Hierarchical Edge-Cloud Computing for Mobile Blockchain Mining Game

Suhan Jiang, Xinyi Li and Jie Wu
Dept. of Computer and Information Sciences
Temple University, USA
1. Blockchain

- PoW-based blockchain mining
 - Mining a block is a puzzle solving race on miners’ computing power

- Mining incentive
 - Each block will be rewarded with R
 - Prob. of winning a puzzle solving race
 - $W_i = \text{computing rate} = \frac{\text{individual computing power}}{\text{total computing power}}$

\[
\cdots \xleftarrow{\text{block } (i-1)} \xrightarrow{\text{block } i} \xleftarrow{\text{block } (i+1)} \cdots
\]
Motivation: Apply in Mobile Devices

- Few blockchain applications in mobile environments
 - Mobile devices cannot satisfy mining requirements
 - Limited computing power and energy
 - Solution: computation offloading
 - Offloading incurs delay \(d\) and cost \(C\) from service provider
 - A miner’s utility: \(U_i = R \cdot W_i - C\)
 - \(W_i = (1 - \beta(d)) \times \text{computing rate}\)
 - specific function of delay proportional to computing power
A Two-layer Offloading Paradigm

- Two service providers
 - A remote cloud computing service provider (CSP)
 - Rich resource capacity, low price, long delay
 - A nearby edge computing service provider (ESP)
 - Limited resource capacity (E_{max}), high price, short delay

- Different operation modes
 - ESP is connected to CSP
 - Auto-transfer requests to CSP if overloaded
 - ESP is standalone from CSP
 - Reject requests if overloaded
2. Problem Formulation

1. Nash subgame of N miners to maximize utility U_i
 - Decide on resource share from ESP (e_i) and CSP (c_i)

2. Nash subgame of ESP/CSP to maximize revenue $V_e(V_c)$
 - Decide on the resource unit price $P_e(P_c)$

3. Stackelberg game between miners and ESP/CSP
 - Interplay between leaders (ESP/CSP) and followers (miners).
Miners’ Subgame

- Formulation of strategy and objective
 - Determine e_i and c_i under budget limitation B_i to
 \[
 \text{maximize} \quad U_i = R \cdot W_i - (P_e \cdot e_i + P_c \cdot c_i)
 \]

- Winning probability W_i and delay d
 - d discounts W_i by $1 - \beta(d)$
 \[
 \beta(d) = 1 - e^{-\lambda d}
 \]
 represent mining difficulty
 - Tradeoff on delay and price
 - CSP lowers cost while decreasing W_i
 - ESP increases W_i while adding cost

PDF of a conflicting block being found given another block is being propagated
Validation of Winning Probability

- \(W_i \) combines winning either in edge or cloud

 \[W_i = W_i^e + W_i^c \]

 \[W_i^e = \frac{e_i}{E + C} \cdot \left(1 + \frac{\beta C}{E}\right) \quad \text{and} \quad W_i^c = \frac{c_i}{E + C} \cdot (1 - \beta) \]

 where \(E = \sum_{i=1}^{N} e_i \) and \(C = \sum_{i=1}^{N} c_i \)

- **Theorem 1.** \(W_i \) is valid to express winning probability of individual miners in a mobile blockchain mining network

 Proof: We present the full verification process by checking that \(\sum_{i=1}^{N} W_i = 1 \) always holds.
Service Providers' Subgame

- Formulation of strategy and objective
 - ESP determines a unit price P_e to
 \[
 \text{maximize } V_e = (P_e - C_e) \cdot E \quad \text{where } E = \sum_{i=1}^{N} e_i
 \]
 ESP unit cost ESP sold-out units
 - CSP determines a unit price P_c to
 \[
 \text{maximize } V_c = (P_c - C_c) \cdot C \quad \text{where } C = \sum_{i=1}^{N} c_i
 \]
 CSP unit cost CSP sold-out units
Stackelberg Game

- A two-stage game
 - Stage 1: ESP/CSP subgame
 - ESP(CSP) optimizes its unit price $P_e(P_c)$ by predicting the miners' reactions as well as considering the rival's price strategy.
 - Stage 2: miner subgame
 - Each miner responds to the current prices, by sending requests to ESP/CSP, considering its budget and other miners' requests.

- Stackelberg equilibrium (SE)
 - Formed by subgame perfect Nash equilibria (NE) in both the leader stage and the follower stage
Game Analysis in Connected Mode

- **Theorem 2.** A unique NE exists in miner subgame
- **Theorem 3.** Stackelberg game has a unique SE

 A best response algorithm to find the unique SE point in Stackelberg game.

- **Theorem 4.** If all miners have identical budgets B, each miner’s request in NE can be expressed as

\[
\begin{align*}
 e_i^* &= \frac{B\beta h}{(1 - \beta + h\beta)(P_e - P_c)}, \\
 c_i^* &= \frac{B[(1 - \beta)(P_e - P_c) - P_c\beta h]}{P_c(1 - \beta + h\beta)(P_e - P_c)}
\end{align*}
\]
Game Analysis in Standalone Mode

- **Theorem 5.** Given a price set \((P_e, P_c)\), there exists at least one NE in miner subgame.

- **Theorem 6.** SE exists in the Stackelberg game.
 - Note: there may exist more than one SE point.

- A distributed price bargaining algorithm with guaranteed convergence to find one SE point.
The number of miners changes in each round
- Modeled as a random variable $N \sim \mathcal{N}(\mu, \sigma^2)$
- Where $N = k$ with probability $P(k) = \Phi(k) - \Phi(k - 1)$.
4. Experiment

- **Setting**
 - A small network of 5 miners with identical budgets $B=200$
 - Each experiment is averaged over 50 rounds

- **Miner subgame equilibrium**
 - influences of communication delay
 - Delay decreases the number of resources sold by CSP and his revenue.

![Graphs](attachment:image.png)

(a) The ESP’s revenue.
(b) The CSP’s revenue.
Miner Subgame Equilibrium

- Influences of operation modes
 - Miners are discouraged from buying units from an ESP working in the connected mode.
 - Crosses in (b) the CSP's optimal prices under different communication delays.

(a) $\beta = 0.02$.

(b) $\beta = 0.06$.
Miner Subgame Equilibrium

- Influences of miners’ budgets
 - Higher budgets, more requests as well as more revenues

(a) A miner’s request to the ESP.

(b) A miner’s request to the CSP.
ESP/CSP Subgame Equilibrium

- Influences of service providers' costs
 - prices increase linearly as unit costs increases
 - ESP charges a higher price

![Graphs showing price increases](image)
Population Uncertainty

- Render miners more aggressive to buy computing resources from the ESP.

![Graphs showing the relationship between delay factor and sold units in total for different scenarios.](image)

(a) $\beta = 0.02$.

(b) $\beta = 0.06$.
5. Conclusion

- A Stackelberg game with two subgames
 - Consider delay and cost tradeoff in mobile mining environment
 - Model the relation between winning probability and delay
 - Solve a price-based resource management problem

- Two ESP operation modes:
 - Connected vs standalone

- Impacts of population uncertainty

- Experiments to confirm theoretical analysis
Thank you

Q & A