long-term preferences.

time
preCap0
preCap1
preCap2
preCap3
preCap4

Figure 13: Distribution of item clusters by timestamps.

11(b)), the capsule network reaches the best MSE at the fifth epoch
and GRU at the seventh epoch. We conclude that (1) the capsule
network and GRU could arrive at the same best performance on
demand capture but (2) the former has a faster convergence. In
addition, the capsule network outperforms GRU on explainability.

Hence, the capsule network is a better choice to capture users’
short-term demands, in view of its efficiency and explainability.

4.5 A Case Study
We use a case study with the same user as Fig. 1(c), a user (UserID:
4824) on MovieLens-1m, to explore the performance on preference
extraction and explanation generation.

4.5.1 Case Study on Long-term Preferences. We visualize the em-
bedding representations of items, preferences captured by GMM,
and preferences predicted by GRU in Fig. 12, where for each line
(an item or a preference), the color scale of each cell denotes the
significance of a certain feature. The darker the cell is, the more
active the corresponding item (preference) would be on the feature.

Based on the comparison between the visualizations of prefer-
ences inferred by GMM and GRU, we find that GMM could capture
multiple aspects of the users’ preferences, while GRU could only
predict a whole preference which is similar to the labeled items
(possibly similar to the items rated recently). Fig. 13 draws the item
clustering distribution in chronological order, where the user re-
cently rated items belonging to the clusters ofpreCap3 andpreCap4.
It encourages the preference predicted by GRU to be similar to the
items in the corresponding clusters.

In short, GRU, a supervised method, optimizes parameters for a
specific goal (i.e., similarity to the labeled item). However, GMM, an
unsupervised model, could cluster item at first and infer preferences
as multiple different individuals, strengthening the generality and
integrity of users’ long-term preferences.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li and Jiang, et al.

deCap preCap0 preCap1 preCap2 preCap3 preCap4

reCap0
reCap1

Figure 14: An illustration to show the similarity between rec-
ommendations and preferences, demands.

Abyss
Action|Adventure|Sci-Fi|Thriller

Terminator 2
Action|Sci-Fi|Thriller

Aliens
Action|Sci-Fi|Thriller|War

The Matrix
Action|Sci-Fi|Thriller

Forrest Gump
Comedy|Romance|War

Almost Famous
 Comedy|Drama

Life Is Beautiful
 Comedy|Drama

American Beauty
 Comedy|Drama

recommendation historical items

Figure 15: Selection of historical items.

4.5.2 Case Study on Explanations. After demonstrating the out-
performance of GMM on inferring users’ long-term preferences,
we explore the performance on explanation generation.

Given five long-term preferences(i.e.,preCap0,preCap1,preCap2,
preCap3, preCap4), a short-term demand, deCap, and two recom-
mendations, reCap0, reCap1. Fig. 14 reveals the weights from reCap
to preCap and deCap generated by the back-routing scheme, where
the darker the cell is, the more similar reCap and preCap (deCap)
become. We provide an explanation for each recommended item.

For reCap0 (Almost Famous), it is more similar to preCap0, where
the historical items in Fig. 15 are selected in the corresponding
cluster. An explanation based on explanation2 (see Eq. 12) is offered,
"The movie is similar to the movies, Forrest Gump, Life Is Beautiful
and American Beauty, which you watched for a long time.". For
Terminator 2, it is more similar to preCap2, where the relevant items
are also selected in the corresponding cluster and the generated
explanation is similar to that of Almost Famous.

We find that the back-routing scheme could effectively locate
historical behaviors for explanations on serendipitous items.

4.6 Summary of Experiments
In short, we have the following findings in the experiments. (1)
GMM outperforms RNN on developing a comprehensive represen-
tation on long-term preferences. (2) Besides image recognition [15],
capsule network also has great potential in sequence processing. (3)
Keeping accuracy on users’ long-term preferences would promote
recommendations towards the balance between difference and ac-
curacy, the objective of serendipity recommendation. (4) In general,
DESR achieves a better performance on serendipity recommenda-
tion, e.g., it improves AD by 29.3% on MovieLens-1m and 31.53%
on Amazon-Kindle-Store, compared with HAES.

5 RELATEDWORK
We briefly review related works on explainable recommendation
and serendipity recommendation.

Explainable Recommendation. To help users accept recom-
mendations and increase user satisfaction, some researchers provide
explanations [1, 2, 4, 25] based on social relationships [18, 19], item
features or user histories. McInerney et al. [28] propose personal
explainable recommendation methods with bandits, in which they
illustrate that suitable explanations (especially the ones related
to users’ histories) provide a significant improvement on user en-
gagement [17]. Yu et al. [40] develop a neural attentive explainable
recommendation system named NAIRS, whose key component
assigns attention weights to interacted items of the user. NAIRS
provides explanations via displaying items with bigger attention
weights.

While the above works provide reasonable explanations for ac-
curate recommendations, to the best of our knowledge, DESR is
the first to generate explanations in serendipity recommendation.

SerendipityRecommendation.As a solution over-specialization,
various serendipity recommendation methods are proposed to gen-
erate recommendations beyond users’ bubbles. Some of them gener-
ate serendipitous recommendations through re-ranking or combin-
ing items recommended by accuracy-oriented methods [20, 22, 42].
The others try to recommend serendipitous items with novel ap-
proaches, such as a method with transfer learning [32], a curiosity-
theory-based method [26], and an elasticity-driven approach [24].
Most methods focus on improving the difference between recom-
mendations and the target user, so as to enhance recommendation
serendipity, causing unrelated recommendations. To ease the limi-
tation, some methods [24, 26] consider the users’ ability to accept
serendipitous recommendations. However, none of them pay atten-
tion to the guiding role of users’ long-term preferences.

Our approach,DESR, generates serendipitous recommendations
towards users’ long-term preferences, which balances the accuracy
and difference of recommendation. The proposed user-preference-
aware expansion is the first one in the serendipity recommendation,
benefiting for cutting unrelated recommendations back.

6 CONCLUSIONS
In this paper, we propose a directional and explainable serendip-
ity recommendation method DESR. Our main contributions are
the reinforcement of user preference direction and explainability in
serendipity recommendation. Firstly, we employ GMM to represent
users’ long-term preferences, in which the unsupervised method
mitigates the lack of labeled data and improves the generality and
integrity of the extracted preferences. Then we exploit capsule
network to capture users’ short-term demands, laying a founda-
tion for explainability. Finally, we propose a back-routing scheme
to provide explanations for users, which helps them understand
serendipitous recommendations so as to increase users’ trust and
acceptance. Without the help of additional information (e.g., user
reviews, item descriptions), the offered explanations are limited
to display related items. In the future, we would like to provide
more user-friendly explanations in the serendipity recommenda-
tion, to help users connect serendipitous items with their potential
preferences and demands.

Directional and Explainable Serendipity Recommendation WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, Scrutable

and Explainable User Models for Personalized Recommendation. In SIGIR 2019,
pages 265–274. ACM, 2019.

[2] Jingwu Chen, Fuzhen Zhuang, Xin Hong, Xiang Ao, Xing Xie, and Qing He.
Attention-driven Factor Model for Explainable Personalized Recommendation.
In SIGIR 2018, pages 909–912. ACM, 2018.

[3] Li Chen, Yonghua Yang, Ningxia Wang, Keping Yang, and Quan Yuan. How
Serendipity Improves User Satisfaction with Recommendations? A Large-Scale
User Evaluation. In WWW 2019, pages 240–250. ACM, 2019.

[4] Xu Chen, Yongfeng Zhang, and Zheng Qin. Dynamic Explainable Recommenda-
tion Based on Neural Attentive Models. In AAAI 2019, pages 53–60. AAAI Press,
2019.

[5] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
CoRR, abs/1412.3555, 2014.

[6] Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, and Liang Wang. Dressing as a
Whole: Outfit Compatibility Learning Based on Node-wise Graph Neural Net-
works. In WWW 2019, pages 307–317. ACM, 2019.

[7] Yunqi Dong andWenjun Jiang. Brand purchase prediction based on time-evolving
user behaviors in e-commerce. Concurrency and Computation: Practice and
Experience, 31(1), 2019.

[8] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei
Yin. Graph Neural Networks for Social Recommendation. In WWW 2019, pages
417–426. ACM, 2019.

[9] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy:
evaluating recommender systems by coverage and serendipity. In RecSys 2010,
pages 257–260. ACM, 2010.

[10] Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to Forget:
Continual Prediction with LSTM. Neural Computation, 12(10):2451–2471, 2000.

[11] Mihajlo Grbovic and Haibin Cheng. Real-time Personalization using Embeddings
for Search Ranking at Airbnb. In SIGKDD 2018, pages 311–320. ACM, 2018.

[12] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. TiiS, 5(4):19:1–19:19, 2016.

[13] Ruining He and Julian J. McAuley. Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering. In WWW 2016, pages
507–517. ACM, 2016.

[14] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. Transforming Auto-
Encoders. In ICANN 2011, volume 6791 of Lecture Notes in Computer Science,
pages 44–51. Springer, 2011.

[15] Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM
routing. In ICLR 2018, 2018.

[16] Wenjun Jiang, Guojun Wang, Md. Zakirul Alam Bhuiyan, and Jie Wu. Under-
standing graph-based trust evaluation in online social networks: Methodologies
and challenges. ACM Comput. Surv., 49(1):10:1–10:35, 2016.

[17] Wenjun Jiang, Jie Wu, Feng Li, Guojun Wang, and Huanyang Zheng. Trust
evaluation in online social networks using generalized flow. IEEE Transactions
on Computers (TC), 65(3):952–963, 2016.

[18] Wenjun Jiang, Jie Wu, and Guojun Wang. On selecting recommenders for trust
evaluation in online social networks. ACM Transactions on Internet Technology,
15(4):14:1–14:21, November 2015.

[19] Wenjun Jiang, Jie Wu, Guojun Wang, and Huanyang Zheng. Forming opinions
via trusted friends: Time-evolving rating prediction using fluid dynamics. IEEE
Transactions on Computers (TC), 65(4):1211–1224, 2016.

[20] Aleksandra Karpus, Iacopo Vagliano, and Krzysztof Goczyla. Serendipitous
recommendations through ontology-based contextual pre-filtering. In BDAS
2017, volume 716 of Communications in Computer and Information Science, pages
246–259, 2017.

[21] Denis Kotkov, Jari Veijalainen, and Shuaiqiang Wang. Challenges of Serendipity
in Recommender Systems. In WEBIST 2016, pages 251–256. SciTePress, 2016.

[22] Denis Kotkov, Jari Veijalainen, and ShuaiqiangWang. How does serendipity affect
diversity in recommender systems? a serendipity-oriented greedy algorithm.
Computing, pages 1–19, 2018.

[23] Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. A survey of serendipity in
recommender systems. Knowl.-Based Syst., 111:180–192, 2016.

[24] Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, and Guojun Wang. HAES: A
new hybrid approach for movie recommendation with elastic serendipity. In
CIKM 2019, pages 1503–1512. ACM, 2019.

[25] Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu,
Shaoping Ma, and Xiang Ren. Jointly Learning Explainable Rules for Recom-
mendation with Knowledge Graph. In WWW 2019, pages 1210–1221. ACM,
2019.

[26] Valentina Maccatrozzo, Manon Terstall, Lora Aroyo, and Guus Schreiber. SIRUP:
Serendipity in recommendations via user perceptions. In IUI 2017, pages 35–44.
ACM, 2017.

[27] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
Image-Based Recommendations on Styles and Substitutes. In SIGIR 2015, pages
43–52. ACM, 2015.

[28] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson, and Rishabh Mehrotra. Explore, exploit, and explain:
personalizing explainable recommendations with bandits. In RecSys 2018, pages
31–39. ACM, 2018.

[29] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In INTERSPEECH 2010,
pages 1045–1048. ISCA, 2010.

[30] Xi Niu. An adaptive recommender system for computational serendipity. In
ICTIR 2018, pages 215–218. ACM, 2018.

[31] Xi Niu, Fakhri Abbas, Mary Lou Maher, and Kazjon Grace. Surprise Me If You
Can: Serendipity in Health Information. In CHI 2018, page 23. ACM, 2018.

[32] Gaurav Pandey, Denis Kotkov, and Alexander Semenov. Recommending Serendip-
itous Items using Transfer Learning. In CIKM 2018, pages 1771–1774. ACM, 2018.

[33] Carl Edward Rasmussen. The Infinite Gaussian Mixture Model. In NIPS 1999,
pages 554–560. The MIT Press, 1999.

[34] Richard A Redner and Homer F Walker. Mixture densities, maximum likelihood
and the EM algorithm. SIAM review, 26(2):195–239, 1984.

[35] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic Routing Between
Capsules. In NIPS 2017, pages 3859–3869, 2017.

[36] Alan Said, Ben Fields, Brijnesh J. Jain, and Sahin Albayrak. User-centric evaluation
of a k-furthest neighbor collaborative filtering recommender algorithm. In CSCW
2013, pages 1399–1408, 2013.

[37] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and
Ed H. Chi. Towards neural mixture recommender for long range dependent user
sequences. In WWW 2019, pages 1782–1793, 2019.

[38] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. Heterogeneous Graph Attention Network. In WWW 2019, pages 2022–2032.
ACM, 2019.

[39] Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenberg,
and Jure Leskovec. Hierarchical Temporal Convolutional Networks for Dynamic
Recommender Systems. In WWW 2019, pages 2236–2246. ACM, 2019.

[40] Shuai Yu, Yongbo Wang, Min Yang, Baocheng Li, Qiang Qu, and Jialie Shen.
NAIRS: A Neural Attentive Interpretable Recommendation System. InWSDM
2019, pages 790–793. ACM, 2019.

[41] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. ProNE: Fast and
Scalable Network Representation Learning. In IJCAI 2019, pages 4278–4284.
ijcai.org, 2019.

[42] Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia, and Tamas Jambor.
Auralist: introducing serendipity into music recommendation. InWSDM 2012,
pages 13–22, 2012.

	Abstract
	1 Introduction
	2 Problem Statement and Model Overview
	2.1 The Key Concepts
	2.2 Problem Definition
	2.3 Model Overview

	3 DESR: the Details
	3.1 Long-term Preferences Extraction
	3.2 Short-term Demands Capture
	3.3 Recommendation Generation
	3.4 Back-routing for Explanations

	4 Experiments and Results
	4.1 Experiment Settings
	4.2 Effects of Parameters
	4.3 Overall Comparison
	4.4 Verification on Components
	4.5 A Case Study
	4.6 Summary of Experiments

	5 Related Work
	6 Conclusions
	References

