
A Game-theoretic Approach to Storage Offloading in PoC-based
Mobile Blockchain Mining

Suhan Jiang

Temple University

Philadelphia, PA, USA

tug67249@temple.edu

Jie Wu

Temple University

Philadelphia, PA, USA

jiewu@temple.edu

ABSTRACT

Proof of Capacity (PoC) is an eco-friendly alternative to Proof

of Work for consensus in blockchains since it determines mining

rights based on miners’ storage rather than computation. In PoC,

for every block, a miner executes hashing on part of his dedicated

storage. The miner that comes up with the smallest hash value

among all miners will win the block. PoC has yet to be applied

to mobile applications, due to the storage limitation of mobile de-

vices. Storage offloading can be a viable solution that allows miners

to offload mining files to a cloud storage. In each mining round,

a miner can decide whether to mine on his local device or by a

cloud virtual machine (VM). Self-mining requires no extra cost but

it incurs download delay, which will reduce the chance of winning.

Cloud-mining experiences no delay but it brings cost on VMs. This

delay-cost tradeoff challenges each miner to determine a ratio be-

tween self-mining and cloud-mining to maximize his utility. We

model interactions among miners as a non-cooperative game and

formulate a Nash equilibrium problem to investigate the effects of

offloading on miners’ utilities. We analyze the existence and unique-

ness of equilibrium and propose a distributed algorithm to achieve

the equilibrium in a uniform-delay setting. Further, we extend our

results to non-uniform delays since miners may choose different

network settings, e.g. 3G, 4G, or 5G. Both numerical evaluation

and testbed experiments on Burstcoin are conducted to show the

feasibility of storage offloading and to validate the proposed models

and theoretical results.
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1 INTRODUCTION

There has been widespread adoption of blockchain [21] in various

fields ranging from cryptocurrency, finance, IoT to public and social

services. As a distributed ledger, a blockchain records data in the

form of linked blocks secured by cryptography. Consensus mecha-

nisms are a crucial element for every blockchain network as they

are responsible for maintaining the security and reliability of these

distributed systems. Currently, most blockchain applications are on

top of a Proof of Work (PoW) [11] mechanism or a Proof of Stake

(PoS) [24] mechanism to determine the block winning probability

of each miner. The former relies on miners’ computation power to

solve cryptographical problems to win a block and hence monetary

rewards. PoW is known for its simplicity and attack resistance,

while it consumes significant electricity consumption. The latter

virtualizes the power-hungry PoW mining by attributing mining
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Figure 1: Miners offload plot files to a cloud storage and mine blocks (1) via

cloud-mining using VMs and/or (2) via self-mining using mobile devices.

power to the proportion of coins held by a miner. PoS can be a

viable solution for energy inefficiencies but gives rise to a trend of

system centralization since rewards go more towards miners that

already have more properties.

Recently, a new mechanism called Proof of Capacity (PoC) [1]

has emerged as a promising solution to the previously-mentioned

problems of energy efficiency and fairness. As its name implies, PoC

mining relies on idle storage capacity, i.e., miners invest disk space,

as opposed to computation in PoWmining, and the amount of space

dedicated to mining determines the chances of winning a block.

The mining process consists of two steps: one-time plotting and

repeated mining in rounds. In the plotting step, miners configure

their available storage withmining-related plot files. Fig. 1 (a) shows

miner mi ’s plot file, which is sorted into si units. Each unit is

called a nonce and each nonce is divided into 4096 scoops. In each

mining round,mi executes hashing over a certain scoop column

individually to get the smallest value among all his units, which

is calledmi ’s deadline. A miner cannot publish a block until his

deadline comes. The one that finds the smallest deadline among

all miners wins. Since more storage space gives a higher chance

of finding the smallest deadline, a miner’s probability of winning

a block is related to the ratio between his own space to the total

space invested by all miners.

The PoC mechanism has been applied to several blockchain ap-

plications, e.g. Burstcoin [1], Chia [4], etc. However, its storage

requirement poses a challenge on mobile devices, thus hindering its

applications to mobile services. To facilitate PoC-based blockchain

application in future mobile IoT systems, storage offloading appears

to be a viable solution. Miners with mobile devices can overcome

capacity limitations by offloading their plot files to an external

cloud storage. Given that a small amount of computation is re-

quired in each PoC mining round, a miner can execute hashing



Mobihoc ’20, Oct 11–14, 2020, Shanghai, China Suhan Jiang and Jie Wu.

in his device by downloading corresponding scoops (self-mining)

and/or in the cloud by employing virtual machines (VMs) (cloud-

mining) provided by the cloud service provider (CSP). Fig. 1 (b)

gives an example where miners apply different mining strategies.

Self-mining requires no extra cost, but miners cannot start mining

until the corresponding scoops (one in 4096 rather than all of his

plot file) are downloaded. The incurred download delay will reduce

a miner’s winning probability. Cloud-mining can avoid such a dis-

advantage, however, it also adds miners’ cost on VM employment.

Thus, a miner has to determine a suitable mining strategy, i.e., the

optimal ratio between self-mining and cloud-mining to maximize

his utility, based on his storage offloading decision. In Fig. 1 (b),

userm3 deploys 40% for cloud-mining and the rest for self-mining.

In this paper, we study the interactions among multiple mobile

miners, who aim to maximize their own utilities. The individual

utility is defined as the difference between aminer’s expected payoff

and his cost, where the expected payoff is a product of the mining

reward and his winning probability. Each miner maximizes his util-

ity by deciding his strategies of both storage offloading and mining,

while the individual utility is influenced by all miners’ decisions.

To solve the miners’ resource management problem, we exploit

game theory and propose a non-cooperative complete-information

game to capture this complicated interplay among miners. The

corresponding Nash equilibrium problem is then formulated. We

prove the existence of unique equilibrium through our theoretical

analysis and then propose a distributed algorithm to achieve the

equilibrium. In practice, miners can use different network settings,

e.g. 3G, 4G, or even 5G in the future, which will incur different

download delays. Thus, we extend our approach to model non-

uniform delays on the miners’ strategies. The major contributions

of this paper are as follows:

• As the first work analyzing the PoC mining mechanism in

mobile applications, we derive expressions for miner win-

ning probability with delays.

• We define a non-cooperative game to capture interactions

among mobile miners and formulate a Nash equilibrium

problem to optimize resource allocation among miners.

• In the uniform-delay setting, we prove and design an al-

gorithm to obtain a unique Nash equilibrium (NE) in the

proposed game, and a close-form strategy is presented for

homogeneous miners with identical budgets.

• We show the existence of NE in the non-uniform-delay set-

ting, where the uniform-delay algorithm still can be applied

to achieve an NE point.

• We perform numerical evaluation and conduct testbed ex-

periments on Burstcoin and Google Cloud. The equilibria

obtained are consistent with all the theoretical results.

The remainder of the paper is organized as follows. Section 2

summarizes all challenges we confront and the main results we

achieve in this paper. Section 3 presents our model and formulates

the game. In Section 4, we analyze the winning probability for each

mobile miner. We study the proposed game under different network

settings in Section 5. We discuss simulation results in Section 6.

Section 7 briefly gives the related backgrounds, and we conclude

our paper in Section 8.

2 CHALLENGES AND MAIN RESULTS

This paper aims to solve a resource allocation problem for all min-

ers by maximizing their individual utilities. We define minermi ’s

utilityUi as the difference between his expected payoff and his cost,

denotedCi , where the expected payoff is a product of the mining re-

ward R and his winning probability, denoted Pi , i.e.,Ui = R ·Pi −Ci .
Our goal is to find a strategy that leads to the maximal utility formi .

However, it is non-trivial to obtain optimal strategies for individ-

ual miners, given that each miner’s strategy is multi-dimensional,

i.e., deciding on how many storage units to purchase and how to

arrange the ratio between cloud-mining and self-mining, and all

miners’ strategies can mutually affect their utilities.

To maximize his utility, mi can either increase his expected

payoff by improving his winning probability Pi or decrease his cost
Ci . Pi is a complex function determined by multiple parameters.

First, Pi should be positively correlated withmi ’s storage size since

a bigger storage size yields a higher chance of smaller hash values.

Second, Pi is also affected by other miner’s strategies since mi
cannot win unless his deadline is the smallest among all miners.

Last, if mi chooses self-mining, the incurred download delay d
will discount Pi (detailed explanations are given later). In order

to improve Pi , mi is encouraged to buy more storage resources

and increase his cloud-mining ratio, which definitely increases his

cost Ci . Thus, improving Pi and decreasing Ci are two conflicting

goals, which cannot be achieved at the same time. Thus,mi has to

buy appropriate storage units and find a reasonable mining ratio

to balance Pi and Ci . Based on these parameters, we derive the

expression of Pi and verify its validity (Theorem 1).

Given the mutual effects on Pi and hence on Ui , we propose a
non-cooperative game to characterize miners’ complex interactions.

Thus, we turn the original resource allocation problem into a Nash

equilibrium (NE) problem, in which each miner’s NE strategy is

his optimal strategy if NE exists. In the uniform-delay network,

we prove the uniqueness of NE (Theorem 2) in the miner game.

We further extend it to a non-uniform-delay network, where the

existence of NE(s) can be proven (Theorem 3). We also provide a

distributed algorithm (Algorithm 1) to compute the unique NE point

in the uniform-delay network and provide one NE point in the non-

uniform-delay network. We also present a miner’s optimal strategy

in an explicit expression, given all miners are homogeneous on

their budgets in the uniform-delay network (Theorem 4).

3 SYSTEM MODEL AND PROBLEM

FORMULATION

This paper focuses on amobile PoCmining network. Corresponding

notations are listed in Table 1. We consider a remote CSP and a set

of n miners using mobile devices. Fig. 1 depicts an overview of this

network. The CSP can provide resources of storage and computation

at a unit price set of (ps ,pc ). Miners participate in mining processes

by requesting storage and/or computation resources from the CSP.

We differentiate each minermi in terms of his budget bi , which
gives an upper bound on the amount of resources he can afford.

Thus, different types of miners have different requests.mi ’s goal is

to find a strategy that lead to the highestUi .
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Table 1: Summary of Notations.

Symbol Description

ps / pc price of cloud storage / computation

v cloud computation speed

d download delay from the cloud to miners

D mining difficulty parameter controlled by the system

R blockchain mining reward

n number of miners

mi the i-th miner

bi mi ’s budget

Ui / Pi / Ci mi ’s mining utility / winning probability / cost

xi / yi mi ’s cloud / self-mining units

si storage units purchased bymi , i.e., si =xi+yi
X / Y / S total cloud-mining / self-mining / purchased units

X−i total cloud-mining units exceptmi ’s, i.e., X−i =X−xi
Y−i total self-mining units exceptmi ’s , i.e., Y−i =Y−yi
ri mi ’s request vector, in the form of (xi ,yi )

r−i / r all miners exceptmi ’s / all miners’ request profile

Ti / T mi ’s / the whole network’s deadline

Each storage unit is tailored as a nonce size (256KB in Burstcoin).

To maximize his utility,mi should decide on how many storage

units, denoted si , to buy from the CSP, and the ratio between cloud-

mining and self-mining. We do not directly define the ratio as a

variable, instead, we denote xi as the number of storage unitsmi
mines in the cloud andyi as the number of storage units hemines by

himself, respectively. Thus, the could-self mining ratio is captured

as xi/yi . Then, mi ’s request is in the form of ri = (xi ,yi ). Let
r = {r1, · · · , rn } and r−i represent the request profile of all miners

and all other miners exceptmi , respectively. For those storage units

mined in the cloud,mi has to to pay for the storage cost as well as

the computation cost, i.e., (ps+pc )xi in total, while for the remaining

units mined in his own device, only storage cost of psyi is needed.
Thus,mi ’s cost is a combination of both, i.e.,Ci = (ps +pc )xi +psyi .

As miners all want to make as much profit as possible, a com-

petition among miners forms, in which each miner optimizes his

utility by deciding his request ri under the current resource prices
(ps ,pc ), while considering his own budget bi . Thus,mi ’s optimiza-

tion problem can be defined as follows.

Problem 1 (OPminer).

maximize Ui = R · Pi −Ci , (1a)

subject to Ci ≤ bi , xi ≥ 0, yi ≥ 0, (1b)

where Ci = (ps + pc )xi + psyi . (1c)

Sincemi ’s winning probability Pi is a function of multiple pa-

rameters, including mi ’s request, i.e., ri = (xi ,yi ) as well as all
other miners’ requests, i.e., r−i , an accurate definition and detailed

explanations of Pi will be given in the following part. Each miner

mi aims to maximize his utility and constraint (1b) ensures thatmi
is within its budget bi .

4 MINER’S WINNING PROBABILITY

In this section, we start with a model for traditional PoC mining

(subsection 4.1), where miners contributes their disk resources

and mine in their own devices like desktop computers or laptops.

This basic model allows us to quantify the relation between the

block finding time and miners’ storage size (subsection 4.2). We

then analyze how the winning probability is influenced by the

individual storage size and total storage size (subsection 4.4). We

extend the basic model to include mobile mining and formulate how

the download delay affects the winning probability (subsection 4.3).

Finally, we derive the expression for miner’s winning probability

with download delays after combining all the related parameters

(subsection 4.5).

4.1 Overview of PoC Mining

Generally, PoC mining consists of plotting and mining. The plotting

process pre-generates and stores mining-related files on miners’

storage. Fig. 1 (a) showsmi ’s plot file, which is sorted into si fixed-
length units (a row in Fig. 1 (a)). Each unit is called a nonce and

is evenly divided into 4096 scoops (a cell in Fig. 1 (a)). In each

mining round,mi retrieves the jth scoop from each of his units (the

grey column in Fig. 1 (a)), where j is selected by the system. mi
executes hashing over every retrieved scoop and gets a hash value

as a storage proof. All hash values are within the range of [0,D]
and the smallest one is measured asmi ’s best proof, named as a

deadline (the red circle in Fig. 1 (a)), which represents the waiting

time beforemi is allowed to publish his block. Thus, the smallest

deadline in the network will be measured as the network-wide best

proof and its owner will win the block. In fact, D is a parameter

controlling the mining difficulty for the miners. (Note, described

above is a basic model, where a miner’s stores his plot file and

self-mines using the same device, not involving storage offloading

and cloud mining.)

4.2 Block Finding Time and Individual Storage

Size

To find the winning probability of each player, we start by analyzing

the block finding time probability distribution. We model the block

finding time, i.e., the network-wide deadline, as a random variable

denoted T . This is a function related to all miners’ selection of

storage units.

4.2.1 Single miner’s distribution functions. In a mining round, a

miner can get a proof, denoted h, for each of his contributed storage
units. In fact, h is a random variable, of which the value is subject

to a uniform distribution within the range of [0,D] in each round.

Given that minermi commits si units of his storage in total, we

model his deadline as a random variable denoted Ti . Obviously,
Ti =min

{
h1, · · · ,hsi

}
.Ti ’s cumulative distribution function (CDF),

denoted F (t, si ,D), can be obtained in the below.

F (t, si ,D) =


0 t ≤ 0,

1 − (1 − t/D)si 0 < t < D,

1 t ≥ D.

(2)

Thereupon, the corresponding probability density function (PDF),

denoted f (t, si ,D), follows through performing derivative over
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Figure 2: CDFs under different storage sizes given D = 2min.

F (t, si ,D), as is shown in Eq. (3).

f (t, si ,D) =

{ si
D

(1 − t/D)si−1 0 < t < D,

0 otherwise .
(3)

4.2.2 Whole mining network’s distribution functions. Given a min-

ing network with n miners, the block finding time can be expressed

as T = min {T1, · · · ,Tn }. We have already calculated the PDF and

the CDF over Ti for ∀i ∈ [1,n], thus the corresponding distribu-

tion functions FT (t, S,D) and fT (t, S,D) can be expressed using

Eqs. (2-3), by replacing si with S =
∑
j sj .

4.3 Influences of Total Storage Size

Now, we want to analyze how storage sizes affect Pi . Intuitively,
a miner’s winning probability should be positively related to his

own storage size, since more storage units lead to a higher chance

of smaller deadlines. Fig. (2) further confirms our guess, where Ti ’s
CDF (as Eq. (2) describes) hits 1 faster under a larger si . Meanwhile,

Pi should also be affected by the total mining storage space. To

capture the exact mathematical relation between the individual

winning probability and storage sizes (both individual and total),

we start with a competition between only two minersmi andmj ,

owning the storage sizes of si and sj , respectively. Obviously,mi
wins when he finds a smaller deadline. The probability thatmi wins

is calculated as follows.

Pi = Pr [Ti < Tj ] =

∫∫
f (ti , si ,D) f

(
tj ; sj ,D

)
dtidtj

= 1 − sj/(si + sj ) = si/(si + sj )

Thus, the probability thatmi wins is proportional to his fraction of

the total storage size. That is, given a total storage of size S ,mi ’s

individual winning probability is Pi = si/S . Obviously, dedicat-
ing more storage space yields a proportionally higher expectation

of successfully mining a block. Therefore, a PoC-based incentive

mechanism can reward smaller miners fairly according to their

contribution to the network, thus incurring more distributed par-

ticipation.

4.4 Influences of Delay

4.4.1 Download delay in self-mining. The expression si/S charac-

terizes the probability thatmi happens to hold the smallest dead-

line among all miners. However, it is possible that the owner of

the smallest deadline isn’t the block winner. Suppose, in a certain

mining round, a minermi ’s deadline is 100 seconds, the smallest

one among all miners’ deadlines, and another minermj ’s deadline

is 105 seconds, only next tomi ’s deadline. Ifmi finds his deadline

within 100 seconds, then he propagates his block until that time

comes and becomes the winner. However, ifmi ’s mining is delayed

for some reason and hence he fails to finds his deadline within

105 seconds, at which timemj succeeds in broadcasting his block,

thenmj becomes the winner, although he isn’t the owner of the

smallest deadline. Thus, with delay, a miner’s winning probability

is definitely discounted.

In our basic mining model, since plot file storing and mining

happen in the same device, usually a desktop computer or a laptop,

all deadlines can be calculated before the smallest one comes. Thus,

it is just a race on miners’ contributed storage. However, when

applying storage offloading, a delay, denoted d , can be incurred in

self-mining due to the scoop download from the cloud to a miner’s

device. Miners cannot start self-mining until the required scoops

are downloaded. During the waiting time, if there is a deadline

no greater than d calculated using VMs in the cloud, then the

corresponding block can be successfully published and rewarded,

although there may exist smaller deadlines not yet computed by self-

mining. In reality, block propagation delay also damages a miner’s

winning probability. To focus on the influence of the download

delay, we assume propagation delay is 0.

4.4.2 Download delay and winning probability. We now extend

the basic model with the download delay d . We show how d dis-

counts miner’s winning probability. During the download delay

d , if the speed of cloud mining is v , then there should be roughly

vdn proofs computed in total. If the best one among them is less

than d , then the corresponding block definitely wins whether or

not it is a network-wide optimal deadline. The probability, denoted

β , that a cloud-mined block wins before the self-mining starts can

be expressed as β (d,v) = 1− (1 − d/D)vdn . We simplify our model

by assuming cloud-mining can perform deadline calculations fast,

i.e., all deadlines over total cloud-mining units X , i.e.,

∑n
i=1 xi , can

be calculated within d , then the corresponding probability β can

be refined as below.

β (d,X ) |v→+∞ = 1 −

(
1 −

d

D

)X
. (4)

4.5 Expression of Winning Probability

We are now ready to express Pi in the model of storage offloading,

i.e., a miner stores his plot file in the cloud instead of his own device.

Pi consists of two parts, Pci and Psi , jointly contributed by cloud-

mining and self-mining, where Pci and Psi are functions of ri and
r−i given below:

Pci (ri , r−i ) =
xi
S
+
xi
X

Y

S
β,

Psi (ri , r−i ) =
yi
S

−
yi
Y

Y

S
β = yi

1 − β

S
,

(5)

whereY =
∑n
i=1 yi and β = β(d,X ) is for simplicity. Next, we verify

the validity of Pi as a probability mass function.

Theorem 1. Pi = P
c
i + P

s
i is a valid probability mass function

to express the winning probability of individual miners in a mobile

blockchain mining network.
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Proof. We present the full verification process by checking that∑n
i=1 Pi = 1 holds, i.e.,∑n

i=1
Pi =

∑n

i=1
(Pci + P

s
i )

=
∑n

i=1
(xi+yi )/S+Yβ ·(xi/X−yi/Y )/S .

= 1+
Yβd
S

·(
X

X
−
Y

Y
) = 1. □

We can conclude that, the winning probability we use is valid,

hence our model is as well. Note thatmi ’s winning probability and

hence its utility depends not only on its request but also on those

of the other miners.

5 MINER NON-COOPERATIVE GAME

In this section, we analyze the existence and uniqueness of NE in the

proposed miner game under different network setting assumptions

(subsection 5.1). Since the NE point is hard to express in a closed

form, we provide an algorithmwhere the NE point can be computed

in a distributed way, as detailed in subsection 5.2. In subsection 5.3,

we study a special case where all miners are homogeneous on the

budget, where we can derive explicit expressions of each miner’s

optimal strategies in the uniform-delay network.

5.1 Nash Equilibrium

5.1.1 Mining in a uniform-delay network. In this part, we assume

the download delay d experienced by each self-mining miner is

uniform. We conduct analysis on Nash equilibrium (NE) in the

uniform-delay network, and the result can be concluded in Theorem

2. The detailed proof is provided in Appendix A.

Theorem 2. A unique Nash equilibrium exists in OPminer in the

uniform-delay network.

5.1.2 Mining in a non-uniform-delay network. In reality, download

delay cannot be uniform among all miners since their network

settings are different. To make our analysis more realistic while

not over-complicating our model, we use network types to charac-

terize network settings. Miners under different network types will

experience different delays. We allow k types of network settings,

and miners using type-j network experience a download delay of

dj . We assume X storage units will be mined in the cloud, and Yj
storage units will be mined by all type-j miners using their devices.

Thus, the mining timeline is segmented into k + 1 periods based on
all delay values. During period 1 (i.e., between time 0 and d1), only
X storage units are contributed for mining. At time di , Yi storage
units will join in the mining if there is still no block found at that

time. Thus, during period i + 1 (i.e., between time di and di+1),
Si+1 = X +

∑i
l=1 Yi storage units are contributed for mining. We

are ready to conclude every possible block finding time T and its

corresponding probability in the below. (pi represents the proba-
bility that a block is found in period i , i.e., between time di−1 and
di .)

pi =


1 − αX

1
i = 1,

(1 − αSii )
∏i−1

j=1 α
Sj
j i = 2, · · · ,k,∏k−1

j=1 α
Sj
j i = k + 1,

(6)

where α j = 1 − dj/D .

𝑋 + 𝑌1 + 𝑌2 + 𝑌3.   .       .         .
0 𝑑1 𝑑2 𝑑3

𝑋 𝑋 + 𝑌1 𝑋 + 𝑌1 + 𝑌2

block finding time: 𝑇

𝑇 Probability (𝛼𝑗 = 1 −
𝑑𝑗

𝐷
)

𝑇 ≤ 𝑑1 𝑝1 = 1 − 𝛼1
𝑋

𝑑1 < 𝑇 ≤ 𝑑2 𝑝2 = 𝛼1
𝑋(1 − 𝛼2

𝑋+𝑌1)

𝑑2 < 𝑇 ≤ 𝑑3 𝑝3 = 𝛼1
𝑋𝛼2

𝑋+𝑌1(1 − 𝛼3
𝑋+𝑌1+𝑌2)

𝑇 > 𝑑3 𝑝4 = 𝛼1
𝑋𝛼2

𝑋+𝑌1𝛼3
𝑋+𝑌1+𝑌2

Figure 3: Probability of the network-wide block finding time where k = 3.

Fig. 3 gives an example ofk = 3. Now, we consider how to express

the winning probability P
j
i for a minermi using type-j network. In

each mining round, Pi can be considered as a sum ofmi ’s winning

probability in each period l , which is a product of pl and mi ’s

storage contribution ratio during the period l , i.e., the ratio of his

contributed storage to the total storage in the period l . Obviously,
mi contributes xi storage units before time dj and si storage units
after that. Thus, we can calculate the winning probability for a

type-j minermi and his corresponding utility using Eqs. (7-8).

P
j
i =

∑j

l=1

xipl
Sl
+
∑k+1

l=j+1

sipl
Sl
, (7)

U
j
i =RP

j
i −Ci . (8)

If we apply this function into the original miner game, then the

following result can be obtained.

Theorem 3. Given a price set {ps , pc } from the CSP side, there

exists at least one Nash equilibrium for the miner game in the non-

uniform-delay setting.

Proof. The uniform-delay setting is a special case where k = 1.

Similar to the proof for NE in Theorem 2, the existence of NE for

miners in a non-uniform-delay network is followed by capitalizing

on the variational inequality theory. Based on the previous analysis,

we need to prove P
j
i is concave in ri .

We rewrite P
j
i to Eq. (9).

P
j
i =

∑j−1

l=1

xipl
Sl︸        ︷︷        ︸

part a

+
xipj

Sj
+
∑k+1

l=j+1

sipl
Sl︸                     ︷︷                     ︸

part b

. (9)

Based on the the proof in Theorem 2, we can obtain the fact that

part b of Eq. (9) is a concave function. We only need to prove that

part a is concave, each addend of which is concave. Since the sum

of concave functions are still concave, the concavity of part a as

well as Eq. (9) are determined. □

Note that, we never consider the mathematical relation among

Yj ’s. Thus, Theorem 3 can be obtained under any number of net-

work types and any combinations ofM miners’ network types. In

the experiment, we conduct experiments based on several special

network type distributions to see how each distribution affects

miners’ decisions.

5.2 Nash Equilibrium Algorithm

Since it is hard to express each miner’s equilibrium strategy in an

explicit form, although it exists, we provide an algorithm using

strategy iterations to find miners’ equilibrium strategies.
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Table 2: Strategy iterations given R = 800, ps = 5, pc = 25, d1/d2 = 5/6, b1 = 200, b2 = 500.

Round

Run Strategy Initialization 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 x1 7 1.2 5.1 4.2 4. 5 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4

y1 11 15.4 4.3 7.2 6.3 6.61 6.5 6.5 6.5 6.5 6.5 6.52 6.5 6.5 6.5

x2 5 8.6 7.3 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6

y2 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 x1 3 0 5.3 4.1 4.5 4.8 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4

y1 4 18.4 3.7 7.4 6.3 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

x2 1 8.9 7.2 7.7 7.6 7.6 7.61 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6

y2 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Algorithm 1 Asynchronous Best-Response Algorithm

Output: r = {r1, · · · , rn } where ri = (xi ,yi ), i ∈ {1,n}

Input: Choose any feasible starting point r (0): each miner chooses

the decision using the local computing

1: for round j do
2: for miner i do
3: Update r

(j)
i using Eq. (12) for xi and Eq. (13) for yi

4: Send the request r
(j)
i to CSP

5: CSP collects the request profile r (j)

6: if r (j) = r (j−1) then Stop

Each miner optimizes his utility by solving the OPminer prob-

lem as follows. Using Lagrange’s multipliers λ1, λ2, and λ3 for the
constraints, we obtain the Lagrange function Li to reform mi ’s

optimization problem as follows:

Li = RWi −Ci − λ1(Ci − bi ) + λ2xi + λ3yi , (10)

and the complementary slackness conditions are

λ1(Ci − bi ) = 0, λ2xi = 0, λ3yi = 0,

λ1 > 0, λ2, λ3, xi ,yi ≥ 0.
(11)

By the first-order optimality condition ∇Li = 0, it immediately

follows that λ2 = λ3 = 0. For simplicity, we approximates the value

of β by replacing X with X−i . This approximation has little effect

on the final results but makes our expression clear and simple. Thus,

we obtain the following result.

xi =

√
βRX−i

(1 + λ1)pc
− X−i , (12)

yi =

√
(1 − β)R(X−i + Y−i )

(1 + λ1)ps
− (xi + X−i + Y−i ), (13)

Ci − bi = 0. (14)

Solving Eq. (12) - Eq. (14) yields that

λ1 = [b + (ps + pc )X−i + psY−i ]
2

−

[√
βRpcX−i +

√
(1 − β)Rps (X−i + Y−i )

]
2

. (15)

Hence, substituting Eq. (15) back into Eq. (12) and Eq. (13) gives

the explicit form of the solution to the OPminer problem, i.e., each

miner’s best response strategy. This naturally gives a distributed

iterative algorithm, allowing each miner to iteratively update its

strategy, given the strategies of other miners. We summarize the

distributed iterative algorithm in Algorithm 1.

Algorithm 1 is applicable for a uniform-delay network to find

the unique NE point and also can be used in a non-uniform-delay

network, where one NE point can be computed. Table 2 gives an

example, showing how one NE point is achieved through strategy

iterations. In this example, twominerswith different network delays

and budgets compete with each other. Provided with different initial

values, they finally stabilize to the same NE point (i.e., the last

column of the table).

5.3 Nash Equilibrium among Homogeneous

Miners

OPminer are unfeasible to express in a symbolic manner. Fortunately,

we are able to get the closed-form computation offloading solutions

for the OPminer in a special case.We consider a homogeneous-miner

case where each miner is homogeneous with an identical budget

b. We will provide the explicit-form expression of the offloading

strategy for the homogeneous-miner case in the uniform-delay

network.

Theorem 4. The unique Nash equilibrium for minermi in the

homogeneous-miner case is given below, provided that the network

delay is uniform among miners.

x∗i =
bβ(n − 1)

pc (n − β)
, (16)

y∗i =
b[(1 − β)npc − β(n − 1)ps ]

pspc (n − β)
. (17)

Proof. We obtain X 2 = βRX−i/[(1 + λ1)pc ] based on Eq. (12)

and S2 = (1 − β)R(X−i + Y−i )/[(1 + λ1)ps ] based on Eq. (13), for

each minermi . Then, X
2/S2 = βX−ips/[(1 − β)(X−i + Y−i )pc ] im-

mediately comes out. Next, we calculate the summation of this

expression for all the miners as follows:∑
n

X 2

S2
=
∑
n

βX−ips
(1 − β)(X−i + Y−i )pc

, (18)

n

(
X

S

)
2

=
βps

(1 − β)pc
(n − 1)

X

S
, (19)

Then, X/S = β(n − 1)ps/(1 − β)npc easily follows. Since all miners

are homogeneous, their best response strategies are identical as
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well, i.e., X = nxi and S = n(xi + yi ). By substituting these two

equations into Eq. (14), we obtain the NE for minermi . □

However, the closed-form solution for homogeneous miners in

the non-uniform-delay network is still an open problem, which we

reserve for our future work.

6 EVALUATION

This section consists of three parts. First, we validate the feasibility

for mobile miners to offload their storage to an external CSP (sub-

section 6.1). The testbeds we use in this paper are Burstcoin [1], a

PoC mining platform, and Google Cloud [9], providing resources

of both storage and computation. Second, we examine how miners

decide their optimal strategies using our proposed algorithm in the

uniform-delay network (subsection 6.2). We conduct our experi-

ments based on different sets of parameters to show how miners’

decisions will be affected by external factors. Last, we take the

network settings into consideration and analyze how non-uniform

delays can influence the achieved equilibrium in our proposed game

(subsection 6.3).

6.1 Feasibility of Storage Offloading

The most important part is to validate whether storage offloading is

viable for PoC mining since it is the basis of our paper. To confirm

its feasibility, we show successful Burstcoin mining using Google

Cloud storage.

6.1.1 Feasibility of plotting. For plotting, there are two methods.

One is to plot directly onto the local hard drive and upload it to

cloud service, and the other way is to plot straight from the local

device to the cloud service by setting the cloud as a drive letter.

As we observed, it takes around 24 hours to upload 1 TB of plot

files under the bandwidth of 500 Mbps if choosing the first way.

Definitely, this time can be shortened with a faster Internet speed.

When using the second way, the plotter just shuts down if the

bandwidth is less than 1 Gbps. There is a bandwidth threshold if

applying the second way, and thus we suggest the first way to

offload plot files.

6.1.2 Feasibility of mining. If we choose cloud-mining using VMs

provided by the CSP, the mining speed would be faster. According

to our test, with a 2 Gbps network instance and 32 vCPU, mining

over a plot file of 18 TB can be finished within 30 seconds, which is

far less than the average block generation interval (240 seconds).

For self-mining, we also test the download delay. For a plot file

of 18 TB in total, we need to download 4068-MB scoops in each

mining round and the average delay is around 50 seconds. The

gap between the cloud-mining end time and the self-mining start

time rationalizes our assumption on an infinite cloud-mining speed.

We also test the mining speed on mobile devices. Self-mining is

slower than cloud-mining, but its speed is acceptable since we can

finish the mining within 30 to 60 seconds, depending on the type

of mobile devices. In general, the total time for local mining is also

within the average block generation interval.

Based on the data provided in the above, we can conclude that it

is feasible for miners to use mobile devices for PoC mining through

storage offloading. On this basis, we conduct further experiments

to confirm our theoretical analysis.
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Figure 4: Homogeneous miners with unlimited budgets.
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Figure 5: Budget impacts on homogeneous miners.

6.2 Unique Equilibrium in the Uniform-delay

Setting

Our experiments evaluate the influences of important parameters

on each miner’s strategies. We start with a small mobile PoCmining

network with 5 homogeneous miners with unlimited budgets.

6.2.1 Influences from the CSP side. We first consider the different

prices at the CSP side. Fig. 4 obviously reflects that, if the CSP

unilaterally increases storage’s price ps , miners will decrease their

requests on storage units as well as their self-mining ratio. However,

miners never change their investment on cloud-mining, although

it is expensive. This is reasonable, given that miners are budget-

unlimited. Similarly, the increase of computation price pc also dis-

courages miners to invest on computation resources. Besides, from

Fig. 4, we can also conclude that miner’s utility is sensitive to the

download delay, as a slight increase of d would cause an obvious

decrease on the self-mining ratio. Surprisingly, this negative effect

also influences the sales on total storage. This can be interpreted as

follows: a longer delay decreases the mining power of the whole

network, while in our experiment, we fix the mining difficulty pa-

rameter D, leading to a lower chance for miners to get reward.

Thus, miners tend to reduce their cost investment for the purpose

of maximizing utility. This result further confirms the necessity

for a blockchain-based system to dynamically adjust its difficulty

parameter.

6.2.2 Influences from the miner side. We now investigate how the

budget will affect miners’ strategies. We assume miners are homo-

geneous on their budgets bi . In Fig. 5, we can observe that, when

each miner’s budget increases, he will prefer to invest more money

in cloud-mining. Even if the computation pc goes up, this trend

still exists. Next, we analyze the heterogeneous-miner scenario.

We assume there are two miners,m1 andm2. We fixm1’s budget

and constantly increasem2’s budget. From Fig. 6, we can seem2

invest more on computation resources. By taking advantage of

cloud-mining,m2 can buy less storage units while still keeping his

utility high. Since miners mutually affect each other, althoughm1’s
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Figure 6: Heterogeneous miner with different budgets.
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Figure 7: Heterogeneous miner with different budgets.

Table 3: Miners’ strategy profiles under different delay ratios.

Type1 Type2 Type3

θ1 : θ2 : θ3 x y x y x y

3 : 4 : 5 7.3 88.9 11.8 0 16.8 0

4 : 5 : 6 12 31.7 13 0 14.8 0

5 : 6 : 7 12.3 4.4 13.3 0 14.2 0

Table 4: Miners’ strategy profiles under different population distributions.

5G 4G 3G

γ1 : γ2 : γ3 x y U /C x y U /C x y U /C

10 : 40 : 10 54 20.5 0.57 17 0 0.57 57 0 0.57

15 : 40 : 5 35 34 0.76 18.8 0 0.73 57 0 0.73

20 : 20 : 20 30 4 0.5 32 0 0.5 32 0 0.5

30 : 20 : 10 20 5 0.54 33.2 0 0.54 57 0 0.54

budget remains unchanged, he will also adjust his strategies as a

best response tom2’s strategy changes. Fig. 7 shows thatm1 also

increases his investment on cloud-mining, asm2 does.

6.3 Equilibrium in the Non-uniform-delay

Setting

Miners’ selection of network types will bring different download

delays to them. In this part, we evaluate miners’ equilibrium strate-

gies in a mining network with non-uniform delays. We construct a

mining network of 60 homogeneous miners with identical budgets

and three network types for miners to choose from, where a type-i
network will incur a delay of θid (i = 1, 2, 3).

6.3.1 Influences of delay ratio. We first investigate the influence

of different delay ratios, i.e., the values of θ1 : θ2 : θ3, on the

miners’ strategies. We assume each miner’s budget is 200 and each

network type is used by 20 miners. Given the CSP price set of

(ps ,pc ) = (1, 12), Table 3 shows miners’ strategy profiles under

different delay ratios, wherex andy represent the number of storage

Table 5: Miners’ strategy profiles under different price sets.

5G 4G 3G

(ps ,pc ) x y x y x y

(5, 15) 0 40 10 0 10 0

(5, 20) 0 40 6.25 8.75 8 0

(5, 25) 0 40 2.5 24.7 6.7 0

(5, 30) 0 40 0.3 37.8 5.7 0

units for cloud-mining and for self-mining, respectively. In each

scenario, only type-1 miners will apply self-mining for cost saving

since they can take advantage of their short delay. However, as

their download delay increases, they have to reduce the ratio of

self-mining and turn to cloud-mining. As type-2 and type-3 miners

have long delays, they prefer cloud-mining. Compared with type-

2 miners, type-3 miners also buy more storage units in order to

mitigate their disadvantages caused by their longer delays.

6.3.2 Influences of population distribution. Then, we investigate
the influence caused by population distribution of each network

type. We use 5G, 4G, and 3G to represent type-1, type-2, and type-

3 network, respectively. Thus, the delay ratio θ1 : θ2 : θ3 = 3 :

20 : 500 is obtained based on the real-world data. We assume all

miners have unlimited budgets and the CSP price set is (ps ,pc ) =
(5, 30), then Table 4 shows the correspondingminer strategies under

different population distributions, where γi represents the number

of miners using the type-i network. We can conclude that, if the

percentage of type-i miners increases, miners of this type will

decrease their storage investment, while the remaining miners

have to buy more units. Also, we observe an interesting result: even

if miners use different network types, their rates of utility on cost

are almost equal. This further confirms egalitarian nature of PoC

consensus mechanism.

6.3.3 Influences of CSP prices. Finally, we investigate the influence
incurred by the CSP’s pricing strategy. We consider a small mining

network with 3 miners using 5G, 4G, and 3G, respectively, i.e.,

θ1 : θ2 : θ3 = 3 : 20 : 500. Assuming each miner has a budget

of 200, Table 5 shows their equilibrium strategies under different

populations. As the 5G-miner can exploit his advantage of the fast

download speed, he prefers low-cost self-mining. However, the

3G-miner chooses cloud-mining to avoid the winning probability

decrease caused by his slow network, even if pc is high. For the

intermediate 4G-miner, his strategies are tightly related to the value

of pc , where a smaller pc is attractive.

7 RELATEDWORK

7.1 Blockchain Mining Consensus Mechanism

A blockchain is viewed as a distributed ledger stored and main-

tained by a network of nodes across the world. The key to operating

a blockchain is its consensus mechanism, which regulates how to

update this ledger to reach a decentralized agreement. Currently,

Blockchain consensus mechanisms can be divided into two cate-

gories, i.e., Proof of Concept (PoX) which requires miners to devote

resources tomining, and virtual miningwithout real-world resource

contribution.
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7.1.1 PoX series. As the origin of PoX series, PoW [21] uses com-

puting power for preimage searching and creates a huge amount of

electricity waste. In [25], Proof of Exercise is proposed to replace

useless searching in PoWwith the useful exercise of matrix product

problems. Apart from delegation of expensive computation, PoX

can also be designed to incentivize cheap storage provisions. The

existing mechanisms include Proof of Capacity adopted by Burst-

coin [1] and Spacemint [22], Proof of Retrievability [13] used in

Permacoin [20] and Ipfs [2] etc.

7.1.2 Virtual-mining mechanisms. Compared to PoX series, there

are fewer virtual-mining mechanisms, among which PoS is a repre-

sentative. In the PoS mechanism, miners decide their mining right

based on stake, which is the amount of crypto-currencies one pos-

sesses. There is a refined version of PoS [24], which uses coin age,

the currency amount times the holding period, to decide reward.

One of its implementations is Peercoin [15]. Another extension is

delegated PoS [16]. [14] adds more security measurements to ensure

persistence and liveness of the system. There also exist some hybrid

consensus mechanisms atop PoW protocols and BFT [3] protocols,

e.g. bitcoin-NG [7], PeerCensus [5] and Hybrid Consensus [23].

7.2 Game Theory in Offloading Mechanism

Game theory is a widely-usedmodel in the field of offloadingmecha-

nisms. A large body of existing literature [6, 10, 17, 19, 26–30, 32, 33]

focuses on minimizing offloading users’ computation overhead in

terms of energy and latency. To this end, researchers have developed

distributed decision making methodologies. In the field of mobile

blockchain mining offloading [12, 18, 31], there are few works and

most of them are in the PoW-mining scenario where mobile miners

only offload their computation to a service provider. In our paper,

we consider mining based on a PoC mechanism, thereby storage

offloading, instead of computation offloading, becomes the core.

Meanwhile, the computation offloading is still in need if miners

decide to mine remotely in the cloud.

8 CONCLUSION

We have proposed a Nash equilibrium game among the mobile

miners for optimal storage offloading in the PoC mining setting.

Two practical mining strategies are investigated for miners, i.e.,

cloud-mining and self-mining. We start with a uniform network

setting where each miner experiences the same download delay

for self-mining. We discuss the existence and the uniqueness of

Nash equilibrium in the proposed game and a distributed algorithm

is proposed to achieve NE point(s). We also find the close-form

expressions of offloading and mining strategies for homogeneous

miners with identical budgets. Then, we extend our results to non-

uniformed delays, where miners with different network settings

experience different download delays. We prove that there exists

at least one Nash equilibrium in this setting, and our previously-

proposed algorithm still can be applied to achieve one NE point.

We also find that a miner using a fast-speed network can decrease

his cost on cloud resources while obtaining higher utility. This is

reasonable since the price goes higher if subscribing to a better

network, which can be considered as another investment source

for mobile mining. Both numerical evaluation and testbed experi-

ments on Burstcoin are conducted to show the feasibility of storage

offloading and to validate the proposed models and theoretical

results.

A PROOF OF THEOREM 2

First we show the existence of NE.

Claim 1: There is at least one NE for the gameOPminer. Any game

has NEs if its equivalent variational inequality (V I ) problem [8]

has a nonempty solution set. Given a V I problem, V I (K,G), if K is

convex and compact, and F is monotone on K , then the solution

set of V I (K,G) is nonempty, closed, and convex.

We start with the definition on the equivalent VI problemV I (K,G) ≡
OP(X ,U ), where

G := (∇iUi )
n
i=1, X := ((xi ,yi ))

n
i=1, U := (Ui )

n
i=1,

K :=
∏n

i=1
Ki , Ki := {(xi ,yi )|Ci ≤ bi , xi ,yi ≥ 0}.

It can be easily verified that Ki is convex and closed, ∀i . Thus, K is

convex and compact. And G is monotone if and only ifUi (ri , r−i )
is concave in ri for given r−i , ∀i , which is true as shown below.

Since the VI problem has a nonempty solution set, the existence of

NE thus follows the sufficient conditions. Denote H for the Hessian

matrix ofUi :

H :=

[
U i
xx U i

xy
U i
yx U i

yy

]
,

where

U i
xx =

∂2Ui

∂x2i
,U i

xy = U
i
yx =

∂2Ui
∂xi∂yi

,U i
yy =

∂2Ui

∂y2i
.

The expressions of the Jacobian elements are as below:

∂Ui
∂xi
=ps + pc − R

{
(1 − (xi + yi )/S) + α

X
lnα (yi − Yxi/X )

+
(
1 − αX

)
[Y (1 − xi/X − xi/S) /X + yi/S]

}
/S,

∂Ui
∂yi
=ps − RαX [1 − (xi + yi )/S] /S .

Next, we showH is positive definite by proving its leading principal

minors, i.e.,U i
xx and det(H ), are bigger than 0.

det(H ) = U i
xxU

i
yy−U

i
xyU

i
yx =R

2(ψϕ−ψ ′ϕ ′)/(X 3S4),

where

ψ = 4X−iS,ψ
′ = SX−i + yiX−i − xiY−i ,

ϕ = 1 − αX
(
1 − lnaX

)
,ϕ ′ = αX

(
lnaX

)
2

.

The sign of det(H ) is decided by the value ofψϕ −ψ ′ϕ ′, which is

always positive for non-negative requested units.

ψϕ −ψ ′ϕ ′ = 4X−iSϕ − [(S + y)X−i − xiY−i ]ϕ
′

> 4X−iSϕ − (2SX−i − xiY−i )ϕ
′

> 4X−iSϕ − 2X−iSϕ
′ = 2X−iS(2ϕ − ϕ ′).

Since 2ϕ − ϕ ′ = 2 − 2αX
(
1 − lnαX

)
− αX

(
lnαX

)
2

is a monotone

increasing function, it is obvious that 2ϕ − ϕ ′ ≥ 2ϕ − ϕ ′ |X=0= 0,

∀Y ≥ 0. Thus, det(H ) > 0 holds. Obviously, U i
xxU

i
yy > 0 and

U i
yy > 0, then U i

xx > 0 is logically well-reasoned. As det(H ) > 0

and U i
yy > 0, ∀(xi ,yi ) ∈ Ki , and the positive definiteness holds

for any i . Therefore, V I (K,G) is equivalent to OP(X ,U ) and has a
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nonempty solution set. We thus prove that Claim 1 is legitimate.

We finish the proof for the uniqueness of NE.

Claim 2: There is at most one NE for the game OPminer. We first

introduce the matrices Jlow , defined as

[Jlow ]i j := inf

x ∈K


|∇2

iiUi |, if i = j,

−
1

2

(|∇2

i jUi | + |∇2

jiUj |), else.

We prove the uniqueness of NE solution by showing that Jlow is a

strictly copositive matrix. We first give the explicit-form expression

of ∇2

iiUi and ∇2

i jUi as follows.

∇2

iiUi =U
i
xx +U

i
yy , ∇2

j jUj = U
j
xx +U

j
yy ,

∇2

i jUi =
∂2Ui
∂xi∂yj

+
∂2Ui
∂xi∂x j

+
∂2Ui
∂yi∂yj

+
∂2Ui
∂xi∂yj

,

∇2

jiUj =
∂2Uj

∂x j∂yi
+
∂2Uj

∂yj∂xi
+
∂2Uj

∂x j∂yi
+
∂2Uj

∂yj∂xi
.

W.L.O.G. we show that the second-order Jlow is strictly coposi-

tive.The uniqueness to generalized cases can be simply proved

using induction, due to the repetitive pattern of the objective func-

tionUi . By the symmetry given in Eq. (20), Jlow can be written into

the form:

Jlow =

[
a11 a12
a21 a22

]
,

where

a11= inf

(x1,y1)∈K
|∇2

11
U1 |,

a22= inf

(x2,y2)∈K
|∇2

22
U2 |,

a12=a21= (−
1

2

)
(x2,y2)∈K

inf

(x1,y1)∈K
(|∇2

12
U1 | + |∇2

21
U2 |).

It suffices to show that a11,a22 ≥ 0 and a12 +
√
a11a22 > 0, where

the non-negativity of the first two terms are trivial.

a12 +
√
a11a22 =

(x2,y2)∈K
inf

(x1,y1)∈K
R(1 − β)[1 − 2(S − xi − yi )]/S

2

+ β(2xi − X )/Y 3 > 0.

Then, Jlow is strictly copositive as shown above. Since we have

shown that G is continuously differentiable with the derivatives

bounded on K (as the derivatives are all linear on the compact

solution space K), G is strictly monotone. Therefore OPminer has

at most one solution.

Now, we conclude our proof since the uniqueness of NE imme-

diately follows by combining Claim 1 and Claim 2.

REFERENCES

[1] P Andrew. 2019. What is Burstcoin?

[2] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv

preprint arXiv:1407.3561 (2014).

[3] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems (TOCS) (2002).

[4] Bram Cohen and Krzysztof Pietrzak. 2019. The Chia Network Blockchain.

[5] Christian Decker, Jochen Seidel, and Roger Wattenhofer. 2016. Bitcoin meets

strong consistency. In Proceedings of the 17th International Conference on Dis-

tributed Computing and Networking. ACM.

[6] Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. 2018. Computation offloading

and resource allocation in mixed fog/cloud computing systems with min-max

fairness guarantee. IEEE Transactions on Communications 66, 4 (2018), 1594–1608.

[7] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.

Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI} 16). 45–59.

[8] Franco Giannessi and Antonino Maugeri. 1995. Variational inequalities and

network equilibrium problems. Springer.

[9] Google. 2019. Google Cloud. https://cloud.google.com/

[10] Tai Manh Ho, Nguyen H Tran, Cuong T Do, SM Ahsan Kazmi, Tuan LeAnh, and

Choong Seon Hong. 2015. Data offloading in heterogeneous cellular networks:

Stackelberg game based approach. In 2015 Asia-Pacific Network Operations and

Management Symposium. IEEE, 168–173.

[11] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding proto-

cols. In Secure Information Networks. Springer, 258–272.

[12] Suhan Jiang, Xinyi Li, and Jie Wu. 2019. Hierarchical Edge-Cloud Computing for

Mobile Blockchain Mining Game. In Proc. of the 39th IEEE International Conference

on Distributed Computing Systems (ICDCS 2019), Vol. 15.

[13] Ari Juels and Burton S Kaliski Jr. 2007. PORs: Proofs of retrievability for large

files. In Proceedings of the 14th ACM conference on Computer and communications

security. Acm.

[14] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference. Springer.

[15] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August (2012).

[16] Daniel Larimer. 2014. Delegated proof-of-stake (dpos). Bitshare whitepaper

(2014).

[17] Liqing Liu, Zheng Chang, Xijuan Guo, Shiwen Mao, and Tapani Ristaniemi. 2017.

Multiobjective optimization for computation offloading in fog computing. IEEE

Internet of Things Journal 5, 1 (2017), 283–294.

[18] Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and Mei Song.

2018. Joint computation offloading and content caching for wireless blockchain

networks. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications

Workshops.

[19] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke

Zhang. 2017. Incentive mechanism for computation offloading using edge com-

puting: a Stackelberg game approach. Computer Networks 129 (2017), 399–409.

[20] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. 2014. Per-

macoin: Repurposing bitcoin work for data preservation. In 2014 IEEE Symposium

on Security and Privacy. IEEE.

[21] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.

(2008).

[22] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer,

and Peter Gazi. 2018. Spacemint: A cryptocurrency based on proofs of space.

Financial Cryptography and Data Security (2018).

[23] Rafael Pass and Elaine Shi. 2017. Hybrid consensus: Efficient consensus in the

permissionless model. In 31st International Symposium on Distributed Computing

(DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[24] Fahad Saleh. 2019. Blockchain without waste: Proof-of-stake. Available at SSRN

3183935 (2019).

[25] Ali Shoker. 2017. Sustainable blockchain through proof of exercise. In 2017 IEEE

16th International Symposium on Network Computing and Applications (NCA).

IEEE, 1–9.

[26] Lingyang Song, Dusit Niyato, ZhuHan, and EkramHossain. 2014. Game-theoretic

resource allocation methods for device-to-device communication. IEEE Wireless

Communications 21, 3 (2014), 136–144.

[27] Youming Sun, Hongxiang Shao, Xin Liu, Jian Zhang, Junfei Qiu, and Yuhua

Xu. 2015. Traffic Offloading in Two-Tier Multi-Mode Small Cell Networks over

Unlicensed Bands: A Hierarchical Learning Framework. TIIS 9, 11 (2015), 4291–

4310.

[28] Xiumin Wang, Xiaoming Chen, Weiwei Wu, Ning An, and Lusheng Wang. 2016.

Cooperative application execution in mobile cloud computing: A Stackelberg

game approach. IEEE Communications Letters 20, 5 (2016), 946–949.

[29] Qiufen Xia,Weifa Liang, ZichuanXu, and Bingbing Zhou. 2014. Online algorithms

for location-aware task offloading in two-tiered mobile cloud environments. In

Proceedings of the 2014 IEEE/ACM 7th international conference on utility and cloud

computing. IEEE Computer Society, 109–116.

[30] Liang Xiao, Caixia Xie, Tianhua Chen, Huaiyu Dai, and H Vincent Poor. 2016. A

mobile offloading game against smart attacks. IEEE Access 4 (2016), 2281–2291.

[31] Zehui Xiong, Shaohan Feng, Dusit Niyato, Ping Wang, and Zhu Han. 2018. Opti-

mal pricing-based edge computing resource management in mobile blockchain.

In 2018 IEEE International Conference on Communications.

[32] Huaqing Zhang, Yong Xiao, Shengrong Bu, Dusit Niyato, Richard Yu, and Zhu

Han. [n. d.]. Fog computing in multi-tier data center networks: a hierarchical

game approach. In 2016 IEEE international conference on communications.

[33] Xiaonan Zhang, Linke Guo, Ming Li, and Yuguang Fang. 2016. Social-enabled

data offloading via mobile participation-a game-theoretical approach. In 2016

IEEE Global Communications Conference.

https://cloud.google.com/

	Abstract
	1 Introduction
	2 Challenges and Main Results
	3 System Model and Problem Formulation
	4 Miner's Winning Probability
	4.1 Overview of PoC Mining
	4.2 Block Finding Time and Individual Storage Size
	4.3 Influences of Total Storage Size
	4.4 Influences of Delay
	4.5 Expression of Winning Probability

	5 Miner Non-cooperative Game
	5.1 Nash Equilibrium
	5.2 Nash Equilibrium Algorithm
	5.3 Nash Equilibrium among Homogeneous Miners

	6 Evaluation
	6.1 Feasibility of Storage Offloading
	6.2 Unique Equilibrium in the Uniform-delay Setting
	6.3 Equilibrium in the Non-uniform-delay Setting

	7 Related Work
	7.1 Blockchain Mining Consensus Mechanism
	7.2 Game Theory in Offloading Mechanism

	8 Conclusion
	A Proof of Theorem 2
	References

